From patchwork Thu Nov 5 16:25:00 2020 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Steven Rostedt X-Patchwork-Id: 319938 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-9.7 required=3.0 tests=BAYES_00, HEADER_FROM_DIFFERENT_DOMAINS, INCLUDES_PATCH, MAILING_LIST_MULTI, SIGNED_OFF_BY, SPF_HELO_NONE, SPF_PASS, URIBL_BLOCKED autolearn=unavailable autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 77E86C55178 for ; Thu, 5 Nov 2020 16:26:03 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by mail.kernel.org (Postfix) with ESMTP id 2650D20936 for ; Thu, 5 Nov 2020 16:26:03 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1731234AbgKEQZt (ORCPT ); Thu, 5 Nov 2020 11:25:49 -0500 Received: from mail.kernel.org ([198.145.29.99]:45168 "EHLO mail.kernel.org" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1725998AbgKEQZs (ORCPT ); Thu, 5 Nov 2020 11:25:48 -0500 Received: from gandalf.local.home (cpe-66-24-58-225.stny.res.rr.com [66.24.58.225]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by mail.kernel.org (Postfix) with ESMTPSA id 9CBC92080D; Thu, 5 Nov 2020 16:25:47 +0000 (UTC) Received: from rostedt by gandalf.local.home with local (Exim 4.94) (envelope-from ) id 1kai54-007Pdh-7g; Thu, 05 Nov 2020 11:25:46 -0500 Message-ID: <20201105162546.069754582@goodmis.org> User-Agent: quilt/0.66 Date: Thu, 05 Nov 2020 11:25:00 -0500 From: Steven Rostedt To: linux-kernel@vger.kernel.org Cc: Ingo Molnar , Andrew Morton , stable@vger.kernel.org Subject: [for-linus][PATCH 2/4] ring-buffer: Fix recursion protection transitions between interrupt context References: <20201105162458.408429167@goodmis.org> MIME-Version: 1.0 Precedence: bulk List-ID: X-Mailing-List: stable@vger.kernel.org From: "Steven Rostedt (VMware)" The recursion protection of the ring buffer depends on preempt_count() to be correct. But it is possible that the ring buffer gets called after an interrupt comes in but before it updates the preempt_count(). This will trigger a false positive in the recursion code. Use the same trick from the ftrace function callback recursion code which uses a "transition" bit that gets set, to allow for a single recursion for to handle transitions between contexts. Cc: stable@vger.kernel.org Fixes: 567cd4da54ff4 ("ring-buffer: User context bit recursion checking") Signed-off-by: Steven Rostedt (VMware) --- kernel/trace/ring_buffer.c | 58 ++++++++++++++++++++++++++++++-------- 1 file changed, 46 insertions(+), 12 deletions(-) diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c index 7f45fd9d5a45..dc83b3fa9fe7 100644 --- a/kernel/trace/ring_buffer.c +++ b/kernel/trace/ring_buffer.c @@ -438,14 +438,16 @@ enum { }; /* * Used for which event context the event is in. - * NMI = 0 - * IRQ = 1 - * SOFTIRQ = 2 - * NORMAL = 3 + * TRANSITION = 0 + * NMI = 1 + * IRQ = 2 + * SOFTIRQ = 3 + * NORMAL = 4 * * See trace_recursive_lock() comment below for more details. */ enum { + RB_CTX_TRANSITION, RB_CTX_NMI, RB_CTX_IRQ, RB_CTX_SOFTIRQ, @@ -3014,10 +3016,10 @@ rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) * a bit of overhead in something as critical as function tracing, * we use a bitmask trick. * - * bit 0 = NMI context - * bit 1 = IRQ context - * bit 2 = SoftIRQ context - * bit 3 = normal context. + * bit 1 = NMI context + * bit 2 = IRQ context + * bit 3 = SoftIRQ context + * bit 4 = normal context. * * This works because this is the order of contexts that can * preempt other contexts. A SoftIRQ never preempts an IRQ @@ -3040,6 +3042,30 @@ rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) * The least significant bit can be cleared this way, and it * just so happens that it is the same bit corresponding to * the current context. + * + * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit + * is set when a recursion is detected at the current context, and if + * the TRANSITION bit is already set, it will fail the recursion. + * This is needed because there's a lag between the changing of + * interrupt context and updating the preempt count. In this case, + * a false positive will be found. To handle this, one extra recursion + * is allowed, and this is done by the TRANSITION bit. If the TRANSITION + * bit is already set, then it is considered a recursion and the function + * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. + * + * On the trace_recursive_unlock(), the TRANSITION bit will be the first + * to be cleared. Even if it wasn't the context that set it. That is, + * if an interrupt comes in while NORMAL bit is set and the ring buffer + * is called before preempt_count() is updated, since the check will + * be on the NORMAL bit, the TRANSITION bit will then be set. If an + * NMI then comes in, it will set the NMI bit, but when the NMI code + * does the trace_recursive_unlock() it will clear the TRANSTION bit + * and leave the NMI bit set. But this is fine, because the interrupt + * code that set the TRANSITION bit will then clear the NMI bit when it + * calls trace_recursive_unlock(). If another NMI comes in, it will + * set the TRANSITION bit and continue. + * + * Note: The TRANSITION bit only handles a single transition between context. */ static __always_inline int @@ -3055,8 +3081,16 @@ trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) bit = pc & NMI_MASK ? RB_CTX_NMI : pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; - if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) - return 1; + if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { + /* + * It is possible that this was called by transitioning + * between interrupt context, and preempt_count() has not + * been updated yet. In this case, use the TRANSITION bit. + */ + bit = RB_CTX_TRANSITION; + if (val & (1 << (bit + cpu_buffer->nest))) + return 1; + } val |= (1 << (bit + cpu_buffer->nest)); cpu_buffer->current_context = val; @@ -3071,8 +3105,8 @@ trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) cpu_buffer->current_context - (1 << cpu_buffer->nest); } -/* The recursive locking above uses 4 bits */ -#define NESTED_BITS 4 +/* The recursive locking above uses 5 bits */ +#define NESTED_BITS 5 /** * ring_buffer_nest_start - Allow to trace while nested