@@ -1880,6 +1880,31 @@ static inline bool mmc_blk_rq_error(stru
brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
}
+static int mmc_spi_err_check(struct mmc_card *card)
+{
+ u32 status = 0;
+ int err;
+
+ /*
+ * SPI does not have a TRAN state we have to wait on, instead the
+ * card is ready again when it no longer holds the line LOW.
+ * We still have to ensure two things here before we know the write
+ * was successful:
+ * 1. The card has not disconnected during busy and we actually read our
+ * own pull-up, thinking it was still connected, so ensure it
+ * still responds.
+ * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
+ * just reconnected card after being disconnected during busy.
+ */
+ err = __mmc_send_status(card, &status, 0);
+ if (err)
+ return err;
+ /* All R1 and R2 bits of SPI are errors in our case */
+ if (status)
+ return -EIO;
+ return 0;
+}
+
static int mmc_blk_busy_cb(void *cb_data, bool *busy)
{
struct mmc_blk_busy_data *data = cb_data;
@@ -1903,9 +1928,16 @@ static int mmc_blk_card_busy(struct mmc_
struct mmc_blk_busy_data cb_data;
int err;
- if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
+ if (rq_data_dir(req) == READ)
return 0;
+ if (mmc_host_is_spi(card->host)) {
+ err = mmc_spi_err_check(card);
+ if (err)
+ mqrq->brq.data.bytes_xfered = 0;
+ return err;
+ }
+
cb_data.card = card;
cb_data.status = 0;
err = __mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, &mmc_blk_busy_cb,