@@ -426,10 +426,18 @@ astute users may notice some differences
- Unencrypted files, or files encrypted with a different encryption
policy (i.e. different key, modes, or flags), cannot be renamed or
linked into an encrypted directory; see `Encryption policy
- enforcement`_. Attempts to do so will fail with EPERM. However,
+ enforcement`_. Attempts to do so will fail with EXDEV. However,
encrypted files can be renamed within an encrypted directory, or
into an unencrypted directory.
+ Note: "moving" an unencrypted file into an encrypted directory, e.g.
+ with the `mv` program, is implemented in userspace by a copy
+ followed by a delete. Be aware that the original unencrypted data
+ may remain recoverable from free space on the disk; prefer to keep
+ all files encrypted from the very beginning. The `shred` program
+ may be used to overwrite the source files but isn't guaranteed to be
+ effective on all filesystems and storage devices.
+
- Direct I/O is not supported on encrypted files. Attempts to use
direct I/O on such files will fall back to buffered I/O.
@@ -516,7 +524,7 @@ not be encrypted.
Except for those special files, it is forbidden to have unencrypted
files, or files encrypted with a different encryption policy, in an
encrypted directory tree. Attempts to link or rename such a file into
-an encrypted directory will fail with EPERM. This is also enforced
+an encrypted directory will fail with EXDEV. This is also enforced
during ->lookup() to provide limited protection against offline
attacks that try to disable or downgrade encryption in known locations
where applications may later write sensitive data. It is recommended
@@ -58,7 +58,7 @@ int __fscrypt_prepare_link(struct inode
return err;
if (!fscrypt_has_permitted_context(dir, inode))
- return -EPERM;
+ return -EXDEV;
return 0;
}
@@ -82,13 +82,13 @@ int __fscrypt_prepare_rename(struct inod
if (IS_ENCRYPTED(new_dir) &&
!fscrypt_has_permitted_context(new_dir,
d_inode(old_dentry)))
- return -EPERM;
+ return -EXDEV;
if ((flags & RENAME_EXCHANGE) &&
IS_ENCRYPTED(old_dir) &&
!fscrypt_has_permitted_context(old_dir,
d_inode(new_dentry)))
- return -EPERM;
+ return -EXDEV;
}
return 0;
}
@@ -153,8 +153,7 @@ EXPORT_SYMBOL(fscrypt_ioctl_get_policy);
* malicious offline violations of this constraint, while the link and rename
* checks are needed to prevent online violations of this constraint.
*
- * Return: 1 if permitted, 0 if forbidden. If forbidden, the caller must fail
- * the filesystem operation with EPERM.
+ * Return: 1 if permitted, 0 if forbidden.
*/
int fscrypt_has_permitted_context(struct inode *parent, struct inode *child)
{
@@ -89,7 +89,7 @@ static inline int fscrypt_require_key(st
* in an encrypted directory tree use the same encryption policy.
*
* Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
- * -EPERM if the link would result in an inconsistent encryption policy, or
+ * -EXDEV if the link would result in an inconsistent encryption policy, or
* another -errno code.
*/
static inline int fscrypt_prepare_link(struct dentry *old_dentry,
@@ -119,7 +119,7 @@ static inline int fscrypt_prepare_link(s
* We also verify that the rename will not violate the constraint that all files
* in an encrypted directory tree use the same encryption policy.
*
- * Return: 0 on success, -ENOKEY if an encryption key is missing, -EPERM if the
+ * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
* rename would cause inconsistent encryption policies, or another -errno code.
*/
static inline int fscrypt_prepare_rename(struct inode *old_dir,