@@ -1566,6 +1566,20 @@ static int __ref __offline_pages(unsigne
/* check again */
ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
NULL, check_pages_isolated_cb);
+ /*
+ * per-cpu pages are drained in start_isolate_page_range, but if
+ * there are still pages that are not free, make sure that we
+ * drain again, because when we isolated range we might
+ * have raced with another thread that was adding pages to pcp
+ * list.
+ *
+ * Forward progress should be still guaranteed because
+ * pages on the pcp list can only belong to MOVABLE_ZONE
+ * because has_unmovable_pages explicitly checks for
+ * PageBuddy on freed pages on other zones.
+ */
+ if (ret)
+ drain_all_pages(zone);
} while (ret);
/* Ok, all of our target is isolated.
@@ -187,6 +187,14 @@ __first_valid_page(unsigned long pfn, un
* pageblocks we may have modified and return -EBUSY to caller. This
* prevents two threads from simultaneously working on overlapping ranges.
*
+ * Please note that there is no strong synchronization with the page allocator
+ * either. Pages might be freed while their page blocks are marked ISOLATED.
+ * In some cases pages might still end up on pcp lists and that would allow
+ * for their allocation even when they are in fact isolated already. Depending
+ * on how strong of a guarantee the caller needs drain_all_pages might be needed
+ * (e.g. __offline_pages will need to call it after check for isolated range for
+ * a next retry).
+ *
* Return: the number of isolated pageblocks on success and -EBUSY if any part
* of range cannot be isolated.
*/