@@ -75,6 +75,12 @@ static inline void set_floatx80_rounding_precision(FloatX80RoundPrec val,
status->floatx80_rounding_precision = val;
}
+static inline void set_float_2nan_prop_rule(Float2NaNPropRule rule,
+ float_status *status)
+{
+ status->float_2nan_prop_rule = rule;
+}
+
static inline void set_flush_to_zero(bool val, float_status *status)
{
status->flush_to_zero = val;
@@ -126,6 +132,11 @@ get_floatx80_rounding_precision(float_status *status)
return status->floatx80_rounding_precision;
}
+static inline Float2NaNPropRule get_float_2nan_prop_rule(float_status *status)
+{
+ return status->float_2nan_prop_rule;
+}
+
static inline bool get_flush_to_zero(float_status *status)
{
return status->flush_to_zero;
@@ -170,6 +170,47 @@ typedef enum __attribute__((__packed__)) {
floatx80_precision_s,
} FloatX80RoundPrec;
+/*
+ * 2-input NaN propagation rule. Individual architectures have
+ * different rules for which input NaN is propagated to the output
+ * when there is more than one NaN on the input.
+ *
+ * If default_nan_mode is enabled then it is valid not to set a
+ * NaN propagation rule, because the softfloat code guarantees
+ * not to try to pick a NaN to propagate in default NaN mode.
+ *
+ * For transition, currently the 'none' rule will cause us to
+ * fall back to picking the propagation rule based on the existing
+ * ifdef ladder. When all targets are converted it will be an error
+ * not to set the rule in float_status unless in default_nan_mode,
+ * and we will assert if we need to handle an input NaN and no
+ * rule was selected.
+ */
+typedef enum __attribute__((__packed__)) {
+ /* No propagation rule specified */
+ float_2nan_prop_none = 0,
+ /* Prefer SNaN over QNaN, then operand A over B */
+ float_2nan_prop_s_ab,
+ /* Prefer SNaN over QNaN, then operand B over A */
+ float_2nan_prop_s_ba,
+ /* Prefer A over B regardless of SNaN vs QNaN */
+ float_2nan_prop_ab,
+ /* Prefer B over A regardless of SNaN vs QNaN */
+ float_2nan_prop_ba,
+ /*
+ * This implements x87 NaN propagation rules:
+ * SNaN + QNaN => return the QNaN
+ * two SNaNs => return the one with the larger significand, silenced
+ * two QNaNs => return the one with the larger significand
+ * SNaN and a non-NaN => return the SNaN, silenced
+ * QNaN and a non-NaN => return the QNaN
+ *
+ * If we get down to comparing significands and they are the same,
+ * return the NaN with the positive sign bit (if any).
+ */
+ float_2nan_prop_x87,
+} Float2NaNPropRule;
+
/*
* Floating Point Status. Individual architectures may maintain
* several versions of float_status for different functions. The
@@ -181,6 +222,7 @@ typedef struct float_status {
uint16_t float_exception_flags;
FloatRoundMode float_rounding_mode;
FloatX80RoundPrec floatx80_rounding_precision;
+ Float2NaNPropRule float_2nan_prop_rule;
bool tininess_before_rounding;
/* should denormalised results go to zero and set the inexact flag? */
bool flush_to_zero;
@@ -390,118 +390,153 @@ bool float32_is_signaling_nan(float32 a_, float_status *status)
static int pickNaN(FloatClass a_cls, FloatClass b_cls,
bool aIsLargerSignificand, float_status *status)
{
-#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA) || \
- defined(TARGET_LOONGARCH64) || defined(TARGET_S390X)
- /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
- * the first of:
- * 1. A if it is signaling
- * 2. B if it is signaling
- * 3. A (quiet)
- * 4. B (quiet)
- * A signaling NaN is always quietened before returning it.
- */
- /* According to MIPS specifications, if one of the two operands is
- * a sNaN, a new qNaN has to be generated. This is done in
- * floatXX_silence_nan(). For qNaN inputs the specifications
- * says: "When possible, this QNaN result is one of the operand QNaN
- * values." In practice it seems that most implementations choose
- * the first operand if both operands are qNaN. In short this gives
- * the following rules:
- * 1. A if it is signaling
- * 2. B if it is signaling
- * 3. A (quiet)
- * 4. B (quiet)
- * A signaling NaN is always silenced before returning it.
- */
- if (is_snan(a_cls)) {
- return 0;
- } else if (is_snan(b_cls)) {
- return 1;
- } else if (is_qnan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
-#elif defined(TARGET_PPC) || defined(TARGET_M68K)
- /* PowerPC propagation rules:
- * 1. A if it sNaN or qNaN
- * 2. B if it sNaN or qNaN
- * A signaling NaN is always silenced before returning it.
- */
- /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
- * 3.4 FLOATING-POINT INSTRUCTION DETAILS
- * If either operand, but not both operands, of an operation is a
- * nonsignaling NaN, then that NaN is returned as the result. If both
- * operands are nonsignaling NaNs, then the destination operand
- * nonsignaling NaN is returned as the result.
- * If either operand to an operation is a signaling NaN (SNaN), then the
- * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
- * is set in the FPCR ENABLE byte, then the exception is taken and the
- * destination is not modified. If the SNaN exception enable bit is not
- * set, setting the SNaN bit in the operand to a one converts the SNaN to
- * a nonsignaling NaN. The operation then continues as described in the
- * preceding paragraph for nonsignaling NaNs.
- */
- if (is_nan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
-#elif defined(TARGET_SPARC)
- /* Prefer SNaN over QNaN, order B then A. */
- if (is_snan(b_cls)) {
- return 1;
- } else if (is_snan(a_cls)) {
- return 0;
- } else if (is_qnan(b_cls)) {
- return 1;
- } else {
- return 0;
- }
-#elif defined(TARGET_XTENSA)
+ Float2NaNPropRule rule = status->float_2nan_prop_rule;
+
/*
- * Xtensa has two NaN propagation modes.
- * Which one is active is controlled by float_status::use_first_nan.
+ * We guarantee not to require the target to tell us how to
+ * pick a NaN if we're always returning the default NaN.
*/
- if (status->use_first_nan) {
+ assert(!status->default_nan_mode);
+
+ if (rule == float_2nan_prop_none) {
+ /* target didn't set the rule: fall back to old ifdef choices */
+#if defined(TARGET_AVR) || defined(TARGET_HEXAGON) \
+ || defined(TARGET_RISCV) || defined(TARGET_SH4) \
+ || defined(TARGET_TRICORE)
+ g_assert_not_reached();
+#elif defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA) || \
+ defined(TARGET_LOONGARCH64) || defined(TARGET_S390X)
+ /*
+ * ARM mandated NaN propagation rules (see FPProcessNaNs()), take
+ * the first of:
+ * 1. A if it is signaling
+ * 2. B if it is signaling
+ * 3. A (quiet)
+ * 4. B (quiet)
+ * A signaling NaN is always quietened before returning it.
+ */
+ /*
+ * According to MIPS specifications, if one of the two operands is
+ * a sNaN, a new qNaN has to be generated. This is done in
+ * floatXX_silence_nan(). For qNaN inputs the specifications
+ * says: "When possible, this QNaN result is one of the operand QNaN
+ * values." In practice it seems that most implementations choose
+ * the first operand if both operands are qNaN. In short this gives
+ * the following rules:
+ * 1. A if it is signaling
+ * 2. B if it is signaling
+ * 3. A (quiet)
+ * 4. B (quiet)
+ * A signaling NaN is always silenced before returning it.
+ */
+ rule = float_2nan_prop_s_ab;
+#elif defined(TARGET_PPC) || defined(TARGET_M68K)
+ /*
+ * PowerPC propagation rules:
+ * 1. A if it sNaN or qNaN
+ * 2. B if it sNaN or qNaN
+ * A signaling NaN is always silenced before returning it.
+ */
+ /*
+ * M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
+ * 3.4 FLOATING-POINT INSTRUCTION DETAILS
+ * If either operand, but not both operands, of an operation is a
+ * nonsignaling NaN, then that NaN is returned as the result. If both
+ * operands are nonsignaling NaNs, then the destination operand
+ * nonsignaling NaN is returned as the result.
+ * If either operand to an operation is a signaling NaN (SNaN), then the
+ * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
+ * is set in the FPCR ENABLE byte, then the exception is taken and the
+ * destination is not modified. If the SNaN exception enable bit is not
+ * set, setting the SNaN bit in the operand to a one converts the SNaN to
+ * a nonsignaling NaN. The operation then continues as described in the
+ * preceding paragraph for nonsignaling NaNs.
+ */
+ rule = float_2nan_prop_ab;
+#elif defined(TARGET_SPARC)
+ /* Prefer SNaN over QNaN, order B then A. */
+ rule = float_2nan_prop_s_ba;
+#elif defined(TARGET_XTENSA)
+ /*
+ * Xtensa has two NaN propagation modes.
+ * Which one is active is controlled by float_status::use_first_nan.
+ */
+ if (status->use_first_nan) {
+ rule = float_2nan_prop_ab;
+ } else {
+ rule = float_2nan_prop_ba;
+ }
+#else
+ rule = float_2nan_prop_x87;
+#endif
+ }
+
+ switch (rule) {
+ case float_2nan_prop_s_ab:
+ if (is_snan(a_cls)) {
+ return 0;
+ } else if (is_snan(b_cls)) {
+ return 1;
+ } else if (is_qnan(a_cls)) {
+ return 0;
+ } else {
+ return 1;
+ }
+ break;
+ case float_2nan_prop_s_ba:
+ if (is_snan(b_cls)) {
+ return 1;
+ } else if (is_snan(a_cls)) {
+ return 0;
+ } else if (is_qnan(b_cls)) {
+ return 1;
+ } else {
+ return 0;
+ }
+ break;
+ case float_2nan_prop_ab:
if (is_nan(a_cls)) {
return 0;
} else {
return 1;
}
- } else {
+ break;
+ case float_2nan_prop_ba:
if (is_nan(b_cls)) {
return 1;
} else {
return 0;
}
- }
-#else
- /* This implements x87 NaN propagation rules:
- * SNaN + QNaN => return the QNaN
- * two SNaNs => return the one with the larger significand, silenced
- * two QNaNs => return the one with the larger significand
- * SNaN and a non-NaN => return the SNaN, silenced
- * QNaN and a non-NaN => return the QNaN
- *
- * If we get down to comparing significands and they are the same,
- * return the NaN with the positive sign bit (if any).
- */
- if (is_snan(a_cls)) {
- if (is_snan(b_cls)) {
- return aIsLargerSignificand ? 0 : 1;
- }
- return is_qnan(b_cls) ? 1 : 0;
- } else if (is_qnan(a_cls)) {
- if (is_snan(b_cls) || !is_qnan(b_cls)) {
- return 0;
+ break;
+ case float_2nan_prop_x87:
+ /*
+ * This implements x87 NaN propagation rules:
+ * SNaN + QNaN => return the QNaN
+ * two SNaNs => return the one with the larger significand, silenced
+ * two QNaNs => return the one with the larger significand
+ * SNaN and a non-NaN => return the SNaN, silenced
+ * QNaN and a non-NaN => return the QNaN
+ *
+ * If we get down to comparing significands and they are the same,
+ * return the NaN with the positive sign bit (if any).
+ */
+ if (is_snan(a_cls)) {
+ if (is_snan(b_cls)) {
+ return aIsLargerSignificand ? 0 : 1;
+ }
+ return is_qnan(b_cls) ? 1 : 0;
+ } else if (is_qnan(a_cls)) {
+ if (is_snan(b_cls) || !is_qnan(b_cls)) {
+ return 0;
+ } else {
+ return aIsLargerSignificand ? 0 : 1;
+ }
} else {
- return aIsLargerSignificand ? 0 : 1;
+ return 1;
}
- } else {
- return 1;
+ default:
+ g_assert_not_reached();
}
-#endif
}
/*----------------------------------------------------------------------------