From patchwork Thu Nov 23 04:42:12 2023 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 8bit X-Patchwork-Submitter: Richard Henderson X-Patchwork-Id: 746449 Delivered-To: patch@linaro.org Received: by 2002:a5d:6706:0:b0:32d:baff:b0ca with SMTP id o6csp688241wru; Wed, 22 Nov 2023 20:43:43 -0800 (PST) X-Google-Smtp-Source: AGHT+IHXPRDECRu2QT6Ba/zrpLZOWAu5eKmV8tc39i5n1voAwTjWn+wClN1iCtmYRgKlEt/d627h X-Received: by 2002:ad4:5aa1:0:b0:66d:1624:2200 with SMTP id u1-20020ad45aa1000000b0066d16242200mr6322836qvg.13.1700714623067; Wed, 22 Nov 2023 20:43:43 -0800 (PST) ARC-Seal: i=1; a=rsa-sha256; t=1700714623; cv=none; d=google.com; s=arc-20160816; b=y0oZn9liZX1/U+UdJN64Q7cEcOBXjHr0VEwXQu5pK1dzz9updZN/cs2InEOD+9Iogk sIPlB4gyuxgnnoZGZDkLAbYa8TdBVVvnaG3KyXe74k1UxOGSme0pCT8dKnY89Ck5crLg LknD3gw/5qd36ceETE51p+2kgoWJzRZalo5FPWxigWMH3Utbv1DF36npcpXK9kS1zsET bMYM0KEfofhOrrhvtCRR5EaY8UgxjaYsTGBhMuncw4LWWphUnLCn/hcdMq6dx2HLA0uZ QG2XYoel1KhF4rMxQo0lb3MGjn/GZj9DzXpkv6kDisiUdVG5366WY2KHTIrP+yUWyOX5 dpow== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=sender:errors-to:list-subscribe:list-help:list-post:list-archive :list-unsubscribe:list-id:precedence:content-transfer-encoding :mime-version:references:in-reply-to:message-id:date:subject:cc:to :from:dkim-signature; bh=8lCxf3dNn8P24IkX9Y+wMxHodiJIeqj1vGg6wXycsss=; fh=9Ev+QBUhk6P6vR3LT1wYeDLexozsz44nqjfoyPajZCc=; b=VGYHBlcWGarpSDZP6w+DiBZ9DMeRJecm9u1rXb0HXNk2odpUpKll82rJyI0OUG4kaV qMN1WudYYF1aq9wq4Sth3hWKxwA5nXQwuV8qFUhZIw38nRa5iO6/kzxdecclJ4O37uCQ n+BFUxX/qNZA8+ugx7GHB0EKvRCQXn6hWjqHSU9XOVtdG/1n9jU73hvjKmWcZhObfWPn wydl4MeSKaHZLm7++o82FdV3aGBAOlMFcGWAy1Ma/yjfC9GOSCYTwpVG05PZSk+uSugM TdZhN1OcPf+QG6hiOGpubGseWGQEctAE8c0FDUsbCUe1SB04BtTioTMs/thM0CvKVLFk Pq+Q== ARC-Authentication-Results: i=1; mx.google.com; dkim=pass header.i=@linaro.org header.s=google header.b=w3BJFDv1; spf=pass (google.com: domain of qemu-devel-bounces+patch=linaro.org@nongnu.org designates 209.51.188.17 as permitted sender) smtp.mailfrom="qemu-devel-bounces+patch=linaro.org@nongnu.org"; dmarc=pass (p=NONE sp=NONE dis=NONE) header.from=linaro.org Return-Path: Received: from lists.gnu.org (lists.gnu.org. [209.51.188.17]) by mx.google.com with ESMTPS id dp14-20020a05621409ce00b00679fbe25571si432516qvb.348.2023.11.22.20.43.42 for (version=TLS1_2 cipher=ECDHE-ECDSA-CHACHA20-POLY1305 bits=256/256); Wed, 22 Nov 2023 20:43:43 -0800 (PST) Received-SPF: pass (google.com: domain of qemu-devel-bounces+patch=linaro.org@nongnu.org designates 209.51.188.17 as permitted sender) client-ip=209.51.188.17; Authentication-Results: mx.google.com; dkim=pass header.i=@linaro.org header.s=google header.b=w3BJFDv1; spf=pass (google.com: domain of qemu-devel-bounces+patch=linaro.org@nongnu.org designates 209.51.188.17 as permitted sender) smtp.mailfrom="qemu-devel-bounces+patch=linaro.org@nongnu.org"; dmarc=pass (p=NONE sp=NONE dis=NONE) header.from=linaro.org Received: from localhost ([::1] helo=lists1p.gnu.org) by lists.gnu.org with esmtp (Exim 4.90_1) (envelope-from ) id 1r61YK-0006bl-Jg; Wed, 22 Nov 2023 23:43:00 -0500 Received: from eggs.gnu.org ([2001:470:142:3::10]) by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1r61Y4-0006PP-RX for qemu-devel@nongnu.org; Wed, 22 Nov 2023 23:42:46 -0500 Received: from mail-oi1-x22a.google.com ([2607:f8b0:4864:20::22a]) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_128_GCM_SHA256:128) (Exim 4.90_1) (envelope-from ) id 1r61Xy-0006EH-LX for qemu-devel@nongnu.org; Wed, 22 Nov 2023 23:42:44 -0500 Received: by mail-oi1-x22a.google.com with SMTP id 5614622812f47-3b3f55e1bbbso348434b6e.2 for ; Wed, 22 Nov 2023 20:42:37 -0800 (PST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=linaro.org; s=google; t=1700714556; x=1701319356; darn=nongnu.org; h=content-transfer-encoding:mime-version:references:in-reply-to :message-id:date:subject:cc:to:from:from:to:cc:subject:date :message-id:reply-to; bh=8lCxf3dNn8P24IkX9Y+wMxHodiJIeqj1vGg6wXycsss=; b=w3BJFDv1e0eP1y3cVEj2rXAb0EOVHCmYLypE+/6LRr+GSNf0bK4NxJxvzlgO0kvzaY ZJWUlSxvTqNMwEZx4NbWGS9faFc1tpS3NLUhJ4bwv0NVtASYjJyiYF4OaQwSy1+DzugD sr4US0sMgjEZG/SMxQIJYZ38UvgWUDgNnl8zl93m4+CeIOqWOSHpmuLcxMqahh2dVn7F XDBpR7IgIy+C0QIAJTi0plphKj57nUfBqkQoF9I0ngdNo2RVaJLataLougwqlzcUyQUq RWH964mh8Z1Mvb7ccdqi8MCyAMteYeFoHv4b8hZZFsUllwJlYGbb60okR0J7eZx8wdLp 307w== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20230601; t=1700714556; x=1701319356; h=content-transfer-encoding:mime-version:references:in-reply-to :message-id:date:subject:cc:to:from:x-gm-message-state:from:to:cc :subject:date:message-id:reply-to; bh=8lCxf3dNn8P24IkX9Y+wMxHodiJIeqj1vGg6wXycsss=; b=uvzQgf+ohs81Le/X4v1qhZGRV4NzTDm/+ssQ5G41AH2VHfjsw8OdO41d0g9Shx8vm2 ZOIXAe0qmrMGev3FYuVQcufRcFtfNRjWCafCq3vggSP7lUifDwkkQsGNBJ5RS/Gmt4Fj BIBocPpmUBBaKY+bFsqX38Wv7RNIq6ciDPlDRcaDswf0wwyS2jnyMITeixriVOi4lbTU OAdw7frFnE2vjvYLGlNLo3JgShJz1af4vU02C3dsEmFGx1T9auViUpfAKezCN8zz02uB GCiBPxJBYhA/xfp62PUxoUHkBm4fx6lgpElp4YZO29pOmsTxnfazmvZG1cuve2oqDZLw JDUA== X-Gm-Message-State: AOJu0YwDnGBNoGl2v83njl1U6h2NFgHByS99Be11HLNMjAz8DyKgN/oZ s9+jRMIZ6lbga9APnpjgVeCKvpQY6DSMobCElGEJALcZ X-Received: by 2002:a05:6808:18a8:b0:3b8:3fce:5fc3 with SMTP id bi40-20020a05680818a800b003b83fce5fc3mr4468439oib.33.1700714556270; Wed, 22 Nov 2023 20:42:36 -0800 (PST) Received: from stoup.. ([187.217.227.247]) by smtp.gmail.com with ESMTPSA id i7-20020a056808030700b003b8347de3c2sm73888oie.19.2023.11.22.20.42.34 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Wed, 22 Nov 2023 20:42:35 -0800 (PST) From: Richard Henderson To: qemu-devel@nongnu.org Cc: qemu-arm@nongnu.org Subject: [PATCH 14/21] target/arm/kvm: Merge kvm64.c into kvm.c Date: Wed, 22 Nov 2023 22:42:12 -0600 Message-Id: <20231123044219.896776-15-richard.henderson@linaro.org> X-Mailer: git-send-email 2.34.1 In-Reply-To: <20231123044219.896776-1-richard.henderson@linaro.org> References: <20231123044219.896776-1-richard.henderson@linaro.org> MIME-Version: 1.0 Received-SPF: pass client-ip=2607:f8b0:4864:20::22a; envelope-from=richard.henderson@linaro.org; helo=mail-oi1-x22a.google.com X-Spam_score_int: 12 X-Spam_score: 1.2 X-Spam_bar: + X-Spam_report: (1.2 / 5.0 requ) BAYES_00=-1.9, DKIM_SIGNED=0.1, DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, RCVD_IN_DNSWL_NONE=-0.0001, RCVD_IN_SBL_CSS=3.335, SPF_HELO_NONE=0.001, SPF_PASS=-0.001, T_SCC_BODY_TEXT_LINE=-0.01 autolearn=no autolearn_force=no X-Spam_action: no action X-BeenThere: qemu-devel@nongnu.org X-Mailman-Version: 2.1.29 Precedence: list List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: qemu-devel-bounces+patch=linaro.org@nongnu.org Sender: qemu-devel-bounces+patch=linaro.org@nongnu.org Since kvm32.c was removed, there is no need to keep them separate. This will allow more symbols to be unexported. Signed-off-by: Richard Henderson Reviewed-by: Philippe Mathieu-Daudé Reviewed-by: Gavin Shan --- target/arm/kvm.c | 789 +++++++++++++++++++++++++++++++++++++++ target/arm/kvm64.c | 820 ----------------------------------------- target/arm/meson.build | 2 +- 3 files changed, 790 insertions(+), 821 deletions(-) delete mode 100644 target/arm/kvm64.c diff --git a/target/arm/kvm.c b/target/arm/kvm.c index 9bca6baf35..466b848156 100644 --- a/target/arm/kvm.c +++ b/target/arm/kvm.c @@ -19,6 +19,7 @@ #include "qom/object.h" #include "qapi/error.h" #include "sysemu/sysemu.h" +#include "sysemu/runstate.h" #include "sysemu/kvm.h" #include "sysemu/kvm_int.h" #include "kvm_arm.h" @@ -28,10 +29,13 @@ #include "hw/pci/pci.h" #include "exec/memattrs.h" #include "exec/address-spaces.h" +#include "exec/gdbstub.h" #include "hw/boards.h" #include "hw/irq.h" #include "qapi/visitor.h" #include "qemu/log.h" +#include "hw/acpi/acpi.h" +#include "hw/acpi/ghes.h" const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_LAST_INFO @@ -1614,3 +1618,788 @@ void kvm_arch_accel_class_init(ObjectClass *oc) object_class_property_set_description(oc, "eager-split-size", "Eager Page Split chunk size for hugepages. (default: 0, disabled)"); } + +int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) +{ + switch (type) { + case GDB_BREAKPOINT_HW: + return insert_hw_breakpoint(addr); + break; + case GDB_WATCHPOINT_READ: + case GDB_WATCHPOINT_WRITE: + case GDB_WATCHPOINT_ACCESS: + return insert_hw_watchpoint(addr, len, type); + default: + return -ENOSYS; + } +} + +int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) +{ + switch (type) { + case GDB_BREAKPOINT_HW: + return delete_hw_breakpoint(addr); + case GDB_WATCHPOINT_READ: + case GDB_WATCHPOINT_WRITE: + case GDB_WATCHPOINT_ACCESS: + return delete_hw_watchpoint(addr, len, type); + default: + return -ENOSYS; + } +} + +void kvm_arch_remove_all_hw_breakpoints(void) +{ + if (cur_hw_wps > 0) { + g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); + } + if (cur_hw_bps > 0) { + g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); + } +} + +static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr, + const char *name) +{ + int err; + + err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr); + if (err != 0) { + error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err)); + return false; + } + + err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr); + if (err != 0) { + error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err)); + return false; + } + + return true; +} + +void kvm_arm_pmu_init(CPUState *cs) +{ + struct kvm_device_attr attr = { + .group = KVM_ARM_VCPU_PMU_V3_CTRL, + .attr = KVM_ARM_VCPU_PMU_V3_INIT, + }; + + if (!ARM_CPU(cs)->has_pmu) { + return; + } + if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) { + error_report("failed to init PMU"); + abort(); + } +} + +void kvm_arm_pmu_set_irq(CPUState *cs, int irq) +{ + struct kvm_device_attr attr = { + .group = KVM_ARM_VCPU_PMU_V3_CTRL, + .addr = (intptr_t)&irq, + .attr = KVM_ARM_VCPU_PMU_V3_IRQ, + }; + + if (!ARM_CPU(cs)->has_pmu) { + return; + } + if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) { + error_report("failed to set irq for PMU"); + abort(); + } +} + +void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa) +{ + struct kvm_device_attr attr = { + .group = KVM_ARM_VCPU_PVTIME_CTRL, + .attr = KVM_ARM_VCPU_PVTIME_IPA, + .addr = (uint64_t)&ipa, + }; + + if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) { + return; + } + if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) { + error_report("failed to init PVTIME IPA"); + abort(); + } +} + +void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp) +{ + bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME); + + if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) { + if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { + cpu->kvm_steal_time = ON_OFF_AUTO_OFF; + } else { + cpu->kvm_steal_time = ON_OFF_AUTO_ON; + } + } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) { + if (!has_steal_time) { + error_setg(errp, "'kvm-steal-time' cannot be enabled " + "on this host"); + return; + } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { + /* + * DEN0057A chapter 2 says "This specification only covers + * systems in which the Execution state of the hypervisor + * as well as EL1 of virtual machines is AArch64.". And, + * to ensure that, the smc/hvc calls are only specified as + * smc64/hvc64. + */ + error_setg(errp, "'kvm-steal-time' cannot be enabled " + "for AArch32 guests"); + return; + } + } +} + +bool kvm_arm_aarch32_supported(void) +{ + return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT); +} + +bool kvm_arm_sve_supported(void) +{ + return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE); +} + +QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1); + +uint32_t kvm_arm_sve_get_vls(CPUState *cs) +{ + /* Only call this function if kvm_arm_sve_supported() returns true. */ + static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS]; + static bool probed; + uint32_t vq = 0; + int i; + + /* + * KVM ensures all host CPUs support the same set of vector lengths. + * So we only need to create the scratch VCPUs once and then cache + * the results. + */ + if (!probed) { + struct kvm_vcpu_init init = { + .target = -1, + .features[0] = (1 << KVM_ARM_VCPU_SVE), + }; + struct kvm_one_reg reg = { + .id = KVM_REG_ARM64_SVE_VLS, + .addr = (uint64_t)&vls[0], + }; + int fdarray[3], ret; + + probed = true; + + if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) { + error_report("failed to create scratch VCPU with SVE enabled"); + abort(); + } + ret = ioctl(fdarray[2], KVM_GET_ONE_REG, ®); + kvm_arm_destroy_scratch_host_vcpu(fdarray); + if (ret) { + error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s", + strerror(errno)); + abort(); + } + + for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) { + if (vls[i]) { + vq = 64 - clz64(vls[i]) + i * 64; + break; + } + } + if (vq > ARM_MAX_VQ) { + warn_report("KVM supports vector lengths larger than " + "QEMU can enable"); + vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ); + } + } + + return vls[0]; +} + +static int kvm_arm_sve_set_vls(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map }; + + assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX); + + return kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_VLS, &vls[0]); +} + +#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5 + +int kvm_arch_init_vcpu(CPUState *cs) +{ + int ret; + uint64_t mpidr; + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + uint64_t psciver; + + if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || + !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) { + error_report("KVM is not supported for this guest CPU type"); + return -EINVAL; + } + + qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs); + + /* Determine init features for this CPU */ + memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); + if (cs->start_powered_off) { + cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; + } + if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { + cpu->psci_version = QEMU_PSCI_VERSION_0_2; + cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; + } + if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { + cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT; + } + if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) { + cpu->has_pmu = false; + } + if (cpu->has_pmu) { + cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; + } else { + env->features &= ~(1ULL << ARM_FEATURE_PMU); + } + if (cpu_isar_feature(aa64_sve, cpu)) { + assert(kvm_arm_sve_supported()); + cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE; + } + if (cpu_isar_feature(aa64_pauth, cpu)) { + cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS | + 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC); + } + + /* Do KVM_ARM_VCPU_INIT ioctl */ + ret = kvm_arm_vcpu_init(cs); + if (ret) { + return ret; + } + + if (cpu_isar_feature(aa64_sve, cpu)) { + ret = kvm_arm_sve_set_vls(cs); + if (ret) { + return ret; + } + ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE); + if (ret) { + return ret; + } + } + + /* + * KVM reports the exact PSCI version it is implementing via a + * special sysreg. If it is present, use its contents to determine + * what to report to the guest in the dtb (it is the PSCI version, + * in the same 15-bits major 16-bits minor format that PSCI_VERSION + * returns). + */ + if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) { + cpu->psci_version = psciver; + } + + /* + * When KVM is in use, PSCI is emulated in-kernel and not by qemu. + * Currently KVM has its own idea about MPIDR assignment, so we + * override our defaults with what we get from KVM. + */ + ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr); + if (ret) { + return ret; + } + cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK; + + /* Check whether user space can specify guest syndrome value */ + kvm_arm_init_serror_injection(cs); + + return kvm_arm_init_cpreg_list(cpu); +} + +int kvm_arch_destroy_vcpu(CPUState *cs) +{ + return 0; +} + +/* Callers must hold the iothread mutex lock */ +static void kvm_inject_arm_sea(CPUState *c) +{ + ARMCPU *cpu = ARM_CPU(c); + CPUARMState *env = &cpu->env; + uint32_t esr; + bool same_el; + + c->exception_index = EXCP_DATA_ABORT; + env->exception.target_el = 1; + + /* + * Set the DFSC to synchronous external abort and set FnV to not valid, + * this will tell guest the FAR_ELx is UNKNOWN for this abort. + */ + same_el = arm_current_el(env) == env->exception.target_el; + esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10); + + env->exception.syndrome = esr; + + arm_cpu_do_interrupt(c); +} + +#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ + KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) + +#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \ + KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) + +#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \ + KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) + +static int kvm_arch_put_fpsimd(CPUState *cs) +{ + CPUARMState *env = &ARM_CPU(cs)->env; + int i, ret; + + for (i = 0; i < 32; i++) { + uint64_t *q = aa64_vfp_qreg(env, i); +#if HOST_BIG_ENDIAN + uint64_t fp_val[2] = { q[1], q[0] }; + ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), + fp_val); +#else + ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q); +#endif + if (ret) { + return ret; + } + } + + return 0; +} + +/* + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard + * code the slice index to zero for now as it's unlikely we'll need more than + * one slice for quite some time. + */ +static int kvm_arch_put_sve(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + uint64_t tmp[ARM_MAX_VQ * 2]; + uint64_t *r; + int n, ret; + + for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { + r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2); + ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r); + if (ret) { + return ret; + } + } + + for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { + r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0], + DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); + ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r); + if (ret) { + return ret; + } + } + + r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0], + DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); + ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r); + if (ret) { + return ret; + } + + return 0; +} + +int kvm_arch_put_registers(CPUState *cs, int level) +{ + uint64_t val; + uint32_t fpr; + int i, ret; + unsigned int el; + + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + + /* If we are in AArch32 mode then we need to copy the AArch32 regs to the + * AArch64 registers before pushing them out to 64-bit KVM. + */ + if (!is_a64(env)) { + aarch64_sync_32_to_64(env); + } + + for (i = 0; i < 31; i++) { + ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]), + &env->xregs[i]); + if (ret) { + return ret; + } + } + + /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the + * QEMU side we keep the current SP in xregs[31] as well. + */ + aarch64_save_sp(env, 1); + + ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]); + if (ret) { + return ret; + } + + ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]); + if (ret) { + return ret; + } + + /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ + if (is_a64(env)) { + val = pstate_read(env); + } else { + val = cpsr_read(env); + } + ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val); + if (ret) { + return ret; + } + + ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc); + if (ret) { + return ret; + } + + ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]); + if (ret) { + return ret; + } + + /* Saved Program State Registers + * + * Before we restore from the banked_spsr[] array we need to + * ensure that any modifications to env->spsr are correctly + * reflected in the banks. + */ + el = arm_current_el(env); + if (el > 0 && !is_a64(env)) { + i = bank_number(env->uncached_cpsr & CPSR_M); + env->banked_spsr[i] = env->spsr; + } + + /* KVM 0-4 map to QEMU banks 1-5 */ + for (i = 0; i < KVM_NR_SPSR; i++) { + ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]), + &env->banked_spsr[i + 1]); + if (ret) { + return ret; + } + } + + if (cpu_isar_feature(aa64_sve, cpu)) { + ret = kvm_arch_put_sve(cs); + } else { + ret = kvm_arch_put_fpsimd(cs); + } + if (ret) { + return ret; + } + + fpr = vfp_get_fpsr(env); + ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr); + if (ret) { + return ret; + } + + fpr = vfp_get_fpcr(env); + ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr); + if (ret) { + return ret; + } + + write_cpustate_to_list(cpu, true); + + if (!write_list_to_kvmstate(cpu, level)) { + return -EINVAL; + } + + /* + * Setting VCPU events should be triggered after syncing the registers + * to avoid overwriting potential changes made by KVM upon calling + * KVM_SET_VCPU_EVENTS ioctl + */ + ret = kvm_put_vcpu_events(cpu); + if (ret) { + return ret; + } + + kvm_arm_sync_mpstate_to_kvm(cpu); + + return ret; +} + +static int kvm_arch_get_fpsimd(CPUState *cs) +{ + CPUARMState *env = &ARM_CPU(cs)->env; + int i, ret; + + for (i = 0; i < 32; i++) { + uint64_t *q = aa64_vfp_qreg(env, i); + ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q); + if (ret) { + return ret; + } else { +#if HOST_BIG_ENDIAN + uint64_t t; + t = q[0], q[0] = q[1], q[1] = t; +#endif + } + } + + return 0; +} + +/* + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard + * code the slice index to zero for now as it's unlikely we'll need more than + * one slice for quite some time. + */ +static int kvm_arch_get_sve(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + uint64_t *r; + int n, ret; + + for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { + r = &env->vfp.zregs[n].d[0]; + ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r); + if (ret) { + return ret; + } + sve_bswap64(r, r, cpu->sve_max_vq * 2); + } + + for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { + r = &env->vfp.pregs[n].p[0]; + ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r); + if (ret) { + return ret; + } + sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); + } + + r = &env->vfp.pregs[FFR_PRED_NUM].p[0]; + ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r); + if (ret) { + return ret; + } + sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); + + return 0; +} + +int kvm_arch_get_registers(CPUState *cs) +{ + uint64_t val; + unsigned int el; + uint32_t fpr; + int i, ret; + + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + + for (i = 0; i < 31; i++) { + ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]), + &env->xregs[i]); + if (ret) { + return ret; + } + } + + ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]); + if (ret) { + return ret; + } + + ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]); + if (ret) { + return ret; + } + + ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val); + if (ret) { + return ret; + } + + env->aarch64 = ((val & PSTATE_nRW) == 0); + if (is_a64(env)) { + pstate_write(env, val); + } else { + cpsr_write(env, val, 0xffffffff, CPSRWriteRaw); + } + + /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the + * QEMU side we keep the current SP in xregs[31] as well. + */ + aarch64_restore_sp(env, 1); + + ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc); + if (ret) { + return ret; + } + + /* If we are in AArch32 mode then we need to sync the AArch32 regs with the + * incoming AArch64 regs received from 64-bit KVM. + * We must perform this after all of the registers have been acquired from + * the kernel. + */ + if (!is_a64(env)) { + aarch64_sync_64_to_32(env); + } + + ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]); + if (ret) { + return ret; + } + + /* Fetch the SPSR registers + * + * KVM SPSRs 0-4 map to QEMU banks 1-5 + */ + for (i = 0; i < KVM_NR_SPSR; i++) { + ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]), + &env->banked_spsr[i + 1]); + if (ret) { + return ret; + } + } + + el = arm_current_el(env); + if (el > 0 && !is_a64(env)) { + i = bank_number(env->uncached_cpsr & CPSR_M); + env->spsr = env->banked_spsr[i]; + } + + if (cpu_isar_feature(aa64_sve, cpu)) { + ret = kvm_arch_get_sve(cs); + } else { + ret = kvm_arch_get_fpsimd(cs); + } + if (ret) { + return ret; + } + + ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr); + if (ret) { + return ret; + } + vfp_set_fpsr(env, fpr); + + ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr); + if (ret) { + return ret; + } + vfp_set_fpcr(env, fpr); + + ret = kvm_get_vcpu_events(cpu); + if (ret) { + return ret; + } + + if (!write_kvmstate_to_list(cpu)) { + return -EINVAL; + } + /* Note that it's OK to have registers which aren't in CPUState, + * so we can ignore a failure return here. + */ + write_list_to_cpustate(cpu); + + kvm_arm_sync_mpstate_to_qemu(cpu); + + /* TODO: other registers */ + return ret; +} + +void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) +{ + ram_addr_t ram_addr; + hwaddr paddr; + + assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); + + if (acpi_ghes_present() && addr) { + ram_addr = qemu_ram_addr_from_host(addr); + if (ram_addr != RAM_ADDR_INVALID && + kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { + kvm_hwpoison_page_add(ram_addr); + /* + * If this is a BUS_MCEERR_AR, we know we have been called + * synchronously from the vCPU thread, so we can easily + * synchronize the state and inject an error. + * + * TODO: we currently don't tell the guest at all about + * BUS_MCEERR_AO. In that case we might either be being + * called synchronously from the vCPU thread, or a bit + * later from the main thread, so doing the injection of + * the error would be more complicated. + */ + if (code == BUS_MCEERR_AR) { + kvm_cpu_synchronize_state(c); + if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) { + kvm_inject_arm_sea(c); + } else { + error_report("failed to record the error"); + abort(); + } + } + return; + } + if (code == BUS_MCEERR_AO) { + error_report("Hardware memory error at addr %p for memory used by " + "QEMU itself instead of guest system!", addr); + } + } + + if (code == BUS_MCEERR_AR) { + error_report("Hardware memory error!"); + exit(1); + } +} + +/* C6.6.29 BRK instruction */ +static const uint32_t brk_insn = 0xd4200000; + +int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) +{ + if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || + cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { + return -EINVAL; + } + return 0; +} + +int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) +{ + static uint32_t brk; + + if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) || + brk != brk_insn || + cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { + return -EINVAL; + } + return 0; +} diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c deleted file mode 100644 index 52c0a6d3af..0000000000 --- a/target/arm/kvm64.c +++ /dev/null @@ -1,820 +0,0 @@ -/* - * ARM implementation of KVM hooks, 64 bit specific code - * - * Copyright Mian-M. Hamayun 2013, Virtual Open Systems - * Copyright Alex Bennée 2014, Linaro - * - * This work is licensed under the terms of the GNU GPL, version 2 or later. - * See the COPYING file in the top-level directory. - * - */ - -#include "qemu/osdep.h" -#include -#include - -#include -#include - -#include "qapi/error.h" -#include "cpu.h" -#include "qemu/timer.h" -#include "qemu/error-report.h" -#include "qemu/host-utils.h" -#include "qemu/main-loop.h" -#include "exec/gdbstub.h" -#include "sysemu/runstate.h" -#include "sysemu/kvm.h" -#include "sysemu/kvm_int.h" -#include "kvm_arm.h" -#include "internals.h" -#include "cpu-features.h" -#include "hw/acpi/acpi.h" -#include "hw/acpi/ghes.h" - - -int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) -{ - switch (type) { - case GDB_BREAKPOINT_HW: - return insert_hw_breakpoint(addr); - break; - case GDB_WATCHPOINT_READ: - case GDB_WATCHPOINT_WRITE: - case GDB_WATCHPOINT_ACCESS: - return insert_hw_watchpoint(addr, len, type); - default: - return -ENOSYS; - } -} - -int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) -{ - switch (type) { - case GDB_BREAKPOINT_HW: - return delete_hw_breakpoint(addr); - case GDB_WATCHPOINT_READ: - case GDB_WATCHPOINT_WRITE: - case GDB_WATCHPOINT_ACCESS: - return delete_hw_watchpoint(addr, len, type); - default: - return -ENOSYS; - } -} - - -void kvm_arch_remove_all_hw_breakpoints(void) -{ - if (cur_hw_wps > 0) { - g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); - } - if (cur_hw_bps > 0) { - g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); - } -} - -static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr, - const char *name) -{ - int err; - - err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr); - if (err != 0) { - error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err)); - return false; - } - - err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr); - if (err != 0) { - error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err)); - return false; - } - - return true; -} - -void kvm_arm_pmu_init(CPUState *cs) -{ - struct kvm_device_attr attr = { - .group = KVM_ARM_VCPU_PMU_V3_CTRL, - .attr = KVM_ARM_VCPU_PMU_V3_INIT, - }; - - if (!ARM_CPU(cs)->has_pmu) { - return; - } - if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) { - error_report("failed to init PMU"); - abort(); - } -} - -void kvm_arm_pmu_set_irq(CPUState *cs, int irq) -{ - struct kvm_device_attr attr = { - .group = KVM_ARM_VCPU_PMU_V3_CTRL, - .addr = (intptr_t)&irq, - .attr = KVM_ARM_VCPU_PMU_V3_IRQ, - }; - - if (!ARM_CPU(cs)->has_pmu) { - return; - } - if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) { - error_report("failed to set irq for PMU"); - abort(); - } -} - -void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa) -{ - struct kvm_device_attr attr = { - .group = KVM_ARM_VCPU_PVTIME_CTRL, - .attr = KVM_ARM_VCPU_PVTIME_IPA, - .addr = (uint64_t)&ipa, - }; - - if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) { - return; - } - if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) { - error_report("failed to init PVTIME IPA"); - abort(); - } -} - -void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp) -{ - bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME); - - if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) { - if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { - cpu->kvm_steal_time = ON_OFF_AUTO_OFF; - } else { - cpu->kvm_steal_time = ON_OFF_AUTO_ON; - } - } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) { - if (!has_steal_time) { - error_setg(errp, "'kvm-steal-time' cannot be enabled " - "on this host"); - return; - } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { - /* - * DEN0057A chapter 2 says "This specification only covers - * systems in which the Execution state of the hypervisor - * as well as EL1 of virtual machines is AArch64.". And, - * to ensure that, the smc/hvc calls are only specified as - * smc64/hvc64. - */ - error_setg(errp, "'kvm-steal-time' cannot be enabled " - "for AArch32 guests"); - return; - } - } -} - -bool kvm_arm_aarch32_supported(void) -{ - return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT); -} - -bool kvm_arm_sve_supported(void) -{ - return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE); -} - -QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1); - -uint32_t kvm_arm_sve_get_vls(CPUState *cs) -{ - /* Only call this function if kvm_arm_sve_supported() returns true. */ - static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS]; - static bool probed; - uint32_t vq = 0; - int i; - - /* - * KVM ensures all host CPUs support the same set of vector lengths. - * So we only need to create the scratch VCPUs once and then cache - * the results. - */ - if (!probed) { - struct kvm_vcpu_init init = { - .target = -1, - .features[0] = (1 << KVM_ARM_VCPU_SVE), - }; - struct kvm_one_reg reg = { - .id = KVM_REG_ARM64_SVE_VLS, - .addr = (uint64_t)&vls[0], - }; - int fdarray[3], ret; - - probed = true; - - if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) { - error_report("failed to create scratch VCPU with SVE enabled"); - abort(); - } - ret = ioctl(fdarray[2], KVM_GET_ONE_REG, ®); - kvm_arm_destroy_scratch_host_vcpu(fdarray); - if (ret) { - error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s", - strerror(errno)); - abort(); - } - - for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) { - if (vls[i]) { - vq = 64 - clz64(vls[i]) + i * 64; - break; - } - } - if (vq > ARM_MAX_VQ) { - warn_report("KVM supports vector lengths larger than " - "QEMU can enable"); - vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ); - } - } - - return vls[0]; -} - -static int kvm_arm_sve_set_vls(CPUState *cs) -{ - ARMCPU *cpu = ARM_CPU(cs); - uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map }; - - assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX); - - return kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_VLS, &vls[0]); -} - -#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5 - -int kvm_arch_init_vcpu(CPUState *cs) -{ - int ret; - uint64_t mpidr; - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - uint64_t psciver; - - if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || - !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) { - error_report("KVM is not supported for this guest CPU type"); - return -EINVAL; - } - - qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs); - - /* Determine init features for this CPU */ - memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); - if (cs->start_powered_off) { - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; - } - if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { - cpu->psci_version = QEMU_PSCI_VERSION_0_2; - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; - } - if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT; - } - if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) { - cpu->has_pmu = false; - } - if (cpu->has_pmu) { - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; - } else { - env->features &= ~(1ULL << ARM_FEATURE_PMU); - } - if (cpu_isar_feature(aa64_sve, cpu)) { - assert(kvm_arm_sve_supported()); - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE; - } - if (cpu_isar_feature(aa64_pauth, cpu)) { - cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS | - 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC); - } - - /* Do KVM_ARM_VCPU_INIT ioctl */ - ret = kvm_arm_vcpu_init(cs); - if (ret) { - return ret; - } - - if (cpu_isar_feature(aa64_sve, cpu)) { - ret = kvm_arm_sve_set_vls(cs); - if (ret) { - return ret; - } - ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE); - if (ret) { - return ret; - } - } - - /* - * KVM reports the exact PSCI version it is implementing via a - * special sysreg. If it is present, use its contents to determine - * what to report to the guest in the dtb (it is the PSCI version, - * in the same 15-bits major 16-bits minor format that PSCI_VERSION - * returns). - */ - if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) { - cpu->psci_version = psciver; - } - - /* - * When KVM is in use, PSCI is emulated in-kernel and not by qemu. - * Currently KVM has its own idea about MPIDR assignment, so we - * override our defaults with what we get from KVM. - */ - ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr); - if (ret) { - return ret; - } - cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK; - - /* Check whether user space can specify guest syndrome value */ - kvm_arm_init_serror_injection(cs); - - return kvm_arm_init_cpreg_list(cpu); -} - -int kvm_arch_destroy_vcpu(CPUState *cs) -{ - return 0; -} - -/* Callers must hold the iothread mutex lock */ -static void kvm_inject_arm_sea(CPUState *c) -{ - ARMCPU *cpu = ARM_CPU(c); - CPUARMState *env = &cpu->env; - uint32_t esr; - bool same_el; - - c->exception_index = EXCP_DATA_ABORT; - env->exception.target_el = 1; - - /* - * Set the DFSC to synchronous external abort and set FnV to not valid, - * this will tell guest the FAR_ELx is UNKNOWN for this abort. - */ - same_el = arm_current_el(env) == env->exception.target_el; - esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10); - - env->exception.syndrome = esr; - - arm_cpu_do_interrupt(c); -} - -#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) - -#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \ - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) - -#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \ - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) - -static int kvm_arch_put_fpsimd(CPUState *cs) -{ - CPUARMState *env = &ARM_CPU(cs)->env; - int i, ret; - - for (i = 0; i < 32; i++) { - uint64_t *q = aa64_vfp_qreg(env, i); -#if HOST_BIG_ENDIAN - uint64_t fp_val[2] = { q[1], q[0] }; - ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), - fp_val); -#else - ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q); -#endif - if (ret) { - return ret; - } - } - - return 0; -} - -/* - * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits - * and PREGS and the FFR have a slice size of 256 bits. However we simply hard - * code the slice index to zero for now as it's unlikely we'll need more than - * one slice for quite some time. - */ -static int kvm_arch_put_sve(CPUState *cs) -{ - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - uint64_t tmp[ARM_MAX_VQ * 2]; - uint64_t *r; - int n, ret; - - for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { - r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2); - ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r); - if (ret) { - return ret; - } - } - - for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { - r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0], - DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); - ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r); - if (ret) { - return ret; - } - } - - r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0], - DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); - ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r); - if (ret) { - return ret; - } - - return 0; -} - -int kvm_arch_put_registers(CPUState *cs, int level) -{ - uint64_t val; - uint32_t fpr; - int i, ret; - unsigned int el; - - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - - /* If we are in AArch32 mode then we need to copy the AArch32 regs to the - * AArch64 registers before pushing them out to 64-bit KVM. - */ - if (!is_a64(env)) { - aarch64_sync_32_to_64(env); - } - - for (i = 0; i < 31; i++) { - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]), - &env->xregs[i]); - if (ret) { - return ret; - } - } - - /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the - * QEMU side we keep the current SP in xregs[31] as well. - */ - aarch64_save_sp(env, 1); - - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]); - if (ret) { - return ret; - } - - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]); - if (ret) { - return ret; - } - - /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ - if (is_a64(env)) { - val = pstate_read(env); - } else { - val = cpsr_read(env); - } - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val); - if (ret) { - return ret; - } - - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc); - if (ret) { - return ret; - } - - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]); - if (ret) { - return ret; - } - - /* Saved Program State Registers - * - * Before we restore from the banked_spsr[] array we need to - * ensure that any modifications to env->spsr are correctly - * reflected in the banks. - */ - el = arm_current_el(env); - if (el > 0 && !is_a64(env)) { - i = bank_number(env->uncached_cpsr & CPSR_M); - env->banked_spsr[i] = env->spsr; - } - - /* KVM 0-4 map to QEMU banks 1-5 */ - for (i = 0; i < KVM_NR_SPSR; i++) { - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]), - &env->banked_spsr[i + 1]); - if (ret) { - return ret; - } - } - - if (cpu_isar_feature(aa64_sve, cpu)) { - ret = kvm_arch_put_sve(cs); - } else { - ret = kvm_arch_put_fpsimd(cs); - } - if (ret) { - return ret; - } - - fpr = vfp_get_fpsr(env); - ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr); - if (ret) { - return ret; - } - - fpr = vfp_get_fpcr(env); - ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr); - if (ret) { - return ret; - } - - write_cpustate_to_list(cpu, true); - - if (!write_list_to_kvmstate(cpu, level)) { - return -EINVAL; - } - - /* - * Setting VCPU events should be triggered after syncing the registers - * to avoid overwriting potential changes made by KVM upon calling - * KVM_SET_VCPU_EVENTS ioctl - */ - ret = kvm_put_vcpu_events(cpu); - if (ret) { - return ret; - } - - kvm_arm_sync_mpstate_to_kvm(cpu); - - return ret; -} - -static int kvm_arch_get_fpsimd(CPUState *cs) -{ - CPUARMState *env = &ARM_CPU(cs)->env; - int i, ret; - - for (i = 0; i < 32; i++) { - uint64_t *q = aa64_vfp_qreg(env, i); - ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q); - if (ret) { - return ret; - } else { -#if HOST_BIG_ENDIAN - uint64_t t; - t = q[0], q[0] = q[1], q[1] = t; -#endif - } - } - - return 0; -} - -/* - * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits - * and PREGS and the FFR have a slice size of 256 bits. However we simply hard - * code the slice index to zero for now as it's unlikely we'll need more than - * one slice for quite some time. - */ -static int kvm_arch_get_sve(CPUState *cs) -{ - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - uint64_t *r; - int n, ret; - - for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { - r = &env->vfp.zregs[n].d[0]; - ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r); - if (ret) { - return ret; - } - sve_bswap64(r, r, cpu->sve_max_vq * 2); - } - - for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { - r = &env->vfp.pregs[n].p[0]; - ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r); - if (ret) { - return ret; - } - sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); - } - - r = &env->vfp.pregs[FFR_PRED_NUM].p[0]; - ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r); - if (ret) { - return ret; - } - sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); - - return 0; -} - -int kvm_arch_get_registers(CPUState *cs) -{ - uint64_t val; - unsigned int el; - uint32_t fpr; - int i, ret; - - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - - for (i = 0; i < 31; i++) { - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]), - &env->xregs[i]); - if (ret) { - return ret; - } - } - - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]); - if (ret) { - return ret; - } - - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]); - if (ret) { - return ret; - } - - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val); - if (ret) { - return ret; - } - - env->aarch64 = ((val & PSTATE_nRW) == 0); - if (is_a64(env)) { - pstate_write(env, val); - } else { - cpsr_write(env, val, 0xffffffff, CPSRWriteRaw); - } - - /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the - * QEMU side we keep the current SP in xregs[31] as well. - */ - aarch64_restore_sp(env, 1); - - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc); - if (ret) { - return ret; - } - - /* If we are in AArch32 mode then we need to sync the AArch32 regs with the - * incoming AArch64 regs received from 64-bit KVM. - * We must perform this after all of the registers have been acquired from - * the kernel. - */ - if (!is_a64(env)) { - aarch64_sync_64_to_32(env); - } - - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]); - if (ret) { - return ret; - } - - /* Fetch the SPSR registers - * - * KVM SPSRs 0-4 map to QEMU banks 1-5 - */ - for (i = 0; i < KVM_NR_SPSR; i++) { - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]), - &env->banked_spsr[i + 1]); - if (ret) { - return ret; - } - } - - el = arm_current_el(env); - if (el > 0 && !is_a64(env)) { - i = bank_number(env->uncached_cpsr & CPSR_M); - env->spsr = env->banked_spsr[i]; - } - - if (cpu_isar_feature(aa64_sve, cpu)) { - ret = kvm_arch_get_sve(cs); - } else { - ret = kvm_arch_get_fpsimd(cs); - } - if (ret) { - return ret; - } - - ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr); - if (ret) { - return ret; - } - vfp_set_fpsr(env, fpr); - - ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr); - if (ret) { - return ret; - } - vfp_set_fpcr(env, fpr); - - ret = kvm_get_vcpu_events(cpu); - if (ret) { - return ret; - } - - if (!write_kvmstate_to_list(cpu)) { - return -EINVAL; - } - /* Note that it's OK to have registers which aren't in CPUState, - * so we can ignore a failure return here. - */ - write_list_to_cpustate(cpu); - - kvm_arm_sync_mpstate_to_qemu(cpu); - - /* TODO: other registers */ - return ret; -} - -void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) -{ - ram_addr_t ram_addr; - hwaddr paddr; - - assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); - - if (acpi_ghes_present() && addr) { - ram_addr = qemu_ram_addr_from_host(addr); - if (ram_addr != RAM_ADDR_INVALID && - kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { - kvm_hwpoison_page_add(ram_addr); - /* - * If this is a BUS_MCEERR_AR, we know we have been called - * synchronously from the vCPU thread, so we can easily - * synchronize the state and inject an error. - * - * TODO: we currently don't tell the guest at all about - * BUS_MCEERR_AO. In that case we might either be being - * called synchronously from the vCPU thread, or a bit - * later from the main thread, so doing the injection of - * the error would be more complicated. - */ - if (code == BUS_MCEERR_AR) { - kvm_cpu_synchronize_state(c); - if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) { - kvm_inject_arm_sea(c); - } else { - error_report("failed to record the error"); - abort(); - } - } - return; - } - if (code == BUS_MCEERR_AO) { - error_report("Hardware memory error at addr %p for memory used by " - "QEMU itself instead of guest system!", addr); - } - } - - if (code == BUS_MCEERR_AR) { - error_report("Hardware memory error!"); - exit(1); - } -} - -/* C6.6.29 BRK instruction */ -static const uint32_t brk_insn = 0xd4200000; - -int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) -{ - if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || - cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { - return -EINVAL; - } - return 0; -} - -int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) -{ - static uint32_t brk; - - if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) || - brk != brk_insn || - cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { - return -EINVAL; - } - return 0; -} diff --git a/target/arm/meson.build b/target/arm/meson.build index 5d04a8e94f..d6c3902e67 100644 --- a/target/arm/meson.build +++ b/target/arm/meson.build @@ -8,7 +8,7 @@ arm_ss.add(files( )) arm_ss.add(zlib) -arm_ss.add(when: 'CONFIG_KVM', if_true: files('hyp_gdbstub.c', 'kvm.c', 'kvm64.c'), if_false: files('kvm-stub.c')) +arm_ss.add(when: 'CONFIG_KVM', if_true: files('hyp_gdbstub.c', 'kvm.c'), if_false: files('kvm-stub.c')) arm_ss.add(when: 'CONFIG_HVF', if_true: files('hyp_gdbstub.c')) arm_ss.add(when: 'TARGET_AARCH64', if_true: files(