@@ -83,7 +83,8 @@ uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t v)
{
- /* Raw write of a coprocessor register (as needed for migration, etc).
+ /*
+ * Raw write of a coprocessor register (as needed for migration, etc).
* Note that constant registers are treated as write-ignored; the
* caller should check for success by whether a readback gives the
* value written.
@@ -101,7 +102,8 @@ static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
- /* Return true if the regdef would cause an assertion if you called
+ /*
+ * Return true if the regdef would cause an assertion if you called
* read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
* program bug for it not to have the NO_RAW flag).
* NB that returning false here doesn't necessarily mean that calling
@@ -184,7 +186,8 @@ bool write_list_to_cpustate(ARMCPU *cpu)
if (ri->type & ARM_CP_NO_RAW) {
continue;
}
- /* Write value and confirm it reads back as written
+ /*
+ * Write value and confirm it reads back as written
* (to catch read-only registers and partially read-only
* registers where the incoming migration value doesn't match)
*/
@@ -237,7 +240,8 @@ static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
void init_cpreg_list(ARMCPU *cpu)
{
- /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
+ /*
+ * Initialise the cpreg_tuples[] array based on the cp_regs hash.
* Note that we require cpreg_tuples[] to be sorted by key ID.
*/
GList *keys;
@@ -279,7 +283,8 @@ static CPAccessResult access_el3_aa32ns(CPUARMState *env,
return CP_ACCESS_OK;
}
-/* Some secure-only AArch32 registers trap to EL3 if used from
+/*
+ * Some secure-only AArch32 registers trap to EL3 if used from
* Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
* Note that an access from Secure EL1 can only happen if EL3 is AArch64.
* We assume that the .access field is set to PL1_RW.
@@ -301,7 +306,8 @@ static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
-/* Check for traps to performance monitor registers, which are controlled
+/*
+ * Check for traps to performance monitor registers, which are controlled
* by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
*/
static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
@@ -399,7 +405,8 @@ static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
ARMCPU *cpu = env_archcpu(env);
if (raw_read(env, ri) != value) {
- /* Unlike real hardware the qemu TLB uses virtual addresses,
+ /*
+ * Unlike real hardware the qemu TLB uses virtual addresses,
* not modified virtual addresses, so this causes a TLB flush.
*/
tlb_flush(CPU(cpu));
@@ -414,7 +421,8 @@ static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
&& !extended_addresses_enabled(env)) {
- /* For VMSA (when not using the LPAE long descriptor page table
+ /*
+ * For VMSA (when not using the LPAE long descriptor page table
* format) this register includes the ASID, so do a TLB flush.
* For PMSA it is purely a process ID and no action is needed.
*/
@@ -606,7 +614,8 @@ static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
}
static const ARMCPRegInfo cp_reginfo[] = {
- /* Define the secure and non-secure FCSE identifier CP registers
+ /*
+ * Define the secure and non-secure FCSE identifier CP registers
* separately because there is no secure bank in V8 (no _EL3). This allows
* the secure register to be properly reset and migrated. There is also no
* v8 EL1 version of the register so the non-secure instance stands alone.
@@ -621,7 +630,8 @@ static const ARMCPRegInfo cp_reginfo[] = {
.access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
.fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
- /* Define the secure and non-secure context identifier CP registers
+ /*
+ * Define the secure and non-secure context identifier CP registers
* separately because there is no secure bank in V8 (no _EL3). This allows
* the secure register to be properly reset and migrated. In the
* non-secure case, the 32-bit register will have reset and migration
@@ -642,7 +652,8 @@ static const ARMCPRegInfo cp_reginfo[] = {
};
static const ARMCPRegInfo not_v8_cp_reginfo[] = {
- /* NB: Some of these registers exist in v8 but with more precise
+ /*
+ * NB: Some of these registers exist in v8 but with more precise
* definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
*/
/* MMU Domain access control / MPU write buffer control */
@@ -652,7 +663,8 @@ static const ARMCPRegInfo not_v8_cp_reginfo[] = {
.writefn = dacr_write, .raw_writefn = raw_write,
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
offsetoflow32(CPUARMState, cp15.dacr_ns) } },
- /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
+ /*
+ * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
* For v6 and v5, these mappings are overly broad.
*/
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
@@ -670,7 +682,8 @@ static const ARMCPRegInfo not_v8_cp_reginfo[] = {
};
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
- /* Not all pre-v6 cores implemented this WFI, so this is slightly
+ /*
+ * Not all pre-v6 cores implemented this WFI, so this is slightly
* over-broad.
*/
{ .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
@@ -678,12 +691,14 @@ static const ARMCPRegInfo not_v6_cp_reginfo[] = {
};
static const ARMCPRegInfo not_v7_cp_reginfo[] = {
- /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
+ /*
+ * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
* is UNPREDICTABLE; we choose to NOP as most implementations do).
*/
{ .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
.access = PL1_W, .type = ARM_CP_WFI },
- /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
+ /*
+ * L1 cache lockdown. Not architectural in v6 and earlier but in practice
* implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
* OMAPCP will override this space.
*/
@@ -697,14 +712,16 @@ static const ARMCPRegInfo not_v7_cp_reginfo[] = {
{ .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
.resetvalue = 0 },
- /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
+ /*
+ * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
* implementing it as RAZ means the "debug architecture version" bits
* will read as a reserved value, which should cause Linux to not try
* to use the debug hardware.
*/
{ .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
- /* MMU TLB control. Note that the wildcarding means we cover not just
+ /*
+ * MMU TLB control. Note that the wildcarding means we cover not just
* the unified TLB ops but also the dside/iside/inner-shareable variants.
*/
{ .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
@@ -732,7 +749,8 @@ static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
/* In ARMv8 most bits of CPACR_EL1 are RES0. */
if (!arm_feature(env, ARM_FEATURE_V8)) {
- /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
+ /*
+ * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
* ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
* TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
*/
@@ -748,7 +766,8 @@ static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
value |= R_CPACR_ASEDIS_MASK;
}
- /* VFPv3 and upwards with NEON implement 32 double precision
+ /*
+ * VFPv3 and upwards with NEON implement 32 double precision
* registers (D0-D31).
*/
if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
@@ -790,7 +809,8 @@ static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
- /* Call cpacr_write() so that we reset with the correct RAO bits set
+ /*
+ * Call cpacr_write() so that we reset with the correct RAO bits set
* for our CPU features.
*/
cpacr_write(env, ri, 0);
@@ -831,7 +851,8 @@ static const ARMCPRegInfo v6_cp_reginfo[] = {
{ .name = "MVA_prefetch",
.cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
.access = PL1_W, .type = ARM_CP_NOP },
- /* We need to break the TB after ISB to execute self-modifying code
+ /*
+ * We need to break the TB after ISB to execute self-modifying code
* correctly and also to take any pending interrupts immediately.
* So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
*/
@@ -846,7 +867,8 @@ static const ARMCPRegInfo v6_cp_reginfo[] = {
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
offsetof(CPUARMState, cp15.ifar_ns) },
.resetvalue = 0, },
- /* Watchpoint Fault Address Register : should actually only be present
+ /*
+ * Watchpoint Fault Address Register : should actually only be present
* for 1136, 1176, 11MPCore.
*/
{ .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
@@ -1051,7 +1073,8 @@ static bool event_supported(uint16_t number)
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
- /* Performance monitor registers user accessibility is controlled
+ /*
+ * Performance monitor registers user accessibility is controlled
* by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
* trapping to EL2 or EL3 for other accesses.
*/
@@ -1139,7 +1162,8 @@ static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
(MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
#define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
-/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
+/*
+ * Returns true if the counter (pass 31 for PMCCNTR) should count events using
* the current EL, security state, and register configuration.
*/
static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
@@ -1503,7 +1527,8 @@ static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
- /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
+ /*
+ * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
* PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
* meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
* accessed.
@@ -1614,7 +1639,8 @@ static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
pmevcntr_op_finish(env, counter);
}
- /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
+ /*
+ * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
* PMSELR value is equal to or greater than the number of implemented
* counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
*/
@@ -1715,8 +1741,10 @@ static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
}
return ret;
} else {
- /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
- * are CONSTRAINED UNPREDICTABLE. */
+ /*
+ * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
+ * are CONSTRAINED UNPREDICTABLE.
+ */
return 0;
}
}
@@ -1791,7 +1819,8 @@ static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
- /* Note that even though the AArch64 view of this register has bits
+ /*
+ * Note that even though the AArch64 view of this register has bits
* [10:0] all RES0 we can only mask the bottom 5, to comply with the
* architectural requirements for bits which are RES0 only in some
* contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
@@ -1854,7 +1883,8 @@ static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
if (!arm_feature(env, ARM_FEATURE_EL2)) {
valid_mask &= ~SCR_HCE;
- /* On ARMv7, SMD (or SCD as it is called in v7) is only
+ /*
+ * On ARMv7, SMD (or SCD as it is called in v7) is only
* supported if EL2 exists. The bit is UNK/SBZP when
* EL2 is unavailable. In QEMU ARMv7, we force it to always zero
* when EL2 is unavailable.
@@ -1911,7 +1941,8 @@ static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = env_archcpu(env);
- /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
+ /*
+ * Acquire the CSSELR index from the bank corresponding to the CCSIDR
* bank
*/
uint32_t index = A32_BANKED_REG_GET(env, csselr,
@@ -1986,7 +2017,8 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
/* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
{ .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
.access = PL1_W, .type = ARM_CP_NOP },
- /* Performance monitors are implementation defined in v7,
+ /*
+ * Performance monitors are implementation defined in v7,
* but with an ARM recommended set of registers, which we
* follow.
*
@@ -2140,7 +2172,8 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
.writefn = csselr_write, .resetvalue = 0,
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
offsetof(CPUARMState, cp15.csselr_ns) } },
- /* Auxiliary ID register: this actually has an IMPDEF value but for now
+ /*
+ * Auxiliary ID register: this actually has an IMPDEF value but for now
* just RAZ for all cores:
*/
{ .name = "AIDR", .state = ARM_CP_STATE_BOTH,
@@ -2148,7 +2181,8 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa64_tid1,
.resetvalue = 0 },
- /* Auxiliary fault status registers: these also are IMPDEF, and we
+ /*
+ * Auxiliary fault status registers: these also are IMPDEF, and we
* choose to RAZ/WI for all cores.
*/
{ .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
@@ -2159,7 +2193,8 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
.access = PL1_RW, .accessfn = access_tvm_trvm,
.type = ARM_CP_CONST, .resetvalue = 0 },
- /* MAIR can just read-as-written because we don't implement caches
+ /*
+ * MAIR can just read-as-written because we don't implement caches
* and so don't need to care about memory attributes.
*/
{ .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
@@ -2171,10 +2206,12 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
.opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
.resetvalue = 0 },
- /* For non-long-descriptor page tables these are PRRR and NMRR;
+ /*
+ * For non-long-descriptor page tables these are PRRR and NMRR;
* regardless they still act as reads-as-written for QEMU.
*/
- /* MAIR0/1 are defined separately from their 64-bit counterpart which
+ /*
+ * MAIR0/1 are defined separately from their 64-bit counterpart which
* allows them to assign the correct fieldoffset based on the endianness
* handled in the field definitions.
*/
@@ -2337,7 +2374,8 @@ static const ARMCPRegInfo v6k_cp_reginfo[] = {
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
- /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
+ /*
+ * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
* Writable only at the highest implemented exception level.
*/
int el = arm_current_el(env);
@@ -2496,7 +2534,8 @@ static CPAccessResult gt_stimer_access(CPUARMState *env,
const ARMCPRegInfo *ri,
bool isread)
{
- /* The AArch64 register view of the secure physical timer is
+ /*
+ * The AArch64 register view of the secure physical timer is
* always accessible from EL3, and configurably accessible from
* Secure EL1.
*/
@@ -2531,7 +2570,8 @@ static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
if (gt->ctl & 1) {
- /* Timer enabled: calculate and set current ISTATUS, irq, and
+ /*
+ * Timer enabled: calculate and set current ISTATUS, irq, and
* reset timer to when ISTATUS next has to change
*/
uint64_t offset = timeridx == GTIMER_VIRT ?
@@ -2554,7 +2594,8 @@ static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
/* Next transition is when we hit cval */
nexttick = gt->cval + offset;
}
- /* Note that the desired next expiry time might be beyond the
+ /*
+ * Note that the desired next expiry time might be beyond the
* signed-64-bit range of a QEMUTimer -- in this case we just
* set the timer for as far in the future as possible. When the
* timer expires we will reset the timer for any remaining period.
@@ -2671,7 +2712,8 @@ static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
/* Enable toggled */
gt_recalc_timer(cpu, timeridx);
} else if ((oldval ^ value) & 2) {
- /* IMASK toggled: don't need to recalculate,
+ /*
+ * IMASK toggled: don't need to recalculate,
* just set the interrupt line based on ISTATUS
*/
int irqstate = (oldval & 4) && !(value & 2);
@@ -2982,7 +3024,8 @@ static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
}
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
- /* Note that CNTFRQ is purely reads-as-written for the benefit
+ /*
+ * Note that CNTFRQ is purely reads-as-written for the benefit
* of software; writing it doesn't actually change the timer frequency.
* Our reset value matches the fixed frequency we implement the timer at.
*/
@@ -3145,7 +3188,8 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
.readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
.writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
},
- /* Secure timer -- this is actually restricted to only EL3
+ /*
+ * Secure timer -- this is actually restricted to only EL3
* and configurably Secure-EL1 via the accessfn.
*/
{ .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
@@ -3184,7 +3228,8 @@ static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
#else
-/* In user-mode most of the generic timer registers are inaccessible
+/*
+ * In user-mode most of the generic timer registers are inaccessible
* however modern kernels (4.12+) allow access to cntvct_el0
*/
@@ -3192,7 +3237,8 @@ static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = env_archcpu(env);
- /* Currently we have no support for QEMUTimer in linux-user so we
+ /*
+ * Currently we have no support for QEMUTimer in linux-user so we
* can't call gt_get_countervalue(env), instead we directly
* call the lower level functions.
*/
@@ -3233,7 +3279,8 @@ static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (ri->opc2 & 4) {
- /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
+ /*
+ * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
* Secure EL1 (which can only happen if EL3 is AArch64).
* They are simply UNDEF if executed from NS EL1.
* They function normally from EL2 or EL3.
@@ -3394,7 +3441,8 @@ static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
}
}
} else {
- /* fsr is a DFSR/IFSR value for the short descriptor
+ /*
+ * fsr is a DFSR/IFSR value for the short descriptor
* translation table format (with WnR always clear).
* Convert it to a 32-bit PAR.
*/
@@ -3899,7 +3947,8 @@ static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
};
static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
- /* Reset for all these registers is handled in arm_cpu_reset(),
+ /*
+ * Reset for all these registers is handled in arm_cpu_reset(),
* because the PMSAv7 is also used by M-profile CPUs, which do
* not register cpregs but still need the state to be reset.
*/
@@ -4000,7 +4049,8 @@ static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
}
if (arm_feature(env, ARM_FEATURE_LPAE)) {
- /* With LPAE the TTBCR could result in a change of ASID
+ /*
+ * With LPAE the TTBCR could result in a change of ASID
* via the TTBCR.A1 bit, so do a TLB flush.
*/
tlb_flush(CPU(cpu));
@@ -4117,7 +4167,8 @@ static const ARMCPRegInfo vmsa_cp_reginfo[] = {
offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
};
-/* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
+/*
+ * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
* qemu tlbs nor adjusting cached masks.
*/
static const ARMCPRegInfo ttbcr2_reginfo = {
@@ -4155,7 +4206,8 @@ static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
- /* On OMAP there are registers indicating the max/min index of dcache lines
+ /*
+ * On OMAP there are registers indicating the max/min index of dcache lines
* containing a dirty line; cache flush operations have to reset these.
*/
env->cp15.c15_i_max = 0x000;
@@ -4187,7 +4239,8 @@ static const ARMCPRegInfo omap_cp_reginfo[] = {
.crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
.type = ARM_CP_NO_RAW,
.readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
- /* TODO: Peripheral port remap register:
+ /*
+ * TODO: Peripheral port remap register:
* On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
* base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
* when MMU is off.
@@ -4216,7 +4269,8 @@ static const ARMCPRegInfo xscale_cp_reginfo[] = {
.cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
.resetvalue = 0, },
- /* XScale specific cache-lockdown: since we have no cache we NOP these
+ /*
+ * XScale specific cache-lockdown: since we have no cache we NOP these
* and hope the guest does not really rely on cache behaviour.
*/
{ .name = "XSCALE_LOCK_ICACHE_LINE",
@@ -4234,7 +4288,8 @@ static const ARMCPRegInfo xscale_cp_reginfo[] = {
};
static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
- /* RAZ/WI the whole crn=15 space, when we don't have a more specific
+ /*
+ * RAZ/WI the whole crn=15 space, when we don't have a more specific
* implementation of this implementation-defined space.
* Ideally this should eventually disappear in favour of actually
* implementing the correct behaviour for all cores.
@@ -4274,7 +4329,8 @@ static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
};
static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
- /* The cache test-and-clean instructions always return (1 << 30)
+ /*
+ * The cache test-and-clean instructions always return (1 << 30)
* to indicate that there are no dirty cache lines.
*/
{ .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
@@ -4310,7 +4366,8 @@ static uint64_t mpidr_read_val(CPUARMState *env)
if (arm_feature(env, ARM_FEATURE_V7MP)) {
mpidr |= (1U << 31);
- /* Cores which are uniprocessor (non-coherent)
+ /*
+ * Cores which are uniprocessor (non-coherent)
* but still implement the MP extensions set
* bit 30. (For instance, Cortex-R5).
*/
@@ -4522,7 +4579,8 @@ static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
}
-/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
+/*
+ * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
* Page D4-1736 (DDI0487A.b)
*/
@@ -4655,7 +4713,8 @@ static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
- /* Invalidate by VA, EL2
+ /*
+ * Invalidate by VA, EL2
* Currently handles both VAE2 and VALE2, since we don't support
* flush-last-level-only.
*/
@@ -4669,7 +4728,8 @@ static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
- /* Invalidate by VA, EL3
+ /*
+ * Invalidate by VA, EL3
* Currently handles both VAE3 and VALE3, since we don't support
* flush-last-level-only.
*/
@@ -4694,7 +4754,8 @@ static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
- /* Invalidate by VA, EL1&0 (AArch64 version).
+ /*
+ * Invalidate by VA, EL1&0 (AArch64 version).
* Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
* since we don't support flush-for-specific-ASID-only or
* flush-last-level-only.
@@ -5015,7 +5076,8 @@ static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
if (!(env->pstate & PSTATE_SP)) {
- /* Access to SP_EL0 is undefined if it's being used as
+ /*
+ * Access to SP_EL0 is undefined if it's being used as
* the stack pointer.
*/
return CP_ACCESS_TRAP_UNCATEGORIZED;
@@ -5055,7 +5117,8 @@ static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
}
if (raw_read(env, ri) == value) {
- /* Skip the TLB flush if nothing actually changed; Linux likes
+ /*
+ * Skip the TLB flush if nothing actually changed; Linux likes
* to do a lot of pointless SCTLR writes.
*/
return;
@@ -5123,7 +5186,8 @@ static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
}
static const ARMCPRegInfo v8_cp_reginfo[] = {
- /* Minimal set of EL0-visible registers. This will need to be expanded
+ /*
+ * Minimal set of EL0-visible registers. This will need to be expanded
* significantly for system emulation of AArch64 CPUs.
*/
{ .name = "NZCV", .state = ARM_CP_STATE_AA64,
@@ -5406,7 +5470,8 @@ static const ARMCPRegInfo v8_cp_reginfo[] = {
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
- /* We rely on the access checks not allowing the guest to write to the
+ /*
+ * We rely on the access checks not allowing the guest to write to the
* state field when SPSel indicates that it's being used as the stack
* pointer.
*/
@@ -5484,7 +5549,8 @@ static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
if (arm_feature(env, ARM_FEATURE_EL3)) {
valid_mask &= ~HCR_HCD;
} else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
- /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
+ /*
+ * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
* However, if we're using the SMC PSCI conduit then QEMU is
* effectively acting like EL3 firmware and so the guest at
* EL2 should retain the ability to prevent EL1 from being
@@ -5914,7 +5980,8 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
.writefn = tlbi_aa64_vae2is_write },
#ifndef CONFIG_USER_ONLY
- /* Unlike the other EL2-related AT operations, these must
+ /*
+ * Unlike the other EL2-related AT operations, these must
* UNDEF from EL3 if EL2 is not implemented, which is why we
* define them here rather than with the rest of the AT ops.
*/
@@ -5928,7 +5995,8 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
.access = PL2_W, .accessfn = at_s1e2_access,
.type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
.writefn = ats_write64 },
- /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
+ /*
+ * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
* if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
* with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
* to behave as if SCR.NS was 1.
@@ -5941,7 +6009,8 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
.writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
{ .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
- /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
+ /*
+ * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
* reset values as IMPDEF. We choose to reset to 3 to comply with
* both ARMv7 and ARMv8.
*/
@@ -6024,7 +6093,8 @@ static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread)
{
- /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
+ /*
+ * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
* At Secure EL1 it traps to EL3 or EL2.
*/
if (arm_current_el(env) == 3) {
@@ -6828,7 +6898,8 @@ static void define_pmu_regs(ARMCPU *cpu)
}
}
-/* We don't know until after realize whether there's a GICv3
+/*
+ * We don't know until after realize whether there's a GICv3
* attached, and that is what registers the gicv3 sysregs.
* So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
* at runtime.
@@ -6857,7 +6928,8 @@ static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
}
#endif
-/* Shared logic between LORID and the rest of the LOR* registers.
+/*
+ * Shared logic between LORID and the rest of the LOR* registers.
* Secure state exclusion has already been dealt with.
*/
static CPAccessResult access_lor_ns(CPUARMState *env,
@@ -7684,7 +7756,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
define_arm_cp_regs(cpu, cp_reginfo);
if (!arm_feature(env, ARM_FEATURE_V8)) {
- /* Must go early as it is full of wildcards that may be
+ /*
+ * Must go early as it is full of wildcards that may be
* overridden by later definitions.
*/
define_arm_cp_regs(cpu, not_v8_cp_reginfo);
@@ -7698,7 +7771,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
.access = PL1_R, .type = ARM_CP_CONST,
.accessfn = access_aa32_tid3,
.resetvalue = cpu->isar.id_pfr0 },
- /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
+ /*
+ * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
* the value of the GIC field until after we define these regs.
*/
{ .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
@@ -8239,7 +8313,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
define_arm_cp_regs(cpu, el3_regs);
}
- /* The behaviour of NSACR is sufficiently various that we don't
+ /*
+ * The behaviour of NSACR is sufficiently various that we don't
* try to describe it in a single reginfo:
* if EL3 is 64 bit, then trap to EL3 from S EL1,
* reads as constant 0xc00 from NS EL1 and NS EL2
@@ -8331,13 +8406,15 @@ void register_cp_regs_for_features(ARMCPU *cpu)
if (cpu_isar_feature(aa32_jazelle, cpu)) {
define_arm_cp_regs(cpu, jazelle_regs);
}
- /* Slightly awkwardly, the OMAP and StrongARM cores need all of
+ /*
+ * Slightly awkwardly, the OMAP and StrongARM cores need all of
* cp15 crn=0 to be writes-ignored, whereas for other cores they should
* be read-only (ie write causes UNDEF exception).
*/
{
ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
- /* Pre-v8 MIDR space.
+ /*
+ * Pre-v8 MIDR space.
* Note that the MIDR isn't a simple constant register because
* of the TI925 behaviour where writes to another register can
* cause the MIDR value to change.
@@ -8446,7 +8523,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
arm_feature(env, ARM_FEATURE_STRONGARM)) {
size_t i;
- /* Register the blanket "writes ignored" value first to cover the
+ /*
+ * Register the blanket "writes ignored" value first to cover the
* whole space. Then update the specific ID registers to allow write
* access, so that they ignore writes rather than causing them to
* UNDEF.
@@ -8654,7 +8732,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
.raw_writefn = raw_write,
};
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
- /* Normally we would always end the TB on an SCTLR write, but Linux
+ /*
+ * Normally we would always end the TB on an SCTLR write, but Linux
* arch/arm/mach-pxa/sleep.S expects two instructions following
* an MMU enable to execute from cache. Imitate this behaviour.
*/
@@ -9060,7 +9139,8 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
const ARMCPRegInfo *r, void *opaque)
{
- /* Define implementations of coprocessor registers.
+ /*
+ * Define implementations of coprocessor registers.
* We store these in a hashtable because typically
* there are less than 150 registers in a space which
* is 16*16*16*8*8 = 262144 in size.
@@ -9127,7 +9207,8 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
default:
g_assert_not_reached();
}
- /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
+ /*
+ * The AArch64 pseudocode CheckSystemAccess() specifies that op1
* encodes a minimum access level for the register. We roll this
* runtime check into our general permission check code, so check
* here that the reginfo's specified permissions are strict enough
@@ -9169,7 +9250,8 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
assert((r->access & ~mask) == 0);
}
- /* Check that the register definition has enough info to handle
+ /*
+ * Check that the register definition has enough info to handle
* reads and writes if they are permitted.
*/
if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
@@ -9194,7 +9276,8 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
continue;
}
if (state == ARM_CP_STATE_AA32) {
- /* Under AArch32 CP registers can be common
+ /*
+ * Under AArch32 CP registers can be common
* (same for secure and non-secure world) or banked.
*/
char *name;
@@ -9220,8 +9303,10 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
g_assert_not_reached();
}
} else {
- /* AArch64 registers get mapped to non-secure instance
- * of AArch32 */
+ /*
+ * AArch64 registers get mapped to non-secure instance
+ * of AArch32
+ */
add_cpreg_to_hashtable(cpu, r, opaque, state,
ARM_CP_SECSTATE_NS,
crm, opc1, opc2, r->name);
@@ -9307,7 +9392,8 @@ void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
{
- /* Return true if it is not valid for us to switch to
+ /*
+ * Return true if it is not valid for us to switch to
* this CPU mode (ie all the UNPREDICTABLE cases in
* the ARM ARM CPSRWriteByInstr pseudocode).
*/
@@ -9328,10 +9414,12 @@ static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
case ARM_CPU_MODE_UND:
case ARM_CPU_MODE_IRQ:
case ARM_CPU_MODE_FIQ:
- /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
+ /*
+ * Note that we don't implement the IMPDEF NSACR.RFR which in v7
* allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
*/
- /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
+ /*
+ * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
* and CPS are treated as illegal mode changes.
*/
if (write_type == CPSRWriteByInstr &&
@@ -9389,7 +9477,8 @@ void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
env->GE = (val >> 16) & 0xf;
}
- /* In a V7 implementation that includes the security extensions but does
+ /*
+ * In a V7 implementation that includes the security extensions but does
* not include Virtualization Extensions the SCR.FW and SCR.AW bits control
* whether non-secure software is allowed to change the CPSR_F and CPSR_A
* bits respectively.
@@ -9405,7 +9494,8 @@ void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
changed_daif = (env->daif ^ val) & mask;
if (changed_daif & CPSR_A) {
- /* Check to see if we are allowed to change the masking of async
+ /*
+ * Check to see if we are allowed to change the masking of async
* abort exceptions from a non-secure state.
*/
if (!(env->cp15.scr_el3 & SCR_AW)) {
@@ -9417,7 +9507,8 @@ void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
}
if (changed_daif & CPSR_F) {
- /* Check to see if we are allowed to change the masking of FIQ
+ /*
+ * Check to see if we are allowed to change the masking of FIQ
* exceptions from a non-secure state.
*/
if (!(env->cp15.scr_el3 & SCR_FW)) {
@@ -9427,7 +9518,8 @@ void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
mask &= ~CPSR_F;
}
- /* Check whether non-maskable FIQ (NMFI) support is enabled.
+ /*
+ * Check whether non-maskable FIQ (NMFI) support is enabled.
* If this bit is set software is not allowed to mask
* FIQs, but is allowed to set CPSR_F to 0.
*/
@@ -9447,7 +9539,8 @@ void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
if (write_type != CPSRWriteRaw &&
((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
- /* Note that we can only get here in USR mode if this is a
+ /*
+ * Note that we can only get here in USR mode if this is a
* gdb stub write; for this case we follow the architectural
* behaviour for guest writes in USR mode of ignoring an attempt
* to switch mode. (Those are caught by translate.c for writes
@@ -9455,7 +9548,8 @@ void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
*/
mask &= ~CPSR_M;
} else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
- /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
+ /*
+ * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
* v7, and has defined behaviour in v8:
* + leave CPSR.M untouched
* + allow changes to the other CPSR fields
@@ -9598,7 +9692,8 @@ static void switch_mode(CPUARMState *env, int mode)
env->regs[14] = env->banked_r14[r14_bank_number(mode)];
}
-/* Physical Interrupt Target EL Lookup Table
+/*
+ * Physical Interrupt Target EL Lookup Table
*
* [ From ARM ARM section G1.13.4 (Table G1-15) ]
*
@@ -9672,7 +9767,8 @@ uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
if (arm_feature(env, ARM_FEATURE_EL3)) {
rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
} else {
- /* Either EL2 is the highest EL (and so the EL2 register width
+ /*
+ * Either EL2 is the highest EL (and so the EL2 register width
* is given by is64); or there is no EL2 or EL3, in which case
* the value of 'rw' does not affect the table lookup anyway.
*/
@@ -9947,7 +10043,8 @@ void aarch64_sync_64_to_32(CPUARMState *env)
env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
}
- /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
+ /*
+ * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
* mode, then we can copy to r8-r14. Otherwise, we copy to the
* FIQ bank for r8-r14.
*/
@@ -10293,7 +10390,8 @@ static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
/* High vectors. When enabled, base address cannot be remapped. */
addr += 0xffff0000;
} else {
- /* ARM v7 architectures provide a vector base address register to remap
+ /*
+ * ARM v7 architectures provide a vector base address register to remap
* the interrupt vector table.
* This register is only followed in non-monitor mode, and is banked.
* Note: only bits 31:5 are valid.
@@ -10427,7 +10525,8 @@ static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
if (cur_el < new_el) {
- /* Entry vector offset depends on whether the implemented EL
+ /*
+ * Entry vector offset depends on whether the implemented EL
* immediately lower than the target level is using AArch32 or AArch64
*/
bool is_aa64;
@@ -10628,7 +10727,8 @@ static void handle_semihosting(CPUState *cs)
}
#endif
-/* Handle a CPU exception for A and R profile CPUs.
+/*
+ * Handle a CPU exception for A and R profile CPUs.
* Do any appropriate logging, handle PSCI calls, and then hand off
* to the AArch64-entry or AArch32-entry function depending on the
* target exception level's register width.
@@ -10673,7 +10773,8 @@ void arm_cpu_do_interrupt(CPUState *cs)
}
#endif
- /* Hooks may change global state so BQL should be held, also the
+ /*
+ * Hooks may change global state so BQL should be held, also the
* BQL needs to be held for any modification of
* cs->interrupt_request.
*/
@@ -10954,9 +11055,11 @@ ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
};
}
-/* Note that signed overflow is undefined in C. The following routines are
- careful to use unsigned types where modulo arithmetic is required.
- Failure to do so _will_ break on newer gcc. */
+/*
+ * Note that signed overflow is undefined in C. The following routines are
+ * careful to use unsigned types where modulo arithmetic is required.
+ * Failure to do so _will_ break on newer gcc.
+ */
/* Signed saturating arithmetic. */
@@ -11198,7 +11301,8 @@ uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
return (a & mask) | (b & ~mask);
}
-/* CRC helpers.
+/*
+ * CRC helpers.
* The upper bytes of val (above the number specified by 'bytes') must have
* been zeroed out by the caller.
*/
@@ -11222,7 +11326,8 @@ uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
return crc32c(acc, buf, bytes) ^ 0xffffffff;
}
-/* Return the exception level to which FP-disabled exceptions should
+/*
+ * Return the exception level to which FP-disabled exceptions should
* be taken, or 0 if FP is enabled.
*/
int fp_exception_el(CPUARMState *env, int cur_el)
@@ -11230,7 +11335,8 @@ int fp_exception_el(CPUARMState *env, int cur_el)
#ifndef CONFIG_USER_ONLY
uint64_t hcr_el2;
- /* CPACR and the CPTR registers don't exist before v6, so FP is
+ /*
+ * CPACR and the CPTR registers don't exist before v6, so FP is
* always accessible
*/
if (!arm_feature(env, ARM_FEATURE_V6)) {
@@ -11255,7 +11361,8 @@ int fp_exception_el(CPUARMState *env, int cur_el)
hcr_el2 = arm_hcr_el2_eff(env);
- /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
+ /*
+ * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
* 0, 2 : trap EL0 and EL1/PL1 accesses
* 1 : trap only EL0 accesses
* 3 : trap no accesses