From patchwork Fri Jun 4 15:52:01 2021 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 8bit X-Patchwork-Submitter: =?utf-8?q?Alex_Benn=C3=A9e?= X-Patchwork-Id: 454091 Delivered-To: patch@linaro.org Received: by 2002:a02:735a:0:0:0:0:0 with SMTP id a26csp571762jae; Fri, 4 Jun 2021 09:36:41 -0700 (PDT) X-Google-Smtp-Source: ABdhPJy4EdsslqSShxKbxPe+dekORG3JKtB2+NYZg0vUXYH2nw1kUsmqsqt7TEUBfUIxCKNru0Sf X-Received: by 2002:a05:6402:1c83:: with SMTP id cy3mr5556840edb.108.1622824600828; Fri, 04 Jun 2021 09:36:40 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1622824600; cv=none; d=google.com; s=arc-20160816; b=jBpq8Ba7SOn+umjN2jZaG98DBiFQKK46pFMCfWZfcIysFnUuLrTP+GReIaImf4GwE8 9sJx5e8TrirO6JlmMyoHiTg78i1/dj1rWqed25TefB6Trd3XqU2GNdH+9qkB2AYAd2pa FVbWDrVj2j+lUSBXfJ40lSqQwek5lcczKbtHwwTjIMexwslPOQ7RT25iKR0nkVyDWIQh 87tzoxcpOoOCo/1l+AaVfylMnKY+/c4KFgYh9J8ntVn7+VAwjvVXaq515KX4gTPiucJW TBJ9U3RaIOeutY+E5CBvi2jNyCJfZeYdg/KxXiFzyvswWA3P7xK/p/+POV1ist9mQC74 7tIg== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=sender:errors-to:cc:list-subscribe:list-help:list-post:list-archive :list-unsubscribe:list-id:precedence:content-transfer-encoding :mime-version:references:in-reply-to:message-id:date:subject:to:from :dkim-signature; bh=9IAZoH1FQVFYKQUbTP+HG3rskhG4h312NYkS47dna/I=; b=cBv8ON6oewCyLOdMyNLTCS/x1qdRUhTnftWepOGWf19elbHtaMQPEeepIqHeoWrr89 XGkLUT9VsgxO1TdGWYQJWX76d3O410tw+ewoGIIxWVBceGJ1EKUWKJ4o/Tv2pHPBjeR8 hox10KsbOMsn0mG7bELqR3dP6s2NTw651NQC7zHaNA9QF0JUvUX07V12sLmKJN1dXG+Y 4rd3T0sNq9eR7bvGo7tDuAc1aWwrhNeuLEq9TShQThD/tCHtcUkkog/tZJT8sF/haJYI 5WHzZT8dzKyiJekLJB8QKuOipjGxENJT/SY2y9KOYhuPw0DkOi2o9oi7kq2Ur3K+PA/p 7Lsg== ARC-Authentication-Results: i=1; mx.google.com; dkim=fail header.i=@linaro.org header.s=google header.b=KyX7j3Ww; spf=pass (google.com: domain of qemu-devel-bounces+patch=linaro.org@nongnu.org designates 209.51.188.17 as permitted sender) smtp.mailfrom="qemu-devel-bounces+patch=linaro.org@nongnu.org"; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=linaro.org Return-Path: Received: from lists.gnu.org (lists.gnu.org. [209.51.188.17]) by mx.google.com with ESMTPS id c23si752724ejc.734.2021.06.04.09.36.38 for (version=TLS1_2 cipher=ECDHE-ECDSA-CHACHA20-POLY1305 bits=256/256); Fri, 04 Jun 2021 09:36:40 -0700 (PDT) Received-SPF: pass (google.com: domain of qemu-devel-bounces+patch=linaro.org@nongnu.org designates 209.51.188.17 as permitted sender) client-ip=209.51.188.17; Authentication-Results: mx.google.com; dkim=fail header.i=@linaro.org header.s=google header.b=KyX7j3Ww; spf=pass (google.com: domain of qemu-devel-bounces+patch=linaro.org@nongnu.org designates 209.51.188.17 as permitted sender) smtp.mailfrom="qemu-devel-bounces+patch=linaro.org@nongnu.org"; dmarc=fail (p=NONE sp=NONE dis=NONE) header.from=linaro.org Received: from localhost ([::1]:42304 helo=lists1p.gnu.org) by lists.gnu.org with esmtp (Exim 4.90_1) (envelope-from ) id 1lpCoH-0007AG-Ew for patch@linaro.org; Fri, 04 Jun 2021 12:36:37 -0400 Received: from eggs.gnu.org ([2001:470:142:3::10]:48804) by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1lpCIL-0000Qg-GY for qemu-devel@nongnu.org; Fri, 04 Jun 2021 12:03:37 -0400 Received: from mail-wm1-x32d.google.com ([2a00:1450:4864:20::32d]:54128) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_128_GCM_SHA256:128) (Exim 4.90_1) (envelope-from ) id 1lpCHo-0005vt-PD for qemu-devel@nongnu.org; Fri, 04 Jun 2021 12:03:37 -0400 Received: by mail-wm1-x32d.google.com with SMTP id h3so5688409wmq.3 for ; Fri, 04 Jun 2021 09:03:02 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=linaro.org; s=google; h=from:to:cc:subject:date:message-id:in-reply-to:references :mime-version:content-transfer-encoding; bh=9IAZoH1FQVFYKQUbTP+HG3rskhG4h312NYkS47dna/I=; b=KyX7j3WwfsSw17NIdi5Qk4YGnD0DAB/Yz6xbKS2pdYFjJgf1JSSQevF3XvG5Hq/JXg uZA61OnBowgdtUyz1TE+NytVVKCUE17xMd3xFgGqW4yjJv4ONjjVxfLg1Ei8B9FCy1NC BnGtkaXaj/vBqvNoI8BdqJVLiIvf1UgoEkFqreCC7bkKAJOvx7G5xTImI7gNq2Z2HHAo 4btqRb8klVaEVyNNGhnXBtZGs9y4NTiW77oby4vSuNk8G9piGLF9vxvI/0rhPUW25ZrQ 0jldm/HsvP6i2xP4QzjJwQEGCuAv1ANH09vv1Ucc/SIyCjPRQ24nA+9tdF9eswToC+HK VQsg== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:from:to:cc:subject:date:message-id:in-reply-to :references:mime-version:content-transfer-encoding; bh=9IAZoH1FQVFYKQUbTP+HG3rskhG4h312NYkS47dna/I=; b=fvyChdXcPh/qTMFEUZq1NKJEss1fqqVIrixeZ3ZDLDuxbvlS0E8mNlH6+BS44Ip9zD oL6VjKO/B0o5IAc6cV6V+GyVTHotylN/ya/Fw/pFPrz1TUDfW1zvd1nl3wQl2W6Ek/Db 7KbV1kzZubgF6cgsNTA1ZnyBnYqWxwlWPMHvmigIIka85TkA7Ts06Pd6w/wzhWcbFKAc YATVqLoS3rhPKSvMPup7CE6EJ8ZZLbEglEFNTnozgcomxDpO/b9Q9OrWAald6fK3nWd8 9v68obRZ7/+lKEcfLTRo9rDGaUw3rD6kFd1P1/f/v54E5Lkkr0PQDplw7/nSCNNUIreS S0vg== X-Gm-Message-State: AOAM5311gCk/pzloLtsWtGGF4Ga0UG9umpNumoRZqqqy04djenrVONWn eGiFYOpgRVirZNzXQQ41xG5Acw== X-Received: by 2002:a1c:282:: with SMTP id 124mr4485073wmc.82.1622822579539; Fri, 04 Jun 2021 09:02:59 -0700 (PDT) Received: from zen.linaroharston ([51.148.130.216]) by smtp.gmail.com with ESMTPSA id x11sm7147165wru.87.2021.06.04.09.02.43 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Fri, 04 Jun 2021 09:02:54 -0700 (PDT) Received: from zen.lan (localhost [127.0.0.1]) by zen.linaroharston (Postfix) with ESMTP id 3D4361FFB3; Fri, 4 Jun 2021 16:53:16 +0100 (BST) From: =?utf-8?q?Alex_Benn=C3=A9e?= To: qemu-devel@nongnu.org Subject: [PATCH v16 28/99] target/arm: split cpregs from tcg/helper.c Date: Fri, 4 Jun 2021 16:52:01 +0100 Message-Id: <20210604155312.15902-29-alex.bennee@linaro.org> X-Mailer: git-send-email 2.20.1 In-Reply-To: <20210604155312.15902-1-alex.bennee@linaro.org> References: <20210604155312.15902-1-alex.bennee@linaro.org> MIME-Version: 1.0 Received-SPF: pass client-ip=2a00:1450:4864:20::32d; envelope-from=alex.bennee@linaro.org; helo=mail-wm1-x32d.google.com X-Spam_score_int: -20 X-Spam_score: -2.1 X-Spam_bar: -- X-Spam_report: (-2.1 / 5.0 requ) BAYES_00=-1.9, DKIM_SIGNED=0.1, DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, RCVD_IN_DNSWL_NONE=-0.0001, SPF_HELO_NONE=0.001, SPF_PASS=-0.001 autolearn=unavailable autolearn_force=no X-Spam_action: no action X-BeenThere: qemu-devel@nongnu.org X-Mailman-Version: 2.1.23 Precedence: list List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Cc: Peter Maydell , Richard Henderson , qemu-arm@nongnu.org, Claudio Fontana , =?utf-8?q?Alex_Benn=C3=A9e?= Errors-To: qemu-devel-bounces+patch=linaro.org@nongnu.org Sender: "Qemu-devel" From: Claudio Fontana give them their own common module cpregs.c, and an interface cpregs.h. Extract the raw cpustate list to its own module. This is more or less needed for KVM too. For the tcg-specific registers, stuff them into tcg/cpregs.c As a result, the monster that is tcg/helper.c is a bit less scary, and a lot of stuff is removed from cpu.h too, relegated to cpregs.h. Signed-off-by: Claudio Fontana Reviewed-by: Richard Henderson Reviewed-by: Alex Bennée Signed-off-by: Alex Bennée --- target/arm/cpregs.h | 515 ++ target/arm/cpu.h | 480 -- hw/arm/pxa2xx.c | 1 + hw/arm/pxa2xx_pic.c | 1 + hw/intc/arm_gicv3_cpuif.c | 1 + hw/intc/arm_gicv3_kvm.c | 1 + target/arm/cpregs.c | 380 ++ target/arm/cpu.c | 1 + target/arm/cpu64.c | 2 +- target/arm/cpu_tcg.c | 1 + target/arm/cpustate-list.c | 146 + target/arm/gdbstub.c | 1 + target/arm/machine.c | 1 + target/arm/tcg/cpregs.c | 7674 +++++++++++++++++++++++++++ target/arm/tcg/helper.c | 9051 +------------------------------- target/arm/tcg/op_helper.c | 1 + target/arm/tcg/translate-a64.c | 1 + target/arm/tcg/translate.c | 1 + target/arm/meson.build | 2 + target/arm/tcg/meson.build | 1 + 20 files changed, 9005 insertions(+), 9257 deletions(-) create mode 100644 target/arm/cpregs.h create mode 100644 target/arm/cpregs.c create mode 100644 target/arm/cpustate-list.c create mode 100644 target/arm/tcg/cpregs.c -- 2.20.1 diff --git a/target/arm/cpregs.h b/target/arm/cpregs.h new file mode 100644 index 0000000000..a4e62d8f3d --- /dev/null +++ b/target/arm/cpregs.h @@ -0,0 +1,515 @@ +/* + * ARM CP registers + * + * This code is licensed under the GNU GPL v2 or later. + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#ifndef CPREGS_H +#define CPREGS_H + +/* + * Interface for defining coprocessor registers. + * Registers are defined in tables of arm_cp_reginfo structs + * which are passed to define_arm_cp_regs(). + */ + +/* + * When looking up a coprocessor register we look for it + * via an integer which encodes all of: + * coprocessor number + * Crn, Crm, opc1, opc2 fields + * 32 or 64 bit register (ie is it accessed via MRC/MCR + * or via MRRC/MCRR?) + * non-secure/secure bank (AArch32 only) + * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. + * (In this case crn and opc2 should be zero.) + * For AArch64, there is no 32/64 bit size distinction; + * instead all registers have a 2 bit op0, 3 bit op1 and op2, + * and 4 bit CRn and CRm. The encoding patterns are chosen + * to be easy to convert to and from the KVM encodings, and also + * so that the hashtable can contain both AArch32 and AArch64 + * registers (to allow for interprocessing where we might run + * 32 bit code on a 64 bit core). + */ +/* + * This bit is private to our hashtable cpreg; in KVM register + * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 + * in the upper bits of the 64 bit ID. + */ +#define CP_REG_AA64_SHIFT 28 +#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) + +/* + * To enable banking of coprocessor registers depending on ns-bit we + * add a bit to distinguish between secure and non-secure cpregs in the + * hashtable. + */ +#define CP_REG_NS_SHIFT 29 +#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) + +#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ + ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ + ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) + +#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ + (CP_REG_AA64_MASK | \ + ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ + ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ + ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ + ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ + ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ + ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) + +/* + * Convert a full 64 bit KVM register ID to the truncated 32 bit + * version used as a key for the coprocessor register hashtable + */ +static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) +{ + uint32_t cpregid = kvmid; + if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { + cpregid |= CP_REG_AA64_MASK; + } else { + if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { + cpregid |= (1 << 15); + } + + /* + * KVM is always non-secure so add the NS flag on AArch32 register + * entries. + */ + cpregid |= 1 << CP_REG_NS_SHIFT; + } + return cpregid; +} + +/* + * Convert a truncated 32 bit hashtable key into the full + * 64 bit KVM register ID. + */ +static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) +{ + uint64_t kvmid; + + if (cpregid & CP_REG_AA64_MASK) { + kvmid = cpregid & ~CP_REG_AA64_MASK; + kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; + } else { + kvmid = cpregid & ~(1 << 15); + if (cpregid & (1 << 15)) { + kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; + } else { + kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; + } + } + return kvmid; +} + +/* + * ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a + * special-behaviour cp reg and bits [11..8] indicate what behaviour + * it has. Otherwise it is a simple cp reg, where CONST indicates that + * TCG can assume the value to be constant (ie load at translate time) + * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END + * indicates that the TB should not be ended after a write to this register + * (the default is that the TB ends after cp writes). OVERRIDE permits + * a register definition to override a previous definition for the + * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the + * old must have the OVERRIDE bit set. + * ALIAS indicates that this register is an alias view of some underlying + * state which is also visible via another register, and that the other + * register is handling migration and reset; registers marked ALIAS will not be + * migrated but may have their state set by syncing of register state from KVM. + * NO_RAW indicates that this register has no underlying state and does not + * support raw access for state saving/loading; it will not be used for either + * migration or KVM state synchronization. (Typically this is for "registers" + * which are actually used as instructions for cache maintenance and so on.) + * IO indicates that this register does I/O and therefore its accesses + * need to be marked with gen_io_start() and also end the TB. In particular, + * registers which implement clocks or timers require this. + * RAISES_EXC is for when the read or write hook might raise an exception; + * the generated code will synchronize the CPU state before calling the hook + * so that it is safe for the hook to call raise_exception(). + * NEWEL is for writes to registers that might change the exception + * level - typically on older ARM chips. For those cases we need to + * re-read the new el when recomputing the translation flags. + */ +#define ARM_CP_SPECIAL 0x0001 +#define ARM_CP_CONST 0x0002 +#define ARM_CP_64BIT 0x0004 +#define ARM_CP_SUPPRESS_TB_END 0x0008 +#define ARM_CP_OVERRIDE 0x0010 +#define ARM_CP_ALIAS 0x0020 +#define ARM_CP_IO 0x0040 +#define ARM_CP_NO_RAW 0x0080 +#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) +#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) +#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) +#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) +#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) +#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600) +#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700) +#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA +#define ARM_CP_FPU 0x1000 +#define ARM_CP_SVE 0x2000 +#define ARM_CP_NO_GDB 0x4000 +#define ARM_CP_RAISES_EXC 0x8000 +#define ARM_CP_NEWEL 0x10000 +/* Used only as a terminator for ARMCPRegInfo lists */ +#define ARM_CP_SENTINEL 0xfffff +/* Mask of only the flag bits in a type field */ +#define ARM_CP_FLAG_MASK 0x1f0ff + +/* + * Valid values for ARMCPRegInfo state field, indicating which of + * the AArch32 and AArch64 execution states this register is visible in. + * If the reginfo doesn't explicitly specify then it is AArch32 only. + * If the reginfo is declared to be visible in both states then a second + * reginfo is synthesised for the AArch32 view of the AArch64 register, + * such that the AArch32 view is the lower 32 bits of the AArch64 one. + * Note that we rely on the values of these enums as we iterate through + * the various states in some places. + */ +enum { + ARM_CP_STATE_AA32 = 0, + ARM_CP_STATE_AA64 = 1, + ARM_CP_STATE_BOTH = 2, +}; + +/* + * ARM CP register secure state flags. These flags identify security state + * attributes for a given CP register entry. + * The existence of both or neither secure and non-secure flags indicates that + * the register has both a secure and non-secure hash entry. A single one of + * these flags causes the register to only be hashed for the specified + * security state. + * Although definitions may have any combination of the S/NS bits, each + * registered entry will only have one to identify whether the entry is secure + * or non-secure. + */ +enum { + ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ + ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ +}; + +/* + * Return true if cptype is a valid type field. This is used to try to + * catch errors where the sentinel has been accidentally left off the end + * of a list of registers. + */ +static inline bool cptype_valid(int cptype) +{ + return ((cptype & ~ARM_CP_FLAG_MASK) == 0) + || ((cptype & ARM_CP_SPECIAL) && + ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); +} + +/* + * Access rights: + * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM + * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and + * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 + * (ie any of the privileged modes in Secure state, or Monitor mode). + * If a register is accessible in one privilege level it's always accessible + * in higher privilege levels too. Since "Secure PL1" also follows this rule + * (ie anything visible in PL2 is visible in S-PL1, some things are only + * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the + * terminology a little and call this PL3. + * In AArch64 things are somewhat simpler as the PLx bits line up exactly + * with the ELx exception levels. + * + * If access permissions for a register are more complex than can be + * described with these bits, then use a laxer set of restrictions, and + * do the more restrictive/complex check inside a helper function. + */ +#define PL3_R 0x80 +#define PL3_W 0x40 +#define PL2_R (0x20 | PL3_R) +#define PL2_W (0x10 | PL3_W) +#define PL1_R (0x08 | PL2_R) +#define PL1_W (0x04 | PL2_W) +#define PL0_R (0x02 | PL1_R) +#define PL0_W (0x01 | PL1_W) + +/* + * For user-mode some registers are accessible to EL0 via a kernel + * trap-and-emulate ABI. In this case we define the read permissions + * as actually being PL0_R. However some bits of any given register + * may still be masked. + */ +#ifdef CONFIG_USER_ONLY +#define PL0U_R PL0_R +#else +#define PL0U_R PL1_R +#endif + +#define PL3_RW (PL3_R | PL3_W) +#define PL2_RW (PL2_R | PL2_W) +#define PL1_RW (PL1_R | PL1_W) +#define PL0_RW (PL0_R | PL0_W) + +typedef enum CPAccessResult { + /* Access is permitted */ + CP_ACCESS_OK = 0, + /* + * Access fails due to a configurable trap or enable which would + * result in a categorized exception syndrome giving information about + * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, + * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or + * PL1 if in EL0, otherwise to the current EL). + */ + CP_ACCESS_TRAP = 1, + /* + * Access fails and results in an exception syndrome 0x0 ("uncategorized"). + * Note that this is not a catch-all case -- the set of cases which may + * result in this failure is specifically defined by the architecture. + */ + CP_ACCESS_TRAP_UNCATEGORIZED = 2, + /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ + CP_ACCESS_TRAP_EL2 = 3, + CP_ACCESS_TRAP_EL3 = 4, + /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ + CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, + CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, + /* + * Access fails and results in an exception syndrome for an FP access, + * trapped directly to EL2 or EL3 + */ + CP_ACCESS_TRAP_FP_EL2 = 7, + CP_ACCESS_TRAP_FP_EL3 = 8, +} CPAccessResult; + +/* + * Access functions for coprocessor registers. These cannot fail and + * may not raise exceptions. + */ +typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); +typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, + uint64_t value); +/* Access permission check functions for coprocessor registers. */ +typedef CPAccessResult CPAccessFn(CPUARMState *env, + const ARMCPRegInfo *opaque, + bool isread); +/* Hook function for register reset */ +typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); + +#define CP_ANY 0xff + +/* Definition of an ARM coprocessor register */ +struct ARMCPRegInfo { + /* Name of register (useful mainly for debugging, need not be unique) */ + const char *name; + /* + * Location of register: coprocessor number and (crn,crm,opc1,opc2) + * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a + * 'wildcard' field -- any value of that field in the MRC/MCR insn + * will be decoded to this register. The register read and write + * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 + * used by the program, so it is possible to register a wildcard and + * then behave differently on read/write if necessary. + * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 + * must both be zero. + * For AArch64-visible registers, opc0 is also used. + * Since there are no "coprocessors" in AArch64, cp is purely used as a + * way to distinguish (for KVM's benefit) guest-visible system registers + * from demuxed ones provided to preserve the "no side effects on + * KVM register read/write from QEMU" semantics. cp==0x13 is guest + * visible (to match KVM's encoding); cp==0 will be converted to + * cp==0x13 when the ARMCPRegInfo is registered, for convenience. + */ + uint8_t cp; + uint8_t crn; + uint8_t crm; + uint8_t opc0; + uint8_t opc1; + uint8_t opc2; + /* Execution state in which this register is visible: ARM_CP_STATE_* */ + int state; + /* Register type: ARM_CP_* bits/values */ + int type; + /* Access rights: PL*_[RW] */ + int access; + /* Security state: ARM_CP_SECSTATE_* bits/values */ + int secure; + /* + * The opaque pointer passed to define_arm_cp_regs_with_opaque() when + * this register was defined: can be used to hand data through to the + * register read/write functions, since they are passed the ARMCPRegInfo*. + */ + void *opaque; + /* + * Value of this register, if it is ARM_CP_CONST. Otherwise, if + * fieldoffset is non-zero, the reset value of the register. + */ + uint64_t resetvalue; + /* + * Offset of the field in CPUARMState for this register. + * + * This is not needed if either: + * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs + * 2. both readfn and writefn are specified + */ + ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ + + /* + * Offsets of the secure and non-secure fields in CPUARMState for the + * register if it is banked. These fields are only used during the static + * registration of a register. During hashing the bank associated + * with a given security state is copied to fieldoffset which is used from + * there on out. + * + * It is expected that register definitions use either fieldoffset or + * bank_fieldoffsets in the definition but not both. It is also expected + * that both bank offsets are set when defining a banked register. This + * use indicates that a register is banked. + */ + ptrdiff_t bank_fieldoffsets[2]; + + /* + * Function for making any access checks for this register in addition to + * those specified by the 'access' permissions bits. If NULL, no extra + * checks required. The access check is performed at runtime, not at + * translate time. + */ + CPAccessFn *accessfn; + /* + * Function for handling reads of this register. If NULL, then reads + * will be done by loading from the offset into CPUARMState specified + * by fieldoffset. + */ + CPReadFn *readfn; + /* + * Function for handling writes of this register. If NULL, then writes + * will be done by writing to the offset into CPUARMState specified + * by fieldoffset. + */ + CPWriteFn *writefn; + /* + * Function for doing a "raw" read; used when we need to copy + * coprocessor state to the kernel for KVM or out for + * migration. This only needs to be provided if there is also a + * readfn and it has side effects (for instance clear-on-read bits). + */ + CPReadFn *raw_readfn; + /* + * Function for doing a "raw" write; used when we need to copy KVM + * kernel coprocessor state into userspace, or for inbound + * migration. This only needs to be provided if there is also a + * writefn and it masks out "unwritable" bits or has write-one-to-clear + * or similar behaviour. + */ + CPWriteFn *raw_writefn; + /* + * Function for resetting the register. If NULL, then reset will be done + * by writing resetvalue to the field specified in fieldoffset. If + * fieldoffset is 0 then no reset will be done. + */ + CPResetFn *resetfn; + + /* + * "Original" writefn and readfn. + * For ARMv8.1-VHE register aliases, we overwrite the read/write + * accessor functions of various EL1/EL0 to perform the runtime + * check for which sysreg should actually be modified, and then + * forwards the operation. Before overwriting the accessors, + * the original function is copied here, so that accesses that + * really do go to the EL1/EL0 version proceed normally. + * (The corresponding EL2 register is linked via opaque.) + */ + CPReadFn *orig_readfn; + CPWriteFn *orig_writefn; +}; + +/* + * Macros which are lvalues for the field in CPUARMState for the + * ARMCPRegInfo *ri. + */ +#define CPREG_FIELD32(env, ri) \ + (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) +#define CPREG_FIELD64(env, ri) \ + (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) + +#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } + +void define_arm_cp_regs_with_opaque(ARMCPU *cpu, + const ARMCPRegInfo *regs, void *opaque); +void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, + const ARMCPRegInfo *regs, void *opaque); +static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) +{ + define_arm_cp_regs_with_opaque(cpu, regs, 0); +} +static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) +{ + define_one_arm_cp_reg_with_opaque(cpu, regs, 0); +} +const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); + +/* + * Definition of an ARM co-processor register as viewed from + * userspace. This is used for presenting sanitised versions of + * registers to userspace when emulating the Linux AArch64 CPU + * ID/feature ABI (advertised as HWCAP_CPUID). + */ +typedef struct ARMCPRegUserSpaceInfo { + /* Name of register */ + const char *name; + + /* Is the name actually a glob pattern */ + bool is_glob; + + /* Only some bits are exported to user space */ + uint64_t exported_bits; + + /* Fixed bits are applied after the mask */ + uint64_t fixed_bits; +} ARMCPRegUserSpaceInfo; + +#define REGUSERINFO_SENTINEL { .name = NULL } + +/* CPWriteFn that can be used to implement writes-ignored behaviour */ +void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value); +/* CPReadFn that can be used for read-as-zero behaviour */ +uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); + +/* + * CPResetFn that does nothing, for use if no reset is required even + * if fieldoffset is non zero. + */ +void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); + +/* + * Return true if this reginfo struct's field in the cpu state struct + * is 64 bits wide. + */ +static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) +{ + return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); +} + +static inline bool cp_access_ok(int current_el, + const ARMCPRegInfo *ri, int isread) +{ + return (ri->access >> ((current_el * 2) + isread)) & 1; +} + +/* Raw read of a coprocessor register (as needed for migration, etc) */ +uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); + +#ifdef CONFIG_TCG +/* Modify ARMCPRegInfo for access from userspace. */ +void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); +#endif + +/* + * default raw read/write of coprocessor register field, + * behavior if no other function defined, and not const. + */ +uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri); +void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value); + +#endif /* CPREGS_H */ diff --git a/target/arm/cpu.h b/target/arm/cpu.h index af788c7801..adb9d2828d 100644 --- a/target/arm/cpu.h +++ b/target/arm/cpu.h @@ -2424,235 +2424,6 @@ static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) } #endif -/* Interface for defining coprocessor registers. - * Registers are defined in tables of arm_cp_reginfo structs - * which are passed to define_arm_cp_regs(). - */ - -/* When looking up a coprocessor register we look for it - * via an integer which encodes all of: - * coprocessor number - * Crn, Crm, opc1, opc2 fields - * 32 or 64 bit register (ie is it accessed via MRC/MCR - * or via MRRC/MCRR?) - * non-secure/secure bank (AArch32 only) - * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. - * (In this case crn and opc2 should be zero.) - * For AArch64, there is no 32/64 bit size distinction; - * instead all registers have a 2 bit op0, 3 bit op1 and op2, - * and 4 bit CRn and CRm. The encoding patterns are chosen - * to be easy to convert to and from the KVM encodings, and also - * so that the hashtable can contain both AArch32 and AArch64 - * registers (to allow for interprocessing where we might run - * 32 bit code on a 64 bit core). - */ -/* This bit is private to our hashtable cpreg; in KVM register - * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 - * in the upper bits of the 64 bit ID. - */ -#define CP_REG_AA64_SHIFT 28 -#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) - -/* To enable banking of coprocessor registers depending on ns-bit we - * add a bit to distinguish between secure and non-secure cpregs in the - * hashtable. - */ -#define CP_REG_NS_SHIFT 29 -#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) - -#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ - ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ - ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) - -#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ - (CP_REG_AA64_MASK | \ - ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ - ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ - ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ - ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ - ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ - ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) - -/* Convert a full 64 bit KVM register ID to the truncated 32 bit - * version used as a key for the coprocessor register hashtable - */ -static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) -{ - uint32_t cpregid = kvmid; - if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { - cpregid |= CP_REG_AA64_MASK; - } else { - if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { - cpregid |= (1 << 15); - } - - /* KVM is always non-secure so add the NS flag on AArch32 register - * entries. - */ - cpregid |= 1 << CP_REG_NS_SHIFT; - } - return cpregid; -} - -/* Convert a truncated 32 bit hashtable key into the full - * 64 bit KVM register ID. - */ -static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) -{ - uint64_t kvmid; - - if (cpregid & CP_REG_AA64_MASK) { - kvmid = cpregid & ~CP_REG_AA64_MASK; - kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; - } else { - kvmid = cpregid & ~(1 << 15); - if (cpregid & (1 << 15)) { - kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; - } else { - kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; - } - } - return kvmid; -} - -/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a - * special-behaviour cp reg and bits [11..8] indicate what behaviour - * it has. Otherwise it is a simple cp reg, where CONST indicates that - * TCG can assume the value to be constant (ie load at translate time) - * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END - * indicates that the TB should not be ended after a write to this register - * (the default is that the TB ends after cp writes). OVERRIDE permits - * a register definition to override a previous definition for the - * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the - * old must have the OVERRIDE bit set. - * ALIAS indicates that this register is an alias view of some underlying - * state which is also visible via another register, and that the other - * register is handling migration and reset; registers marked ALIAS will not be - * migrated but may have their state set by syncing of register state from KVM. - * NO_RAW indicates that this register has no underlying state and does not - * support raw access for state saving/loading; it will not be used for either - * migration or KVM state synchronization. (Typically this is for "registers" - * which are actually used as instructions for cache maintenance and so on.) - * IO indicates that this register does I/O and therefore its accesses - * need to be marked with gen_io_start() and also end the TB. In particular, - * registers which implement clocks or timers require this. - * RAISES_EXC is for when the read or write hook might raise an exception; - * the generated code will synchronize the CPU state before calling the hook - * so that it is safe for the hook to call raise_exception(). - * NEWEL is for writes to registers that might change the exception - * level - typically on older ARM chips. For those cases we need to - * re-read the new el when recomputing the translation flags. - */ -#define ARM_CP_SPECIAL 0x0001 -#define ARM_CP_CONST 0x0002 -#define ARM_CP_64BIT 0x0004 -#define ARM_CP_SUPPRESS_TB_END 0x0008 -#define ARM_CP_OVERRIDE 0x0010 -#define ARM_CP_ALIAS 0x0020 -#define ARM_CP_IO 0x0040 -#define ARM_CP_NO_RAW 0x0080 -#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) -#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) -#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) -#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) -#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) -#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600) -#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700) -#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA -#define ARM_CP_FPU 0x1000 -#define ARM_CP_SVE 0x2000 -#define ARM_CP_NO_GDB 0x4000 -#define ARM_CP_RAISES_EXC 0x8000 -#define ARM_CP_NEWEL 0x10000 -/* Used only as a terminator for ARMCPRegInfo lists */ -#define ARM_CP_SENTINEL 0xfffff -/* Mask of only the flag bits in a type field */ -#define ARM_CP_FLAG_MASK 0x1f0ff - -/* Valid values for ARMCPRegInfo state field, indicating which of - * the AArch32 and AArch64 execution states this register is visible in. - * If the reginfo doesn't explicitly specify then it is AArch32 only. - * If the reginfo is declared to be visible in both states then a second - * reginfo is synthesised for the AArch32 view of the AArch64 register, - * such that the AArch32 view is the lower 32 bits of the AArch64 one. - * Note that we rely on the values of these enums as we iterate through - * the various states in some places. - */ -enum { - ARM_CP_STATE_AA32 = 0, - ARM_CP_STATE_AA64 = 1, - ARM_CP_STATE_BOTH = 2, -}; - -/* ARM CP register secure state flags. These flags identify security state - * attributes for a given CP register entry. - * The existence of both or neither secure and non-secure flags indicates that - * the register has both a secure and non-secure hash entry. A single one of - * these flags causes the register to only be hashed for the specified - * security state. - * Although definitions may have any combination of the S/NS bits, each - * registered entry will only have one to identify whether the entry is secure - * or non-secure. - */ -enum { - ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ - ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ -}; - -/* Return true if cptype is a valid type field. This is used to try to - * catch errors where the sentinel has been accidentally left off the end - * of a list of registers. - */ -static inline bool cptype_valid(int cptype) -{ - return ((cptype & ~ARM_CP_FLAG_MASK) == 0) - || ((cptype & ARM_CP_SPECIAL) && - ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); -} - -/* Access rights: - * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM - * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and - * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 - * (ie any of the privileged modes in Secure state, or Monitor mode). - * If a register is accessible in one privilege level it's always accessible - * in higher privilege levels too. Since "Secure PL1" also follows this rule - * (ie anything visible in PL2 is visible in S-PL1, some things are only - * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the - * terminology a little and call this PL3. - * In AArch64 things are somewhat simpler as the PLx bits line up exactly - * with the ELx exception levels. - * - * If access permissions for a register are more complex than can be - * described with these bits, then use a laxer set of restrictions, and - * do the more restrictive/complex check inside a helper function. - */ -#define PL3_R 0x80 -#define PL3_W 0x40 -#define PL2_R (0x20 | PL3_R) -#define PL2_W (0x10 | PL3_W) -#define PL1_R (0x08 | PL2_R) -#define PL1_W (0x04 | PL2_W) -#define PL0_R (0x02 | PL1_R) -#define PL0_W (0x01 | PL1_W) - -/* - * For user-mode some registers are accessible to EL0 via a kernel - * trap-and-emulate ABI. In this case we define the read permissions - * as actually being PL0_R. However some bits of any given register - * may still be masked. - */ -#ifdef CONFIG_USER_ONLY -#define PL0U_R PL0_R -#else -#define PL0U_R PL1_R -#endif - -#define PL3_RW (PL3_R | PL3_W) -#define PL2_RW (PL2_R | PL2_W) -#define PL1_RW (PL1_R | PL1_W) -#define PL0_RW (PL0_R | PL0_W) - /* Return the highest implemented Exception Level */ static inline int arm_highest_el(CPUARMState *env) { @@ -2706,257 +2477,6 @@ static inline int arm_current_el(CPUARMState *env) typedef struct ARMCPRegInfo ARMCPRegInfo; -typedef enum CPAccessResult { - /* Access is permitted */ - CP_ACCESS_OK = 0, - /* - * Access fails due to a configurable trap or enable which would - * result in a categorized exception syndrome giving information about - * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, - * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or - * PL1 if in EL0, otherwise to the current EL). - */ - CP_ACCESS_TRAP = 1, - /* - * Access fails and results in an exception syndrome 0x0 ("uncategorized"). - * Note that this is not a catch-all case -- the set of cases which may - * result in this failure is specifically defined by the architecture. - */ - CP_ACCESS_TRAP_UNCATEGORIZED = 2, - /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ - CP_ACCESS_TRAP_EL2 = 3, - CP_ACCESS_TRAP_EL3 = 4, - /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ - CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, - CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, - /* - * Access fails and results in an exception syndrome for an FP access, - * trapped directly to EL2 or EL3 - */ - CP_ACCESS_TRAP_FP_EL2 = 7, - CP_ACCESS_TRAP_FP_EL3 = 8, -} CPAccessResult; - -/* - * Access functions for coprocessor registers. These cannot fail and - * may not raise exceptions. - */ -typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); -typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, - uint64_t value); -/* Access permission check functions for coprocessor registers. */ -typedef CPAccessResult CPAccessFn(CPUARMState *env, - const ARMCPRegInfo *opaque, - bool isread); -/* Hook function for register reset */ -typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); - -#define CP_ANY 0xff - -/* Definition of an ARM coprocessor register */ -struct ARMCPRegInfo { - /* Name of register (useful mainly for debugging, need not be unique) */ - const char *name; - /* - * Location of register: coprocessor number and (crn,crm,opc1,opc2) - * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a - * 'wildcard' field -- any value of that field in the MRC/MCR insn - * will be decoded to this register. The register read and write - * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 - * used by the program, so it is possible to register a wildcard and - * then behave differently on read/write if necessary. - * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 - * must both be zero. - * For AArch64-visible registers, opc0 is also used. - * Since there are no "coprocessors" in AArch64, cp is purely used as a - * way to distinguish (for KVM's benefit) guest-visible system registers - * from demuxed ones provided to preserve the "no side effects on - * KVM register read/write from QEMU" semantics. cp==0x13 is guest - * visible (to match KVM's encoding); cp==0 will be converted to - * cp==0x13 when the ARMCPRegInfo is registered, for convenience. - */ - uint8_t cp; - uint8_t crn; - uint8_t crm; - uint8_t opc0; - uint8_t opc1; - uint8_t opc2; - /* Execution state in which this register is visible: ARM_CP_STATE_* */ - int state; - /* Register type: ARM_CP_* bits/values */ - int type; - /* Access rights: PL*_[RW] */ - int access; - /* Security state: ARM_CP_SECSTATE_* bits/values */ - int secure; - /* - * The opaque pointer passed to define_arm_cp_regs_with_opaque() when - * this register was defined: can be used to hand data through to the - * register read/write functions, since they are passed the ARMCPRegInfo*. - */ - void *opaque; - /* - * Value of this register, if it is ARM_CP_CONST. Otherwise, if - * fieldoffset is non-zero, the reset value of the register. - */ - uint64_t resetvalue; - /* - * Offset of the field in CPUARMState for this register. - * - * This is not needed if either: - * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs - * 2. both readfn and writefn are specified - */ - ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ - - /* - * Offsets of the secure and non-secure fields in CPUARMState for the - * register if it is banked. These fields are only used during the static - * registration of a register. During hashing the bank associated - * with a given security state is copied to fieldoffset which is used from - * there on out. - * - * It is expected that register definitions use either fieldoffset or - * bank_fieldoffsets in the definition but not both. It is also expected - * that both bank offsets are set when defining a banked register. This - * use indicates that a register is banked. - */ - ptrdiff_t bank_fieldoffsets[2]; - - /* - * Function for making any access checks for this register in addition to - * those specified by the 'access' permissions bits. If NULL, no extra - * checks required. The access check is performed at runtime, not at - * translate time. - */ - CPAccessFn *accessfn; - /* - * Function for handling reads of this register. If NULL, then reads - * will be done by loading from the offset into CPUARMState specified - * by fieldoffset. - */ - CPReadFn *readfn; - /* - * Function for handling writes of this register. If NULL, then writes - * will be done by writing to the offset into CPUARMState specified - * by fieldoffset. - */ - CPWriteFn *writefn; - /* - * Function for doing a "raw" read; used when we need to copy - * coprocessor state to the kernel for KVM or out for - * migration. This only needs to be provided if there is also a - * readfn and it has side effects (for instance clear-on-read bits). - */ - CPReadFn *raw_readfn; - /* - * Function for doing a "raw" write; used when we need to copy KVM - * kernel coprocessor state into userspace, or for inbound - * migration. This only needs to be provided if there is also a - * writefn and it masks out "unwritable" bits or has write-one-to-clear - * or similar behaviour. - */ - CPWriteFn *raw_writefn; - /* - * Function for resetting the register. If NULL, then reset will be done - * by writing resetvalue to the field specified in fieldoffset. If - * fieldoffset is 0 then no reset will be done. - */ - CPResetFn *resetfn; - - /* - * "Original" writefn and readfn. - * For ARMv8.1-VHE register aliases, we overwrite the read/write - * accessor functions of various EL1/EL0 to perform the runtime - * check for which sysreg should actually be modified, and then - * forwards the operation. Before overwriting the accessors, - * the original function is copied here, so that accesses that - * really do go to the EL1/EL0 version proceed normally. - * (The corresponding EL2 register is linked via opaque.) - */ - CPReadFn *orig_readfn; - CPWriteFn *orig_writefn; -}; - -/* - * Macros which are lvalues for the field in CPUARMState for the - * ARMCPRegInfo *ri. - */ -#define CPREG_FIELD32(env, ri) \ - (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) -#define CPREG_FIELD64(env, ri) \ - (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) - -#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } - -void define_arm_cp_regs_with_opaque(ARMCPU *cpu, - const ARMCPRegInfo *regs, void *opaque); -void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, - const ARMCPRegInfo *regs, void *opaque); -static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) -{ - define_arm_cp_regs_with_opaque(cpu, regs, 0); -} -static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) -{ - define_one_arm_cp_reg_with_opaque(cpu, regs, 0); -} -const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); - -/* - * Definition of an ARM co-processor register as viewed from - * userspace. This is used for presenting sanitised versions of - * registers to userspace when emulating the Linux AArch64 CPU - * ID/feature ABI (advertised as HWCAP_CPUID). - */ -typedef struct ARMCPRegUserSpaceInfo { - /* Name of register */ - const char *name; - - /* Is the name actually a glob pattern */ - bool is_glob; - - /* Only some bits are exported to user space */ - uint64_t exported_bits; - - /* Fixed bits are applied after the mask */ - uint64_t fixed_bits; -} ARMCPRegUserSpaceInfo; - -#define REGUSERINFO_SENTINEL { .name = NULL } - -void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); - -/* CPWriteFn that can be used to implement writes-ignored behaviour */ -void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value); -/* CPReadFn that can be used for read-as-zero behaviour */ -uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); - -/* - * CPResetFn that does nothing, for use if no reset is required even - * if fieldoffset is non zero. - */ -void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); - -/* - * Return true if this reginfo struct's field in the cpu state struct - * is 64 bits wide. - */ -static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) -{ - return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); -} - -static inline bool cp_access_ok(int current_el, - const ARMCPRegInfo *ri, int isread) -{ - return (ri->access >> ((current_el * 2) + isread)) & 1; -} - -/* Raw read of a coprocessor register (as needed for migration, etc) */ -uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); - /** * write_list_to_cpustate * @cpu: ARMCPU diff --git a/hw/arm/pxa2xx.c b/hw/arm/pxa2xx.c index fdc4955e95..2f7a4e90ad 100644 --- a/hw/arm/pxa2xx.c +++ b/hw/arm/pxa2xx.c @@ -30,6 +30,7 @@ #include "qemu/cutils.h" #include "qemu/log.h" #include "qom/object.h" +#include "cpregs.h" static struct { hwaddr io_base; diff --git a/hw/arm/pxa2xx_pic.c b/hw/arm/pxa2xx_pic.c index ed032fed54..934ff6716a 100644 --- a/hw/arm/pxa2xx_pic.c +++ b/hw/arm/pxa2xx_pic.c @@ -17,6 +17,7 @@ #include "hw/sysbus.h" #include "migration/vmstate.h" #include "qom/object.h" +#include "cpregs.h" #define ICIP 0x00 /* Interrupt Controller IRQ Pending register */ #define ICMR 0x04 /* Interrupt Controller Mask register */ diff --git a/hw/intc/arm_gicv3_cpuif.c b/hw/intc/arm_gicv3_cpuif.c index 81f94c7f4a..fa374d5ecc 100644 --- a/hw/intc/arm_gicv3_cpuif.c +++ b/hw/intc/arm_gicv3_cpuif.c @@ -19,6 +19,7 @@ #include "gicv3_internal.h" #include "hw/irq.h" #include "cpu.h" +#include "cpregs.h" void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) { diff --git a/hw/intc/arm_gicv3_kvm.c b/hw/intc/arm_gicv3_kvm.c index 5c09f00dec..96c7e8b80c 100644 --- a/hw/intc/arm_gicv3_kvm.c +++ b/hw/intc/arm_gicv3_kvm.c @@ -31,6 +31,7 @@ #include "vgic_common.h" #include "migration/blocker.h" #include "qom/object.h" +#include "cpregs.h" #ifdef DEBUG_GICV3_KVM #define DPRINTF(fmt, ...) \ diff --git a/target/arm/cpregs.c b/target/arm/cpregs.c new file mode 100644 index 0000000000..3fbfbfb35a --- /dev/null +++ b/target/arm/cpregs.c @@ -0,0 +1,380 @@ +/* + * ARM CP registers - common functionality + * + * This code is licensed under the GNU GPL v2 or later. + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "cpregs.h" + +static bool raw_accessors_invalid(const ARMCPRegInfo *ri) +{ + /* + * Return true if the regdef would cause an assertion if you called + * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a + * program bug for it not to have the NO_RAW flag). + * NB that returning false here doesn't necessarily mean that calling + * read/write_raw_cp_reg() is safe, because we can't distinguish "has + * read/write access functions which are safe for raw use" from "has + * read/write access functions which have side effects but has forgotten + * to provide raw access functions". + * The tests here line up with the conditions in read/write_raw_cp_reg() + * and assertions in raw_read()/raw_write(). + */ + if ((ri->type & ARM_CP_CONST) || + ri->fieldoffset || + ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { + return false; + } + return true; +} + +static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, + void *opaque, int state, int secstate, + int crm, int opc1, int opc2, + const char *name) +{ + /* + * Private utility function for define_one_arm_cp_reg_with_opaque(): + * add a single reginfo struct to the hash table. + */ + uint32_t *key = g_new(uint32_t, 1); + ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); + int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; + int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; + + r2->name = g_strdup(name); + /* + * Reset the secure state to the specific incoming state. This is + * necessary as the register may have been defined with both states. + */ + r2->secure = secstate; + + if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { + /* + * Register is banked (using both entries in array). + * Overwriting fieldoffset as the array is only used to define + * banked registers but later only fieldoffset is used. + */ + r2->fieldoffset = r->bank_fieldoffsets[ns]; + } + + if (state == ARM_CP_STATE_AA32) { + if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { + /* + * If the register is banked then we don't need to migrate or + * reset the 32-bit instance in certain cases: + * + * 1) If the register has both 32-bit and 64-bit instances then we + * can count on the 64-bit instance taking care of the + * non-secure bank. + * 2) If ARMv8 is enabled then we can count on a 64-bit version + * taking care of the secure bank. This requires that separate + * 32 and 64-bit definitions are provided. + */ + if ((r->state == ARM_CP_STATE_BOTH && ns) || + (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { + r2->type |= ARM_CP_ALIAS; + } + } else if ((secstate != r->secure) && !ns) { + /* + * The register is not banked so we only want to allow migration of + * the non-secure instance. + */ + r2->type |= ARM_CP_ALIAS; + } + + if (r->state == ARM_CP_STATE_BOTH) { + /* We assume it is a cp15 register if the .cp field is left unset */ + if (r2->cp == 0) { + r2->cp = 15; + } + +#ifdef HOST_WORDS_BIGENDIAN + if (r2->fieldoffset) { + r2->fieldoffset += sizeof(uint32_t); + } +#endif + } + } + if (state == ARM_CP_STATE_AA64) { + /* + * To allow abbreviation of ARMCPRegInfo + * definitions, we treat cp == 0 as equivalent to + * the value for "standard guest-visible sysreg". + * STATE_BOTH definitions are also always "standard + * sysreg" in their AArch64 view (the .cp value may + * be non-zero for the benefit of the AArch32 view). + */ + if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { + r2->cp = CP_REG_ARM64_SYSREG_CP; + } + *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, + r2->opc0, opc1, opc2); + } else { + *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); + } + if (opaque) { + r2->opaque = opaque; + } + /* + * reginfo passed to helpers is correct for the actual access, + * and is never ARM_CP_STATE_BOTH: + */ + r2->state = state; + /* + * Make sure reginfo passed to helpers for wildcarded regs + * has the correct crm/opc1/opc2 for this reg, not CP_ANY: + */ + r2->crm = crm; + r2->opc1 = opc1; + r2->opc2 = opc2; + /* + * By convention, for wildcarded registers only the first + * entry is used for migration; the others are marked as + * ALIAS so we don't try to transfer the register + * multiple times. Special registers (ie NOP/WFI) are + * never migratable and not even raw-accessible. + */ + if ((r->type & ARM_CP_SPECIAL)) { + r2->type |= ARM_CP_NO_RAW; + } + if (((r->crm == CP_ANY) && crm != 0) || + ((r->opc1 == CP_ANY) && opc1 != 0) || + ((r->opc2 == CP_ANY) && opc2 != 0)) { + r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; + } + + /* + * Check that raw accesses are either forbidden or handled. Note that + * we can't assert this earlier because the setup of fieldoffset for + * banked registers has to be done first. + */ + if (!(r2->type & ARM_CP_NO_RAW)) { + assert(!raw_accessors_invalid(r2)); + } + + /* Overriding of an existing definition must be explicitly requested. */ + if (!(r->type & ARM_CP_OVERRIDE)) { + ARMCPRegInfo *oldreg; + oldreg = g_hash_table_lookup(cpu->cp_regs, key); + if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { + fprintf(stderr, "Register redefined: cp=%d %d bit " + "crn=%d crm=%d opc1=%d opc2=%d, " + "was %s, now %s\n", r2->cp, 32 + 32 * is64, + r2->crn, r2->crm, r2->opc1, r2->opc2, + oldreg->name, r2->name); + g_assert_not_reached(); + } + } + g_hash_table_insert(cpu->cp_regs, key, r2); +} + +void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, + const ARMCPRegInfo *r, void *opaque) +{ + /* + * Define implementations of coprocessor registers. + * We store these in a hashtable because typically + * there are less than 150 registers in a space which + * is 16*16*16*8*8 = 262144 in size. + * Wildcarding is supported for the crm, opc1 and opc2 fields. + * If a register is defined twice then the second definition is + * used, so this can be used to define some generic registers and + * then override them with implementation specific variations. + * At least one of the original and the second definition should + * include ARM_CP_OVERRIDE in its type bits -- this is just a guard + * against accidental use. + * + * The state field defines whether the register is to be + * visible in the AArch32 or AArch64 execution state. If the + * state is set to ARM_CP_STATE_BOTH then we synthesise a + * reginfo structure for the AArch32 view, which sees the lower + * 32 bits of the 64 bit register. + * + * Only registers visible in AArch64 may set r->opc0; opc0 cannot + * be wildcarded. AArch64 registers are always considered to be 64 + * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of + * the register, if any. + */ + int crm, opc1, opc2, state; + int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; + int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; + int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; + int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; + int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; + int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; + /* 64 bit registers have only CRm and Opc1 fields */ + assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); + /* op0 only exists in the AArch64 encodings */ + assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); + /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ + assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); + /* + * This API is only for Arm's system coprocessors (14 and 15) or + * (M-profile or v7A-and-earlier only) for implementation defined + * coprocessors in the range 0..7. Our decode assumes this, since + * 8..13 can be used for other insns including VFP and Neon. See + * valid_cp() in translate.c. Assert here that we haven't tried + * to use an invalid coprocessor number. + */ + switch (r->state) { + case ARM_CP_STATE_BOTH: + /* 0 has a special meaning, but otherwise the same rules as AA32. */ + if (r->cp == 0) { + break; + } + /* fall through */ + case ARM_CP_STATE_AA32: + if (arm_feature(&cpu->env, ARM_FEATURE_V8) && + !arm_feature(&cpu->env, ARM_FEATURE_M)) { + assert(r->cp >= 14 && r->cp <= 15); + } else { + assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); + } + break; + case ARM_CP_STATE_AA64: + assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); + break; + default: + g_assert_not_reached(); + } + /* + * The AArch64 pseudocode CheckSystemAccess() specifies that op1 + * encodes a minimum access level for the register. We roll this + * runtime check into our general permission check code, so check + * here that the reginfo's specified permissions are strict enough + * to encompass the generic architectural permission check. + */ + if (r->state != ARM_CP_STATE_AA32) { + int mask = 0; + switch (r->opc1) { + case 0: + /* min_EL EL1, but some accessible to EL0 via kernel ABI */ + mask = PL0U_R | PL1_RW; + break; + case 1: case 2: + /* min_EL EL1 */ + mask = PL1_RW; + break; + case 3: + /* min_EL EL0 */ + mask = PL0_RW; + break; + case 4: + case 5: + /* min_EL EL2 */ + mask = PL2_RW; + break; + case 6: + /* min_EL EL3 */ + mask = PL3_RW; + break; + case 7: + /* min_EL EL1, secure mode only (we don't check the latter) */ + mask = PL1_RW; + break; + default: + /* broken reginfo with out-of-range opc1 */ + assert(false); + break; + } + /* assert our permissions are not too lax (stricter is fine) */ + assert((r->access & ~mask) == 0); + } + + /* + * Check that the register definition has enough info to handle + * reads and writes if they are permitted. + */ + if (!(r->type & (ARM_CP_SPECIAL | ARM_CP_CONST))) { + if (r->access & PL3_R) { + assert((r->fieldoffset || + (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || + r->readfn); + } + if (r->access & PL3_W) { + assert((r->fieldoffset || + (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || + r->writefn); + } + } + /* Bad type field probably means missing sentinel at end of reg list */ + assert(cptype_valid(r->type)); + for (crm = crmmin; crm <= crmmax; crm++) { + for (opc1 = opc1min; opc1 <= opc1max; opc1++) { + for (opc2 = opc2min; opc2 <= opc2max; opc2++) { + for (state = ARM_CP_STATE_AA32; + state <= ARM_CP_STATE_AA64; state++) { + if (r->state != state && r->state != ARM_CP_STATE_BOTH) { + continue; + } + if (state == ARM_CP_STATE_AA32) { + /* + * Under AArch32 CP registers can be common + * (same for secure and non-secure world) or banked. + */ + char *name; + + switch (r->secure) { + case ARM_CP_SECSTATE_S: + case ARM_CP_SECSTATE_NS: + add_cpreg_to_hashtable(cpu, r, opaque, state, + r->secure, crm, opc1, opc2, + r->name); + break; + default: + name = g_strdup_printf("%s_S", r->name); + add_cpreg_to_hashtable(cpu, r, opaque, state, + ARM_CP_SECSTATE_S, + crm, opc1, opc2, name); + g_free(name); + add_cpreg_to_hashtable(cpu, r, opaque, state, + ARM_CP_SECSTATE_NS, + crm, opc1, opc2, r->name); + break; + } + } else { + /* + * AArch64 registers get mapped to non-secure + * instance of AArch32 + */ + add_cpreg_to_hashtable(cpu, r, opaque, state, + ARM_CP_SECSTATE_NS, + crm, opc1, opc2, r->name); + } + } + } + } + } +} + +void define_arm_cp_regs_with_opaque(ARMCPU *cpu, + const ARMCPRegInfo *regs, void *opaque) +{ + /* Define a whole list of registers */ + const ARMCPRegInfo *r; + for (r = regs; r->type != ARM_CP_SENTINEL; r++) { + define_one_arm_cp_reg_with_opaque(cpu, r, opaque); + } +} + +void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Helper coprocessor write function for write-ignore registers */ +} + +uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* Helper coprocessor write function for read-as-zero registers */ + return 0; +} + +void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) +{ + /* Helper coprocessor reset function for do-nothing-on-reset registers */ +} diff --git a/target/arm/cpu.c b/target/arm/cpu.c index 17dc0d4255..9e616a15e1 100644 --- a/target/arm/cpu.c +++ b/target/arm/cpu.c @@ -26,6 +26,7 @@ #include "qapi/error.h" #include "qapi/visitor.h" #include "cpu.h" +#include "cpregs.h" #ifdef CONFIG_TCG #include "hw/core/tcg-cpu-ops.h" #endif /* CONFIG_TCG */ diff --git a/target/arm/cpu64.c b/target/arm/cpu64.c index d561dc7acc..5354069c63 100644 --- a/target/arm/cpu64.c +++ b/target/arm/cpu64.c @@ -32,7 +32,7 @@ #include "kvm_arm.h" #include "qapi/visitor.h" #include "hw/qdev-properties.h" - +#include "cpregs.h" #ifndef CONFIG_USER_ONLY static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) diff --git a/target/arm/cpu_tcg.c b/target/arm/cpu_tcg.c index 2e0e508f0e..d973239d78 100644 --- a/target/arm/cpu_tcg.c +++ b/target/arm/cpu_tcg.c @@ -18,6 +18,7 @@ #if !defined(CONFIG_USER_ONLY) #include "hw/boards.h" #endif +#include "cpregs.h" /* CPU models. These are not needed for the AArch64 linux-user build. */ #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) diff --git a/target/arm/cpustate-list.c b/target/arm/cpustate-list.c new file mode 100644 index 0000000000..7885806f78 --- /dev/null +++ b/target/arm/cpustate-list.c @@ -0,0 +1,146 @@ +/* + * ARM CPUState list read/write + * + * This code is licensed under the GNU GPL v2 or later. + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "cpregs.h" + +uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + assert(ri->fieldoffset); + if (cpreg_field_is_64bit(ri)) { + return CPREG_FIELD64(env, ri); + } else { + return CPREG_FIELD32(env, ri); + } +} + +void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + assert(ri->fieldoffset); + if (cpreg_field_is_64bit(ri)) { + CPREG_FIELD64(env, ri) = value; + } else { + CPREG_FIELD32(env, ri) = value; + } +} + +const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) +{ + return g_hash_table_lookup(cpregs, &encoded_cp); +} + +uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* Raw read of a coprocessor register (as needed for migration, etc). */ + if (ri->type & ARM_CP_CONST) { + return ri->resetvalue; + } else if (ri->raw_readfn) { + return ri->raw_readfn(env, ri); + } else if (ri->readfn) { + return ri->readfn(env, ri); + } else { + return raw_read(env, ri); + } +} + +static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t v) +{ + /* Raw write of a coprocessor register (as needed for migration, etc). + * Note that constant registers are treated as write-ignored; the + * caller should check for success by whether a readback gives the + * value written. + */ + if (ri->type & ARM_CP_CONST) { + return; + } else if (ri->raw_writefn) { + ri->raw_writefn(env, ri, v); + } else if (ri->writefn) { + ri->writefn(env, ri, v); + } else { + raw_write(env, ri, v); + } +} + +bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) +{ + /* Write the coprocessor state from cpu->env to the (index,value) list. */ + int i; + bool ok = true; + + for (i = 0; i < cpu->cpreg_array_len; i++) { + uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); + const ARMCPRegInfo *ri; + uint64_t newval; + + ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); + if (!ri) { + ok = false; + continue; + } + if (ri->type & ARM_CP_NO_RAW) { + continue; + } + + newval = read_raw_cp_reg(&cpu->env, ri); + if (kvm_sync) { + /* + * Only sync if the previous list->cpustate sync succeeded. + * Rather than tracking the success/failure state for every + * item in the list, we just recheck "does the raw write we must + * have made in write_list_to_cpustate() read back OK" here. + */ + uint64_t oldval = cpu->cpreg_values[i]; + + if (oldval == newval) { + continue; + } + + write_raw_cp_reg(&cpu->env, ri, oldval); + if (read_raw_cp_reg(&cpu->env, ri) != oldval) { + continue; + } + + write_raw_cp_reg(&cpu->env, ri, newval); + } + cpu->cpreg_values[i] = newval; + } + return ok; +} + +bool write_list_to_cpustate(ARMCPU *cpu) +{ + int i; + bool ok = true; + + for (i = 0; i < cpu->cpreg_array_len; i++) { + uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); + uint64_t v = cpu->cpreg_values[i]; + const ARMCPRegInfo *ri; + + ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); + if (!ri) { + ok = false; + continue; + } + if (ri->type & ARM_CP_NO_RAW) { + continue; + } + /* Write value and confirm it reads back as written + * (to catch read-only registers and partially read-only + * registers where the incoming migration value doesn't match) + */ + write_raw_cp_reg(&cpu->env, ri, v); + if (read_raw_cp_reg(&cpu->env, ri) != v) { + ok = false; + } + } + return ok; +} diff --git a/target/arm/gdbstub.c b/target/arm/gdbstub.c index a8fff2a3d0..0645415f44 100644 --- a/target/arm/gdbstub.c +++ b/target/arm/gdbstub.c @@ -20,6 +20,7 @@ #include "qemu/osdep.h" #include "cpu.h" #include "exec/gdbstub.h" +#include "cpregs.h" typedef struct RegisterSysregXmlParam { CPUState *cs; diff --git a/target/arm/machine.c b/target/arm/machine.c index 6ad1d306b1..e568662cca 100644 --- a/target/arm/machine.c +++ b/target/arm/machine.c @@ -5,6 +5,7 @@ #include "kvm_arm.h" #include "internals.h" #include "migration/cpu.h" +#include "cpregs.h" static bool vfp_needed(void *opaque) { diff --git a/target/arm/tcg/cpregs.c b/target/arm/tcg/cpregs.c new file mode 100644 index 0000000000..8422da4335 --- /dev/null +++ b/target/arm/tcg/cpregs.c @@ -0,0 +1,7674 @@ +/* + * ARM CP registers + * + * This code is licensed under the GNU GPL v2 or later. + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#include "qemu/osdep.h" +#include "trace.h" +#include "qemu/main-loop.h" +#include "exec/exec-all.h" +#include "hw/irq.h" +#include "qapi/error.h" +#include "qemu/guest-random.h" +#include "cpu-mmu.h" +#include "cpregs.h" + +#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ +#define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ + +static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return (char *)env + ri->fieldoffset; +} + +static void add_cpreg_to_list(gpointer key, gpointer opaque) +{ + ARMCPU *cpu = opaque; + uint64_t regidx; + const ARMCPRegInfo *ri; + + regidx = *(uint32_t *)key; + ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); + + if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { + cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); + /* The value array need not be initialized at this point */ + cpu->cpreg_array_len++; + } +} + +static void count_cpreg(gpointer key, gpointer opaque) +{ + ARMCPU *cpu = opaque; + uint64_t regidx; + const ARMCPRegInfo *ri; + + regidx = *(uint32_t *)key; + ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); + + if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { + cpu->cpreg_array_len++; + } +} + +static gint cpreg_key_compare(gconstpointer a, gconstpointer b) +{ + uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); + uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); + + if (aidx > bidx) { + return 1; + } + if (aidx < bidx) { + return -1; + } + return 0; +} + +void init_cpreg_list(ARMCPU *cpu) +{ + /* + * Initialise the cpreg_tuples[] array based on the cp_regs hash. + * Note that we require cpreg_tuples[] to be sorted by key ID. + */ + GList *keys; + int arraylen; + + keys = g_hash_table_get_keys(cpu->cp_regs); + keys = g_list_sort(keys, cpreg_key_compare); + + cpu->cpreg_array_len = 0; + + g_list_foreach(keys, count_cpreg, cpu); + + arraylen = cpu->cpreg_array_len; + cpu->cpreg_indexes = g_new(uint64_t, arraylen); + cpu->cpreg_values = g_new(uint64_t, arraylen); + cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); + cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); + cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; + cpu->cpreg_array_len = 0; + + g_list_foreach(keys, add_cpreg_to_list, cpu); + + assert(cpu->cpreg_array_len == arraylen); + + g_list_free(keys); +} + +/* + * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. + */ +static CPAccessResult access_el3_aa32ns(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + if (!is_a64(env) && arm_current_el(env) == 3 && + arm_is_secure_below_el3(env)) { + return CP_ACCESS_TRAP_UNCATEGORIZED; + } + return CP_ACCESS_OK; +} + +/* + * Some secure-only AArch32 registers trap to EL3 if used from + * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). + * Note that an access from Secure EL1 can only happen if EL3 is AArch64. + * We assume that the .access field is set to PL1_RW. + */ +static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 3) { + return CP_ACCESS_OK; + } + if (arm_is_secure_below_el3(env)) { + if (env->cp15.scr_el3 & SCR_EEL2) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_TRAP_EL3; + } + /* This will be EL1 NS and EL2 NS, which just UNDEF */ + return CP_ACCESS_TRAP_UNCATEGORIZED; +} + +static uint64_t arm_mdcr_el2_eff(CPUARMState *env) +{ + return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; +} + +/* + * Check for traps to "powerdown debug" registers, which are controlled + * by MDCR.TDOSA + */ +static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); + bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || + (arm_hcr_el2_eff(env) & HCR_TGE); + + if (el < 2 && mdcr_el2_tdosa) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +/* + * Check for traps to "debug ROM" registers, which are controlled + * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. + */ +static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); + bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || + (arm_hcr_el2_eff(env) & HCR_TGE); + + if (el < 2 && mdcr_el2_tdra) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +/* + * Check for traps to general debug registers, which are controlled + * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. + */ +static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); + bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || + (arm_hcr_el2_eff(env) & HCR_TGE); + + if (el < 2 && mdcr_el2_tda) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +/* + * Check for traps to performance monitor registers, which are controlled + * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. + */ +static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); + + if (el < 2 && (mdcr_el2 & MDCR_TPM)) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ +static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1) { + uint64_t trap = isread ? HCR_TRVM : HCR_TVM; + if (arm_hcr_el2_eff(env) & trap) { + return CP_ACCESS_TRAP_EL2; + } + } + return CP_ACCESS_OK; +} + +/* Check for traps from EL1 due to HCR_EL2.TSW. */ +static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_OK; +} + +/* Check for traps from EL1 due to HCR_EL2.TACR. */ +static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_OK; +} + +/* Check for traps from EL1 due to HCR_EL2.TTLB. */ +static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_OK; +} + +static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + raw_write(env, ri, value); + tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ +} + +static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + if (raw_read(env, ri) != value) { + /* + * Unlike real hardware the qemu TLB uses virtual addresses, + * not modified virtual addresses, so this causes a TLB flush. + */ + tlb_flush(CPU(cpu)); + raw_write(env, ri, value); + } +} + +static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) + && !extended_addresses_enabled(env)) { + /* + * For VMSA (when not using the LPAE long descriptor page table + * format) this register includes the ASID, so do a TLB flush. + * For PMSA it is purely a process ID and no action is needed. + */ + tlb_flush(CPU(cpu)); + } + raw_write(env, ri, value); +} + +/* IS variants of TLB operations must affect all cores */ +static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_all_cpus_synced(cs); +} + +static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_all_cpus_synced(cs); +} + +static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); +} + +static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); +} + +/* + * Non-IS variants of TLB operations are upgraded to + * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to + * force broadcast of these operations. + */ +static bool tlb_force_broadcast(CPUARMState *env) +{ + return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); +} + +static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Invalidate all (TLBIALL) */ + CPUState *cs = env_cpu(env); + + if (tlb_force_broadcast(env)) { + tlb_flush_all_cpus_synced(cs); + } else { + tlb_flush(cs); + } +} + +static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ + CPUState *cs = env_cpu(env); + + value &= TARGET_PAGE_MASK; + if (tlb_force_broadcast(env)) { + tlb_flush_page_all_cpus_synced(cs, value); + } else { + tlb_flush_page(cs, value); + } +} + +static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Invalidate by ASID (TLBIASID) */ + CPUState *cs = env_cpu(env); + + if (tlb_force_broadcast(env)) { + tlb_flush_all_cpus_synced(cs); + } else { + tlb_flush(cs); + } +} + +static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ + CPUState *cs = env_cpu(env); + + value &= TARGET_PAGE_MASK; + if (tlb_force_broadcast(env)) { + tlb_flush_page_all_cpus_synced(cs, value); + } else { + tlb_flush_page(cs, value); + } +} + +static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_by_mmuidx(cs, + ARMMMUIdxBit_E10_1 | + ARMMMUIdxBit_E10_1_PAN | + ARMMMUIdxBit_E10_0); +} + +static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, + ARMMMUIdxBit_E10_1 | + ARMMMUIdxBit_E10_1_PAN | + ARMMMUIdxBit_E10_0); +} + + +static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); +} + +static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); +} + +static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); + + tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); +} + +static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); + + tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, + ARMMMUIdxBit_E2); +} + +static const ARMCPRegInfo cp_reginfo[] = { + /* + * Define the secure and non-secure FCSE identifier CP registers + * separately because there is no secure bank in V8 (no _EL3). This allows + * the secure register to be properly reset and migrated. There is also no + * v8 EL1 version of the register so the non-secure instance stands alone. + */ + { .name = "FCSEIDR", + .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, + .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, + .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), + .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, + { .name = "FCSEIDR_S", + .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, + .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, + .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), + .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, + /* + * Define the secure and non-secure context identifier CP registers + * separately because there is no secure bank in V8 (no _EL3). This allows + * the secure register to be properly reset and migrated. In the + * non-secure case, the 32-bit register will have reset and migration + * disabled during registration as it is handled by the 64-bit instance. + */ + { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .secure = ARM_CP_SECSTATE_NS, + .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), + .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, + { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .secure = ARM_CP_SECSTATE_S, + .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), + .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo not_v8_cp_reginfo[] = { + /* + * NB: Some of these registers exist in v8 but with more precise + * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). + */ + /* MMU Domain access control / MPU write buffer control */ + { .name = "DACR", + .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, + .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, + .writefn = dacr_write, .raw_writefn = raw_write, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), + offsetoflow32(CPUARMState, cp15.dacr_ns) } }, + /* + * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. + * For v6 and v5, these mappings are overly broad. + */ + { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, + /* Cache maintenance ops; some of this space may be overridden later. */ + { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, + .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, + .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo not_v6_cp_reginfo[] = { + /* + * Not all pre-v6 cores implemented this WFI, so this is slightly + * over-broad. + */ + { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, + .access = PL1_W, .type = ARM_CP_WFI }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo not_v7_cp_reginfo[] = { + /* + * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which + * is UNPREDICTABLE; we choose to NOP as most implementations do). + */ + { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, + .access = PL1_W, .type = ARM_CP_WFI }, + /* + * L1 cache lockdown. Not architectural in v6 and earlier but in practice + * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and + * OMAPCP will override this space. + */ + { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), + .resetvalue = 0 }, + { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), + .resetvalue = 0 }, + /* v6 doesn't have the cache ID registers but Linux reads them anyway */ + { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, + .resetvalue = 0 }, + /* + * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; + * implementing it as RAZ means the "debug architecture version" bits + * will read as a reserved value, which should cause Linux to not try + * to use the debug hardware. + */ + { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + /* + * MMU TLB control. Note that the wildcarding means we cover not just + * the unified TLB ops but also the dside/iside/inner-shareable variants. + */ + { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, + .type = ARM_CP_NO_RAW }, + { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, + .type = ARM_CP_NO_RAW }, + { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, + .type = ARM_CP_NO_RAW }, + { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, + .type = ARM_CP_NO_RAW }, + { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, + .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, + .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, + REGINFO_SENTINEL +}; + +static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint32_t mask = 0; + + /* In ARMv8 most bits of CPACR_EL1 are RES0. */ + if (!arm_feature(env, ARM_FEATURE_V8)) { + /* + * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. + * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. + * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. + */ + if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { + /* VFP coprocessor: cp10 & cp11 [23:20] */ + mask |= (1 << 31) | (1 << 30) | (0xf << 20); + + if (!arm_feature(env, ARM_FEATURE_NEON)) { + /* ASEDIS [31] bit is RAO/WI */ + value |= (1 << 31); + } + + /* + * VFPv3 and upwards with NEON implement 32 double precision + * registers (D0-D31). + */ + if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { + /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ + value |= (1 << 30); + } + } + value &= mask; + } + + /* + * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 + * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. + */ + if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && + !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { + value &= ~(0xf << 20); + value |= env->cp15.cpacr_el1 & (0xf << 20); + } + + env->cp15.cpacr_el1 = value; +} + +static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* + * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 + * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. + */ + uint64_t value = env->cp15.cpacr_el1; + + if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && + !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { + value &= ~(0xf << 20); + } + return value; +} + + +static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* + * Call cpacr_write() so that we reset with the correct RAO bits set + * for our CPU features. + */ + cpacr_write(env, ri, 0); +} + +static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_feature(env, ARM_FEATURE_V8)) { + /* Check if CPACR accesses are to be trapped to EL2 */ + if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && + (env->cp15.cptr_el[2] & CPTR_TCPAC)) { + return CP_ACCESS_TRAP_EL2; + /* Check if CPACR accesses are to be trapped to EL3 */ + } else if (arm_current_el(env) < 3 && + (env->cp15.cptr_el[3] & CPTR_TCPAC)) { + return CP_ACCESS_TRAP_EL3; + } + } + + return CP_ACCESS_OK; +} + +static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + /* Check if CPTR accesses are set to trap to EL3 */ + if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { + return CP_ACCESS_TRAP_EL3; + } + + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo v6_cp_reginfo[] = { + /* prefetch by MVA in v6, NOP in v7 */ + { .name = "MVA_prefetch", + .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NOP }, + /* + * We need to break the TB after ISB to execute self-modifying code + * correctly and also to take any pending interrupts immediately. + * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. + */ + { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, + .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, + { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, + .access = PL0_W, .type = ARM_CP_NOP }, + { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, + .access = PL0_W, .type = ARM_CP_NOP }, + { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), + offsetof(CPUARMState, cp15.ifar_ns) }, + .resetvalue = 0, }, + /* + * Watchpoint Fault Address Register : should actually only be present + * for 1136, 1176, 11MPCore. + */ + { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, + { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, + .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, + .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), + .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, + REGINFO_SENTINEL +}; + +/* Definitions for the PMU registers */ +#define PMCRN_MASK 0xf800 +#define PMCRN_SHIFT 11 +#define PMCRLC 0x40 +#define PMCRDP 0x20 +#define PMCRX 0x10 +#define PMCRD 0x8 +#define PMCRC 0x4 +#define PMCRP 0x2 +#define PMCRE 0x1 +/* + * Mask of PMCR bits writeable by guest (not including WO bits like C, P, + * which can be written as 1 to trigger behaviour but which stay RAZ). + */ +#define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) + +#define PMXEVTYPER_P 0x80000000 +#define PMXEVTYPER_U 0x40000000 +#define PMXEVTYPER_NSK 0x20000000 +#define PMXEVTYPER_NSU 0x10000000 +#define PMXEVTYPER_NSH 0x08000000 +#define PMXEVTYPER_M 0x04000000 +#define PMXEVTYPER_MT 0x02000000 +#define PMXEVTYPER_EVTCOUNT 0x0000ffff +#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ + PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ + PMXEVTYPER_M | PMXEVTYPER_MT | \ + PMXEVTYPER_EVTCOUNT) + +#define PMCCFILTR 0xf8000000 +#define PMCCFILTR_M PMXEVTYPER_M +#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) + +static inline uint32_t pmu_num_counters(CPUARMState *env) +{ + return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; +} + +/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ +static inline uint64_t pmu_counter_mask(CPUARMState *env) +{ + return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); +} + +typedef struct pm_event { + uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ + /* If the event is supported on this CPU (used to generate PMCEID[01]) */ + bool (*supported)(CPUARMState *); + /* + * Retrieve the current count of the underlying event. The programmed + * counters hold a difference from the return value from this function + */ + uint64_t (*get_count)(CPUARMState *); + /* + * Return how many nanoseconds it will take (at a minimum) for count events + * to occur. A negative value indicates the counter will never overflow, or + * that the counter has otherwise arranged for the overflow bit to be set + * and the PMU interrupt to be raised on overflow. + */ + int64_t (*ns_per_count)(uint64_t); +} pm_event; + +static bool event_always_supported(CPUARMState *env) +{ + return true; +} + +static uint64_t swinc_get_count(CPUARMState *env) +{ + /* + * SW_INCR events are written directly to the pmevcntr's by writes to + * PMSWINC, so there is no underlying count maintained by the PMU itself + */ + return 0; +} + +static int64_t swinc_ns_per(uint64_t ignored) +{ + return -1; +} + +/* + * Return the underlying cycle count for the PMU cycle counters. If we're in + * usermode, simply return 0. + */ +static uint64_t cycles_get_count(CPUARMState *env) +{ +#ifndef CONFIG_USER_ONLY + return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), + ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); +#else + return cpu_get_host_ticks(); +#endif +} + +#ifndef CONFIG_USER_ONLY +static int64_t cycles_ns_per(uint64_t cycles) +{ + return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; +} + +static bool instructions_supported(CPUARMState *env) +{ + return icount_enabled() == 1; /* Precise instruction counting */ +} + +static uint64_t instructions_get_count(CPUARMState *env) +{ + return (uint64_t)icount_get_raw(); +} + +static int64_t instructions_ns_per(uint64_t icount) +{ + return icount_to_ns((int64_t)icount); +} +#endif + +static bool pmu_8_1_events_supported(CPUARMState *env) +{ + /* For events which are supported in any v8.1 PMU */ + return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); +} + +static bool pmu_8_4_events_supported(CPUARMState *env) +{ + /* For events which are supported in any v8.1 PMU */ + return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); +} + +static uint64_t zero_event_get_count(CPUARMState *env) +{ + /* For events which on QEMU never fire, so their count is always zero */ + return 0; +} + +static int64_t zero_event_ns_per(uint64_t cycles) +{ + /* An event which never fires can never overflow */ + return -1; +} + +static const pm_event pm_events[] = { + { .number = 0x000, /* SW_INCR */ + .supported = event_always_supported, + .get_count = swinc_get_count, + .ns_per_count = swinc_ns_per, + }, +#ifndef CONFIG_USER_ONLY + { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ + .supported = instructions_supported, + .get_count = instructions_get_count, + .ns_per_count = instructions_ns_per, + }, + { .number = 0x011, /* CPU_CYCLES, Cycle */ + .supported = event_always_supported, + .get_count = cycles_get_count, + .ns_per_count = cycles_ns_per, + }, +#endif + { .number = 0x023, /* STALL_FRONTEND */ + .supported = pmu_8_1_events_supported, + .get_count = zero_event_get_count, + .ns_per_count = zero_event_ns_per, + }, + { .number = 0x024, /* STALL_BACKEND */ + .supported = pmu_8_1_events_supported, + .get_count = zero_event_get_count, + .ns_per_count = zero_event_ns_per, + }, + { .number = 0x03c, /* STALL */ + .supported = pmu_8_4_events_supported, + .get_count = zero_event_get_count, + .ns_per_count = zero_event_ns_per, + }, +}; + +/* + * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of + * events (i.e. the statistical profiling extension), this implementation + * should first be updated to something sparse instead of the current + * supported_event_map[] array. + */ +#define MAX_EVENT_ID 0x3c +#define UNSUPPORTED_EVENT UINT16_MAX +static uint16_t supported_event_map[MAX_EVENT_ID + 1]; + +/* + * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map + * of ARM event numbers to indices in our pm_events array. + * + * Note: Events in the 0x40XX range are not currently supported. + */ +void pmu_init(ARMCPU *cpu) +{ + unsigned int i; + + /* + * Empty supported_event_map and cpu->pmceid[01] before adding supported + * events to them + */ + for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { + supported_event_map[i] = UNSUPPORTED_EVENT; + } + cpu->pmceid0 = 0; + cpu->pmceid1 = 0; + + for (i = 0; i < ARRAY_SIZE(pm_events); i++) { + const pm_event *cnt = &pm_events[i]; + assert(cnt->number <= MAX_EVENT_ID); + /* We do not currently support events in the 0x40xx range */ + assert(cnt->number <= 0x3f); + + if (cnt->supported(&cpu->env)) { + supported_event_map[cnt->number] = i; + uint64_t event_mask = 1ULL << (cnt->number & 0x1f); + if (cnt->number & 0x20) { + cpu->pmceid1 |= event_mask; + } else { + cpu->pmceid0 |= event_mask; + } + } + } +} + +/* + * Check at runtime whether a PMU event is supported for the current machine + */ +static bool event_supported(uint16_t number) +{ + if (number > MAX_EVENT_ID) { + return false; + } + return supported_event_map[number] != UNSUPPORTED_EVENT; +} + +static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + /* Performance monitor registers user accessibility is controlled + * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable + * trapping to EL2 or EL3 for other accesses. + */ + int el = arm_current_el(env); + uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); + + if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { + return CP_ACCESS_TRAP; + } + if (el < 2 && (mdcr_el2 & MDCR_TPM)) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { + return CP_ACCESS_TRAP_EL3; + } + + return CP_ACCESS_OK; +} + +static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* ER: event counter read trap control */ + if (arm_feature(env, ARM_FEATURE_V8) + && arm_current_el(env) == 0 + && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 + && isread) { + return CP_ACCESS_OK; + } + + return pmreg_access(env, ri, isread); +} + +static CPAccessResult pmreg_access_swinc(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* SW: software increment write trap control */ + if (arm_feature(env, ARM_FEATURE_V8) + && arm_current_el(env) == 0 + && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 + && !isread) { + return CP_ACCESS_OK; + } + + return pmreg_access(env, ri, isread); +} + +static CPAccessResult pmreg_access_selr(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* ER: event counter read trap control */ + if (arm_feature(env, ARM_FEATURE_V8) + && arm_current_el(env) == 0 + && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { + return CP_ACCESS_OK; + } + + return pmreg_access(env, ri, isread); +} + +static CPAccessResult pmreg_access_ccntr(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* CR: cycle counter read trap control */ + if (arm_feature(env, ARM_FEATURE_V8) + && arm_current_el(env) == 0 + && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 + && isread) { + return CP_ACCESS_OK; + } + + return pmreg_access(env, ri, isread); +} + +/* Returns true if the counter (pass 31 for PMCCNTR) should count events using + * the current EL, security state, and register configuration. + */ +static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) +{ + uint64_t filter; + bool e, p, u, nsk, nsu, nsh, m; + bool enabled, prohibited, filtered; + bool secure = arm_is_secure(env); + int el = arm_current_el(env); + uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); + uint8_t hpmn = mdcr_el2 & MDCR_HPMN; + + if (!arm_feature(env, ARM_FEATURE_PMU)) { + return false; + } + + if (!arm_feature(env, ARM_FEATURE_EL2) || + (counter < hpmn || counter == 31)) { + e = env->cp15.c9_pmcr & PMCRE; + } else { + e = mdcr_el2 & MDCR_HPME; + } + enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); + + if (!secure) { + if (el == 2 && (counter < hpmn || counter == 31)) { + prohibited = mdcr_el2 & MDCR_HPMD; + } else { + prohibited = false; + } + } else { + prohibited = arm_feature(env, ARM_FEATURE_EL3) && + !(env->cp15.mdcr_el3 & MDCR_SPME); + } + + if (prohibited && counter == 31) { + prohibited = env->cp15.c9_pmcr & PMCRDP; + } + + if (counter == 31) { + filter = env->cp15.pmccfiltr_el0; + } else { + filter = env->cp15.c14_pmevtyper[counter]; + } + + p = filter & PMXEVTYPER_P; + u = filter & PMXEVTYPER_U; + nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); + nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); + nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); + m = arm_el_is_aa64(env, 1) && + arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); + + if (el == 0) { + filtered = secure ? u : u != nsu; + } else if (el == 1) { + filtered = secure ? p : p != nsk; + } else if (el == 2) { + filtered = !nsh; + } else { /* EL3 */ + filtered = m != p; + } + + if (counter != 31) { + /* + * If not checking PMCCNTR, ensure the counter is setup to an event we + * support + */ + uint16_t event = filter & PMXEVTYPER_EVTCOUNT; + if (!event_supported(event)) { + return false; + } + } + + return enabled && !prohibited && !filtered; +} + +static void pmu_update_irq(CPUARMState *env) +{ + ARMCPU *cpu = env_archcpu(env); + qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && + (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); +} + +/* + * Ensure c15_ccnt is the guest-visible count so that operations such as + * enabling/disabling the counter or filtering, modifying the count itself, + * etc. can be done logically. This is essentially a no-op if the counter is + * not enabled at the time of the call. + */ +static void pmccntr_op_start(CPUARMState *env) +{ + uint64_t cycles = cycles_get_count(env); + + if (pmu_counter_enabled(env, 31)) { + uint64_t eff_cycles = cycles; + if (env->cp15.c9_pmcr & PMCRD) { + /* Increment once every 64 processor clock cycles */ + eff_cycles /= 64; + } + + uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; + + uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ + 1ull << 63 : 1ull << 31; + if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { + env->cp15.c9_pmovsr |= (1 << 31); + pmu_update_irq(env); + } + + env->cp15.c15_ccnt = new_pmccntr; + } + env->cp15.c15_ccnt_delta = cycles; +} + +/* + * If PMCCNTR is enabled, recalculate the delta between the clock and the + * guest-visible count. A call to pmccntr_op_finish should follow every call to + * pmccntr_op_start. + */ +static void pmccntr_op_finish(CPUARMState *env) +{ + if (pmu_counter_enabled(env, 31)) { +#ifndef CONFIG_USER_ONLY + /* Calculate when the counter will next overflow */ + uint64_t remaining_cycles = -env->cp15.c15_ccnt; + if (!(env->cp15.c9_pmcr & PMCRLC)) { + remaining_cycles = (uint32_t)remaining_cycles; + } + int64_t overflow_in = cycles_ns_per(remaining_cycles); + + if (overflow_in > 0) { + int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + + overflow_in; + ARMCPU *cpu = env_archcpu(env); + timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); + } +#endif + + uint64_t prev_cycles = env->cp15.c15_ccnt_delta; + if (env->cp15.c9_pmcr & PMCRD) { + /* Increment once every 64 processor clock cycles */ + prev_cycles /= 64; + } + env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; + } +} + +static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) +{ + + uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; + uint64_t count = 0; + if (event_supported(event)) { + uint16_t event_idx = supported_event_map[event]; + count = pm_events[event_idx].get_count(env); + } + + if (pmu_counter_enabled(env, counter)) { + uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; + + if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { + env->cp15.c9_pmovsr |= (1 << counter); + pmu_update_irq(env); + } + env->cp15.c14_pmevcntr[counter] = new_pmevcntr; + } + env->cp15.c14_pmevcntr_delta[counter] = count; +} + +static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) +{ + if (pmu_counter_enabled(env, counter)) { +#ifndef CONFIG_USER_ONLY + uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; + uint16_t event_idx = supported_event_map[event]; + uint64_t delta = UINT32_MAX - + (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; + int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); + + if (overflow_in > 0) { + int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + + overflow_in; + ARMCPU *cpu = env_archcpu(env); + timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); + } +#endif + + env->cp15.c14_pmevcntr_delta[counter] -= + env->cp15.c14_pmevcntr[counter]; + } +} + +void pmu_op_start(CPUARMState *env) +{ + unsigned int i; + pmccntr_op_start(env); + for (i = 0; i < pmu_num_counters(env); i++) { + pmevcntr_op_start(env, i); + } +} + +void pmu_op_finish(CPUARMState *env) +{ + unsigned int i; + pmccntr_op_finish(env); + for (i = 0; i < pmu_num_counters(env); i++) { + pmevcntr_op_finish(env, i); + } +} + +void pmu_pre_el_change(ARMCPU *cpu, void *ignored) +{ + pmu_op_start(&cpu->env); +} + +void pmu_post_el_change(ARMCPU *cpu, void *ignored) +{ + pmu_op_finish(&cpu->env); +} + +void arm_pmu_timer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + /* + * Update all the counter values based on the current underlying counts, + * triggering interrupts to be raised, if necessary. pmu_op_finish() also + * has the effect of setting the cpu->pmu_timer to the next earliest time a + * counter may expire. + */ + pmu_op_start(&cpu->env); + pmu_op_finish(&cpu->env); +} + +static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmu_op_start(env); + + if (value & PMCRC) { + /* The counter has been reset */ + env->cp15.c15_ccnt = 0; + } + + if (value & PMCRP) { + unsigned int i; + for (i = 0; i < pmu_num_counters(env); i++) { + env->cp15.c14_pmevcntr[i] = 0; + } + } + + env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; + env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); + + pmu_op_finish(env); +} + +static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + unsigned int i; + for (i = 0; i < pmu_num_counters(env); i++) { + /* Increment a counter's count iff: */ + if ((value & (1 << i)) && /* counter's bit is set */ + /* counter is enabled and not filtered */ + pmu_counter_enabled(env, i) && + /* counter is SW_INCR */ + (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { + pmevcntr_op_start(env, i); + + /* + * Detect if this write causes an overflow since we can't predict + * PMSWINC overflows like we can for other events + */ + uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; + + if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { + env->cp15.c9_pmovsr |= (1 << i); + pmu_update_irq(env); + } + + env->cp15.c14_pmevcntr[i] = new_pmswinc; + + pmevcntr_op_finish(env, i); + } + } +} + +static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + uint64_t ret; + pmccntr_op_start(env); + ret = env->cp15.c15_ccnt; + pmccntr_op_finish(env); + return ret; +} + +static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and + * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the + * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are + * accessed. + */ + env->cp15.c9_pmselr = value & 0x1f; +} + +static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmccntr_op_start(env); + env->cp15.c15_ccnt = value; + pmccntr_op_finish(env); +} + +static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint64_t cur_val = pmccntr_read(env, NULL); + + pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); +} + +static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmccntr_op_start(env); + env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; + pmccntr_op_finish(env); +} + +static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmccntr_op_start(env); + /* M is not accessible from AArch32 */ + env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | + (value & PMCCFILTR); + pmccntr_op_finish(env); +} + +static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* M is not visible in AArch32 */ + return env->cp15.pmccfiltr_el0 & PMCCFILTR; +} + +static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + value &= pmu_counter_mask(env); + env->cp15.c9_pmcnten |= value; +} + +static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + value &= pmu_counter_mask(env); + env->cp15.c9_pmcnten &= ~value; +} + +static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + value &= pmu_counter_mask(env); + env->cp15.c9_pmovsr &= ~value; + pmu_update_irq(env); +} + +static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + value &= pmu_counter_mask(env); + env->cp15.c9_pmovsr |= value; + pmu_update_irq(env); +} + +static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value, const uint8_t counter) +{ + if (counter == 31) { + pmccfiltr_write(env, ri, value); + } else if (counter < pmu_num_counters(env)) { + pmevcntr_op_start(env, counter); + + /* + * If this counter's event type is changing, store the current + * underlying count for the new type in c14_pmevcntr_delta[counter] so + * pmevcntr_op_finish has the correct baseline when it converts back to + * a delta. + */ + uint16_t old_event = env->cp15.c14_pmevtyper[counter] & + PMXEVTYPER_EVTCOUNT; + uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; + if (old_event != new_event) { + uint64_t count = 0; + if (event_supported(new_event)) { + uint16_t event_idx = supported_event_map[new_event]; + count = pm_events[event_idx].get_count(env); + } + env->cp15.c14_pmevcntr_delta[counter] = count; + } + + env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; + pmevcntr_op_finish(env, counter); + } + /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when + * PMSELR value is equal to or greater than the number of implemented + * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. + */ +} + +static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, + const uint8_t counter) +{ + if (counter == 31) { + return env->cp15.pmccfiltr_el0; + } else if (counter < pmu_num_counters(env)) { + return env->cp15.c14_pmevtyper[counter]; + } else { + /* + * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER + * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). + */ + return 0; + } +} + +static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + pmevtyper_write(env, ri, value, counter); +} + +static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + env->cp15.c14_pmevtyper[counter] = value; + + /* + * pmevtyper_rawwrite is called between a pair of pmu_op_start and + * pmu_op_finish calls when loading saved state for a migration. Because + * we're potentially updating the type of event here, the value written to + * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a + * different counter type. Therefore, we need to set this value to the + * current count for the counter type we're writing so that pmu_op_finish + * has the correct count for its calculation. + */ + uint16_t event = value & PMXEVTYPER_EVTCOUNT; + if (event_supported(event)) { + uint16_t event_idx = supported_event_map[event]; + env->cp15.c14_pmevcntr_delta[counter] = + pm_events[event_idx].get_count(env); + } +} + +static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + return pmevtyper_read(env, ri, counter); +} + +static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); +} + +static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); +} + +static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value, uint8_t counter) +{ + if (counter < pmu_num_counters(env)) { + pmevcntr_op_start(env, counter); + env->cp15.c14_pmevcntr[counter] = value; + pmevcntr_op_finish(env, counter); + } + /* + * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR + * are CONSTRAINED UNPREDICTABLE. + */ +} + +static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, + uint8_t counter) +{ + if (counter < pmu_num_counters(env)) { + uint64_t ret; + pmevcntr_op_start(env, counter); + ret = env->cp15.c14_pmevcntr[counter]; + pmevcntr_op_finish(env, counter); + return ret; + } else { + /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR + * are CONSTRAINED UNPREDICTABLE. */ + return 0; + } +} + +static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + pmevcntr_write(env, ri, value, counter); +} + +static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + return pmevcntr_read(env, ri, counter); +} + +static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + assert(counter < pmu_num_counters(env)); + env->cp15.c14_pmevcntr[counter] = value; + pmevcntr_write(env, ri, value, counter); +} + +static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + assert(counter < pmu_num_counters(env)); + return env->cp15.c14_pmevcntr[counter]; +} + +static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); +} + +static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); +} + +static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + if (arm_feature(env, ARM_FEATURE_V8)) { + env->cp15.c9_pmuserenr = value & 0xf; + } else { + env->cp15.c9_pmuserenr = value & 1; + } +} + +static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* We have no event counters so only the C bit can be changed */ + value &= pmu_counter_mask(env); + env->cp15.c9_pminten |= value; + pmu_update_irq(env); +} + +static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + value &= pmu_counter_mask(env); + env->cp15.c9_pminten &= ~value; + pmu_update_irq(env); +} + +static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Note that even though the AArch64 view of this register has bits + * [10:0] all RES0 we can only mask the bottom 5, to comply with the + * architectural requirements for bits which are RES0 only in some + * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 + * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) + */ + raw_write(env, ri, value & ~0x1FULL); +} + +static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + /* Begin with base v8.0 state. */ + uint32_t valid_mask = 0x3fff; + ARMCPU *cpu = env_archcpu(env); + + if (ri->state == ARM_CP_STATE_AA64) { + if (arm_feature(env, ARM_FEATURE_AARCH64) && + !cpu_isar_feature(aa64_aa32_el1, cpu)) { + value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ + } + valid_mask &= ~SCR_NET; + + if (cpu_isar_feature(aa64_lor, cpu)) { + valid_mask |= SCR_TLOR; + } + if (cpu_isar_feature(aa64_pauth, cpu)) { + valid_mask |= SCR_API | SCR_APK; + } + if (cpu_isar_feature(aa64_sel2, cpu)) { + valid_mask |= SCR_EEL2; + } + if (cpu_isar_feature(aa64_mte, cpu)) { + valid_mask |= SCR_ATA; + } + } else { + valid_mask &= ~(SCR_RW | SCR_ST); + } + + if (!arm_feature(env, ARM_FEATURE_EL2)) { + valid_mask &= ~SCR_HCE; + + /* On ARMv7, SMD (or SCD as it is called in v7) is only + * supported if EL2 exists. The bit is UNK/SBZP when + * EL2 is unavailable. In QEMU ARMv7, we force it to always zero + * when EL2 is unavailable. + * On ARMv8, this bit is always available. + */ + if (arm_feature(env, ARM_FEATURE_V7) && + !arm_feature(env, ARM_FEATURE_V8)) { + valid_mask &= ~SCR_SMD; + } + } + + /* Clear all-context RES0 bits. */ + value &= valid_mask; + raw_write(env, ri, value); +} + +static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* + * scr_write will set the RES1 bits on an AArch64-only CPU. + * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. + */ + scr_write(env, ri, 0); +} + +static CPAccessResult access_aa64_tid2(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + ARMCPU *cpu = env_archcpu(env); + + /* Acquire the CSSELR index from the bank corresponding to the CCSIDR + * bank + */ + uint32_t index = A32_BANKED_REG_GET(env, csselr, + ri->secure & ARM_CP_SECSTATE_S); + + return cpu->ccsidr[index]; +} + +static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + raw_write(env, ri, value & 0xf); +} + +static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + CPUState *cs = env_cpu(env); + bool el1 = arm_current_el(env) == 1; + uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; + uint64_t ret = 0; + + if (hcr_el2 & HCR_IMO) { + if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { + ret |= CPSR_I; + } + } else { + if (cs->interrupt_request & CPU_INTERRUPT_HARD) { + ret |= CPSR_I; + } + } + + if (hcr_el2 & HCR_FMO) { + if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { + ret |= CPSR_F; + } + } else { + if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { + ret |= CPSR_F; + } + } + + /* External aborts are not possible in QEMU so A bit is always clear */ + return ret; +} + +static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_feature(env, ARM_FEATURE_V8)) { + return access_aa64_tid1(env, ri, isread); + } + + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo v7_cp_reginfo[] = { + /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ + { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, + .access = PL1_W, .type = ARM_CP_NOP }, + /* Performance monitors are implementation defined in v7, + * but with an ARM recommended set of registers, which we + * follow. + * + * Performance registers fall into three categories: + * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) + * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) + * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) + * For the cases controlled by PMUSERENR we must set .access to PL0_RW + * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. + */ + { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, + .access = PL0_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), + .writefn = pmcntenset_write, + .accessfn = pmreg_access, + .raw_writefn = raw_write }, + { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, + .access = PL0_RW, .accessfn = pmreg_access, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, + .writefn = pmcntenset_write, .raw_writefn = raw_write }, + { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, + .access = PL0_RW, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), + .accessfn = pmreg_access, + .writefn = pmcntenclr_write, + .type = ARM_CP_ALIAS }, + { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), + .writefn = pmcntenclr_write }, + { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, + .access = PL0_RW, .type = ARM_CP_IO, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), + .accessfn = pmreg_access, + .writefn = pmovsr_write, + .raw_writefn = raw_write }, + { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), + .writefn = pmovsr_write, + .raw_writefn = raw_write }, + { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, + .access = PL0_W, .accessfn = pmreg_access_swinc, + .type = ARM_CP_NO_RAW | ARM_CP_IO, + .writefn = pmswinc_write }, + { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, + .access = PL0_W, .accessfn = pmreg_access_swinc, + .type = ARM_CP_NO_RAW | ARM_CP_IO, + .writefn = pmswinc_write }, + { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, + .access = PL0_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), + .accessfn = pmreg_access_selr, .writefn = pmselr_write, + .raw_writefn = raw_write}, + { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, + .access = PL0_RW, .accessfn = pmreg_access_selr, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), + .writefn = pmselr_write, .raw_writefn = raw_write, }, + { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, + .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, + .readfn = pmccntr_read, .writefn = pmccntr_write32, + .accessfn = pmreg_access_ccntr }, + { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, + .access = PL0_RW, .accessfn = pmreg_access_ccntr, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), + .readfn = pmccntr_read, .writefn = pmccntr_write, + .raw_readfn = raw_read, .raw_writefn = raw_write, }, + { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, + .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .resetvalue = 0, }, + { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, + .writefn = pmccfiltr_write, .raw_writefn = raw_write, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), + .resetvalue = 0, }, + { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, + .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = pmreg_access, + .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, + { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, + .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = pmreg_access, + .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, + { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, + .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = pmreg_access_xevcntr, + .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, + { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, + .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = pmreg_access_xevcntr, + .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, + { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, + .access = PL0_R | PL1_RW, .accessfn = access_tpm, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), + .resetvalue = 0, + .writefn = pmuserenr_write, .raw_writefn = raw_write }, + { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, + .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), + .resetvalue = 0, + .writefn = pmuserenr_write, .raw_writefn = raw_write }, + { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tpm, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), + .resetvalue = 0, + .writefn = pmintenset_write, .raw_writefn = raw_write }, + { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tpm, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), + .writefn = pmintenset_write, .raw_writefn = raw_write, + .resetvalue = 0x0 }, + { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, + .access = PL1_RW, .accessfn = access_tpm, + .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), + .writefn = pmintenclr_write, }, + { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, + .access = PL1_RW, .accessfn = access_tpm, + .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), + .writefn = pmintenclr_write }, + { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, + .access = PL1_R, + .accessfn = access_aa64_tid2, + .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, + { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, + .access = PL1_RW, + .accessfn = access_aa64_tid2, + .writefn = csselr_write, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), + offsetof(CPUARMState, cp15.csselr_ns) } }, + /* Auxiliary ID register: this actually has an IMPDEF value but for now + * just RAZ for all cores: + */ + { .name = "AIDR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid1, + .resetvalue = 0 }, + /* Auxiliary fault status registers: these also are IMPDEF, and we + * choose to RAZ/WI for all cores. + */ + { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_CONST, .resetvalue = 0 }, + /* MAIR can just read-as-written because we don't implement caches + * and so don't need to care about memory attributes. + */ + { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), + .resetvalue = 0 }, + { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, + .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), + .resetvalue = 0 }, + /* For non-long-descriptor page tables these are PRRR and NMRR; + * regardless they still act as reads-as-written for QEMU. + */ + /* MAIR0/1 are defined separately from their 64-bit counterpart which + * allows them to assign the correct fieldoffset based on the endianness + * handled in the field definitions. + */ + { .name = "MAIR0", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), + offsetof(CPUARMState, cp15.mair0_ns) }, + .resetfn = arm_cp_reset_ignore }, + { .name = "MAIR1", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), + offsetof(CPUARMState, cp15.mair1_ns) }, + .resetfn = arm_cp_reset_ignore }, + { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, + /* 32 bit ITLB invalidates */ + { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiall_write }, + { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimva_write }, + { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiasid_write }, + /* 32 bit DTLB invalidates */ + { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiall_write }, + { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimva_write }, + { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiasid_write }, + /* 32 bit TLB invalidates */ + { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiall_write }, + { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimva_write }, + { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiasid_write }, + { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimvaa_write }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo v7mp_cp_reginfo[] = { + /* 32 bit TLB invalidates, Inner Shareable */ + { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiall_is_write }, + { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimva_is_write }, + { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiasid_is_write }, + { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimvaa_is_write }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo pmovsset_cp_reginfo[] = { + /* PMOVSSET is not implemented in v7 before v7ve */ + { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), + .writefn = pmovsset_write, + .raw_writefn = raw_write }, + { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), + .writefn = pmovsset_write, + .raw_writefn = raw_write }, + REGINFO_SENTINEL +}; + +static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + value &= 1; + env->teecr = value; +} + +static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 0 && (env->teecr & 1)) { + return CP_ACCESS_TRAP; + } + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo t2ee_cp_reginfo[] = { + { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, + .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), + .resetvalue = 0, + .writefn = teecr_write }, + { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, + .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), + .accessfn = teehbr_access, .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo v6k_cp_reginfo[] = { + { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, + .access = PL0_RW, + .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, + { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL0_RW, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), + offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, + .resetfn = arm_cp_reset_ignore }, + { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, + .access = PL0_R|PL1_W, + .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), + .resetvalue = 0}, + { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, + .access = PL0_R|PL1_W, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), + offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, + .resetfn = arm_cp_reset_ignore }, + { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, + { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, + .access = PL1_RW, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), + offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, + .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +#ifndef CONFIG_USER_ONLY + +static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + /* + * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. + * Writable only at the highest implemented exception level. + */ + int el = arm_current_el(env); + uint64_t hcr; + uint32_t cntkctl; + + switch (el) { + case 0: + hcr = arm_hcr_el2_eff(env); + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + cntkctl = env->cp15.cnthctl_el2; + } else { + cntkctl = env->cp15.c14_cntkctl; + } + if (!extract32(cntkctl, 0, 2)) { + return CP_ACCESS_TRAP; + } + break; + case 1: + if (!isread && ri->state == ARM_CP_STATE_AA32 && + arm_is_secure_below_el3(env)) { + /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ + return CP_ACCESS_TRAP_UNCATEGORIZED; + } + break; + case 2: + case 3: + break; + } + + if (!isread && el < arm_highest_el(env)) { + return CP_ACCESS_TRAP_UNCATEGORIZED; + } + + return CP_ACCESS_OK; +} + +static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, + bool isread) +{ + unsigned int cur_el = arm_current_el(env); + bool has_el2 = arm_is_el2_enabled(env); + uint64_t hcr = arm_hcr_el2_eff(env); + + switch (cur_el) { + case 0: + /* If HCR_EL2. == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + return (extract32(env->cp15.cnthctl_el2, timeridx, 1) + ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); + } + + /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ + if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { + return CP_ACCESS_TRAP; + } + + /* If HCR_EL2. == '10': check CNTHCTL_EL2.EL1PCTEN. */ + if (hcr & HCR_E2H) { + if (timeridx == GTIMER_PHYS && + !extract32(env->cp15.cnthctl_el2, 10, 1)) { + return CP_ACCESS_TRAP_EL2; + } + } else { + /* If HCR_EL2. == 0: check CNTHCTL_EL2.EL1PCEN. */ + if (has_el2 && timeridx == GTIMER_PHYS && + !extract32(env->cp15.cnthctl_el2, 1, 1)) { + return CP_ACCESS_TRAP_EL2; + } + } + break; + + case 1: + /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ + if (has_el2 && timeridx == GTIMER_PHYS && + (hcr & HCR_E2H + ? !extract32(env->cp15.cnthctl_el2, 10, 1) + : !extract32(env->cp15.cnthctl_el2, 0, 1))) { + return CP_ACCESS_TRAP_EL2; + } + break; + } + return CP_ACCESS_OK; +} + +static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, + bool isread) +{ + unsigned int cur_el = arm_current_el(env); + bool has_el2 = arm_is_el2_enabled(env); + uint64_t hcr = arm_hcr_el2_eff(env); + + switch (cur_el) { + case 0: + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + /* If HCR_EL2. == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ + return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) + ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); + } + + /* + * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from + * EL0 if EL0[PV]TEN is zero. + */ + if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { + return CP_ACCESS_TRAP; + } + /* fall through */ + + case 1: + if (has_el2 && timeridx == GTIMER_PHYS) { + if (hcr & HCR_E2H) { + /* If HCR_EL2. == '10': check CNTHCTL_EL2.EL1PTEN. */ + if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { + return CP_ACCESS_TRAP_EL2; + } + } else { + /* If HCR_EL2. == 0: check CNTHCTL_EL2.EL1PCEN. */ + if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { + return CP_ACCESS_TRAP_EL2; + } + } + } + break; + } + return CP_ACCESS_OK; +} + +static CPAccessResult gt_pct_access(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + return gt_counter_access(env, GTIMER_PHYS, isread); +} + +static CPAccessResult gt_vct_access(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + return gt_counter_access(env, GTIMER_VIRT, isread); +} + +static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + return gt_timer_access(env, GTIMER_PHYS, isread); +} + +static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + return gt_timer_access(env, GTIMER_VIRT, isread); +} + +static CPAccessResult gt_stimer_access(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* + * The AArch64 register view of the secure physical timer is + * always accessible from EL3, and configurably accessible from + * Secure EL1. + */ + switch (arm_current_el(env)) { + case 1: + if (!arm_is_secure(env)) { + return CP_ACCESS_TRAP; + } + if (!(env->cp15.scr_el3 & SCR_ST)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; + case 0: + case 2: + return CP_ACCESS_TRAP; + case 3: + return CP_ACCESS_OK; + default: + g_assert_not_reached(); + } +} + +static uint64_t gt_get_countervalue(CPUARMState *env) +{ + ARMCPU *cpu = env_archcpu(env); + + return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); +} + +static void gt_recalc_timer(ARMCPU *cpu, int timeridx) +{ + ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; + + if (gt->ctl & 1) { + /* + * Timer enabled: calculate and set current ISTATUS, irq, and + * reset timer to when ISTATUS next has to change + */ + uint64_t offset = timeridx == GTIMER_VIRT ? + cpu->env.cp15.cntvoff_el2 : 0; + uint64_t count = gt_get_countervalue(&cpu->env); + /* Note that this must be unsigned 64 bit arithmetic: */ + int istatus = count - offset >= gt->cval; + uint64_t nexttick; + int irqstate; + + gt->ctl = deposit32(gt->ctl, 2, 1, istatus); + + irqstate = (istatus && !(gt->ctl & 2)); + qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); + + if (istatus) { + /* Next transition is when count rolls back over to zero */ + nexttick = UINT64_MAX; + } else { + /* Next transition is when we hit cval */ + nexttick = gt->cval + offset; + } + /* + * Note that the desired next expiry time might be beyond the + * signed-64-bit range of a QEMUTimer -- in this case we just + * set the timer for as far in the future as possible. When the + * timer expires we will reset the timer for any remaining period. + */ + if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { + timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); + } else { + timer_mod(cpu->gt_timer[timeridx], nexttick); + } + trace_arm_gt_recalc(timeridx, irqstate, nexttick); + } else { + /* Timer disabled: ISTATUS and timer output always clear */ + gt->ctl &= ~4; + qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); + timer_del(cpu->gt_timer[timeridx]); + trace_arm_gt_recalc_disabled(timeridx); + } +} + +static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, + int timeridx) +{ + ARMCPU *cpu = env_archcpu(env); + + timer_del(cpu->gt_timer[timeridx]); +} + +static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_get_countervalue(env); +} + +static uint64_t gt_virt_cnt_offset(CPUARMState *env) +{ + uint64_t hcr; + + switch (arm_current_el(env)) { + case 2: + hcr = arm_hcr_el2_eff(env); + if (hcr & HCR_E2H) { + return 0; + } + break; + case 0: + hcr = arm_hcr_el2_eff(env); + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + return 0; + } + break; + } + + return env->cp15.cntvoff_el2; +} + +static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_get_countervalue(env) - gt_virt_cnt_offset(env); +} + +static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + int timeridx, + uint64_t value) +{ + trace_arm_gt_cval_write(timeridx, value); + env->cp15.c14_timer[timeridx].cval = value; + gt_recalc_timer(env_archcpu(env), timeridx); +} + +static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, + int timeridx) +{ + uint64_t offset = 0; + + switch (timeridx) { + case GTIMER_VIRT: + case GTIMER_HYPVIRT: + offset = gt_virt_cnt_offset(env); + break; + } + + return (uint32_t)(env->cp15.c14_timer[timeridx].cval - + (gt_get_countervalue(env) - offset)); +} + +static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + int timeridx, + uint64_t value) +{ + uint64_t offset = 0; + + switch (timeridx) { + case GTIMER_VIRT: + case GTIMER_HYPVIRT: + offset = gt_virt_cnt_offset(env); + break; + } + + trace_arm_gt_tval_write(timeridx, value); + env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + + sextract64(value, 0, 32); + gt_recalc_timer(env_archcpu(env), timeridx); +} + +static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + int timeridx, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; + + trace_arm_gt_ctl_write(timeridx, value); + env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); + if ((oldval ^ value) & 1) { + /* Enable toggled */ + gt_recalc_timer(cpu, timeridx); + } else if ((oldval ^ value) & 2) { + /* + * IMASK toggled: don't need to recalculate, + * just set the interrupt line based on ISTATUS + */ + int irqstate = (oldval & 4) && !(value & 2); + + trace_arm_gt_imask_toggle(timeridx, irqstate); + qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); + } +} + +static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + gt_timer_reset(env, ri, GTIMER_PHYS); +} + +static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_cval_write(env, ri, GTIMER_PHYS, value); +} + +static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_tval_read(env, ri, GTIMER_PHYS); +} + +static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_tval_write(env, ri, GTIMER_PHYS, value); +} + +static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_ctl_write(env, ri, GTIMER_PHYS, value); +} + +static int gt_phys_redir_timeridx(CPUARMState *env) +{ + switch (arm_mmu_idx(env)) { + case ARMMMUIdx_E20_0: + case ARMMMUIdx_E20_2: + case ARMMMUIdx_E20_2_PAN: + case ARMMMUIdx_SE20_0: + case ARMMMUIdx_SE20_2: + case ARMMMUIdx_SE20_2_PAN: + return GTIMER_HYP; + default: + return GTIMER_PHYS; + } +} + +static int gt_virt_redir_timeridx(CPUARMState *env) +{ + switch (arm_mmu_idx(env)) { + case ARMMMUIdx_E20_0: + case ARMMMUIdx_E20_2: + case ARMMMUIdx_E20_2_PAN: + case ARMMMUIdx_SE20_0: + case ARMMMUIdx_SE20_2: + case ARMMMUIdx_SE20_2_PAN: + return GTIMER_HYPVIRT; + default: + return GTIMER_VIRT; + } +} + +static uint64_t gt_phys_redir_cval_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_phys_redir_timeridx(env); + return env->cp15.c14_timer[timeridx].cval; +} + +static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_phys_redir_timeridx(env); + gt_cval_write(env, ri, timeridx, value); +} + +static uint64_t gt_phys_redir_tval_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_phys_redir_timeridx(env); + return gt_tval_read(env, ri, timeridx); +} + +static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_phys_redir_timeridx(env); + gt_tval_write(env, ri, timeridx, value); +} + +static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_phys_redir_timeridx(env); + return env->cp15.c14_timer[timeridx].ctl; +} + +static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_phys_redir_timeridx(env); + gt_ctl_write(env, ri, timeridx, value); +} + +static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + gt_timer_reset(env, ri, GTIMER_VIRT); +} + +static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_cval_write(env, ri, GTIMER_VIRT, value); +} + +static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_tval_read(env, ri, GTIMER_VIRT); +} + +static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_tval_write(env, ri, GTIMER_VIRT, value); +} + +static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_ctl_write(env, ri, GTIMER_VIRT, value); +} + +static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + trace_arm_gt_cntvoff_write(value); + raw_write(env, ri, value); + gt_recalc_timer(cpu, GTIMER_VIRT); +} + +static uint64_t gt_virt_redir_cval_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_virt_redir_timeridx(env); + return env->cp15.c14_timer[timeridx].cval; +} + +static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_virt_redir_timeridx(env); + gt_cval_write(env, ri, timeridx, value); +} + +static uint64_t gt_virt_redir_tval_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_virt_redir_timeridx(env); + return gt_tval_read(env, ri, timeridx); +} + +static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_virt_redir_timeridx(env); + gt_tval_write(env, ri, timeridx, value); +} + +static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_virt_redir_timeridx(env); + return env->cp15.c14_timer[timeridx].ctl; +} + +static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_virt_redir_timeridx(env); + gt_ctl_write(env, ri, timeridx, value); +} + +static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + gt_timer_reset(env, ri, GTIMER_HYP); +} + +static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_cval_write(env, ri, GTIMER_HYP, value); +} + +static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_tval_read(env, ri, GTIMER_HYP); +} + +static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_tval_write(env, ri, GTIMER_HYP, value); +} + +static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_ctl_write(env, ri, GTIMER_HYP, value); +} + +static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + gt_timer_reset(env, ri, GTIMER_SEC); +} + +static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_cval_write(env, ri, GTIMER_SEC, value); +} + +static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_tval_read(env, ri, GTIMER_SEC); +} + +static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_tval_write(env, ri, GTIMER_SEC, value); +} + +static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_ctl_write(env, ri, GTIMER_SEC, value); +} + +static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + gt_timer_reset(env, ri, GTIMER_HYPVIRT); +} + +static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_cval_write(env, ri, GTIMER_HYPVIRT, value); +} + +static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_tval_read(env, ri, GTIMER_HYPVIRT); +} + +static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_tval_write(env, ri, GTIMER_HYPVIRT, value); +} + +static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); +} + +void arm_gt_ptimer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + gt_recalc_timer(cpu, GTIMER_PHYS); +} + +void arm_gt_vtimer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + gt_recalc_timer(cpu, GTIMER_VIRT); +} + +void arm_gt_htimer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + gt_recalc_timer(cpu, GTIMER_HYP); +} + +void arm_gt_stimer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + gt_recalc_timer(cpu, GTIMER_SEC); +} + +void arm_gt_hvtimer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + gt_recalc_timer(cpu, GTIMER_HYPVIRT); +} + +static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) +{ + ARMCPU *cpu = env_archcpu(env); + + cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; +} + +static const ARMCPRegInfo generic_timer_cp_reginfo[] = { + /* + * Note that CNTFRQ is purely reads-as-written for the benefit + * of software; writing it doesn't actually change the timer frequency. + * Our reset value matches the fixed frequency we implement the timer at. + */ + { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, + .type = ARM_CP_ALIAS, + .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), + }, + { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, + .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), + .resetfn = arm_gt_cntfrq_reset, + }, + /* overall control: mostly access permissions */ + { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), + .resetvalue = 0, + }, + /* per-timer control */ + { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, + .secure = ARM_CP_SECSTATE_NS, + .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, + .accessfn = gt_ptimer_access, + .fieldoffset = offsetoflow32(CPUARMState, + cp15.c14_timer[GTIMER_PHYS].ctl), + .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, + .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, + }, + { .name = "CNTP_CTL_S", + .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, + .secure = ARM_CP_SECSTATE_S, + .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, + .accessfn = gt_ptimer_access, + .fieldoffset = offsetoflow32(CPUARMState, + cp15.c14_timer[GTIMER_SEC].ctl), + .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, + }, + { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, + .type = ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_ptimer_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), + .resetvalue = 0, + .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, + .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, + }, + { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, + .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, + .accessfn = gt_vtimer_access, + .fieldoffset = offsetoflow32(CPUARMState, + cp15.c14_timer[GTIMER_VIRT].ctl), + .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, + .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, + }, + { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, + .type = ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_vtimer_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), + .resetvalue = 0, + .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, + .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, + }, + /* TimerValue views: a 32 bit downcounting view of the underlying state */ + { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, + .secure = ARM_CP_SECSTATE_NS, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_ptimer_access, + .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, + }, + { .name = "CNTP_TVAL_S", + .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, + .secure = ARM_CP_SECSTATE_S, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_ptimer_access, + .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, + }, + { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, + .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, + }, + { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_vtimer_access, + .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, + }, + { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, + .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, + }, + /* The counter itself */ + { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, + .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = gt_pct_access, + .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, + }, + { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, + .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = gt_pct_access, .readfn = gt_cnt_read, + }, + { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, + .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = gt_vct_access, + .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, + }, + { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, + .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, + }, + /* Comparison value, indicating when the timer goes off */ + { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, + .secure = ARM_CP_SECSTATE_NS, + .access = PL0_RW, + .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), + .accessfn = gt_ptimer_access, + .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, + .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, + }, + { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, + .secure = ARM_CP_SECSTATE_S, + .access = PL0_RW, + .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), + .accessfn = gt_ptimer_access, + .writefn = gt_sec_cval_write, .raw_writefn = raw_write, + }, + { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, + .access = PL0_RW, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), + .resetvalue = 0, .accessfn = gt_ptimer_access, + .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, + .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, + }, + { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, + .access = PL0_RW, + .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), + .accessfn = gt_vtimer_access, + .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, + .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, + }, + { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, + .access = PL0_RW, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), + .resetvalue = 0, .accessfn = gt_vtimer_access, + .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, + .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, + }, + /* + * Secure timer -- this is actually restricted to only EL3 + * and configurably Secure-EL1 via the accessfn. + */ + { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, + .accessfn = gt_stimer_access, + .readfn = gt_sec_tval_read, + .writefn = gt_sec_tval_write, + .resetfn = gt_sec_timer_reset, + }, + { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, + .type = ARM_CP_IO, .access = PL1_RW, + .accessfn = gt_stimer_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), + .resetvalue = 0, + .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, + }, + { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, + .type = ARM_CP_IO, .access = PL1_RW, + .accessfn = gt_stimer_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), + .writefn = gt_sec_cval_write, .raw_writefn = raw_write, + }, + REGINFO_SENTINEL +}; + +static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { + return CP_ACCESS_TRAP; + } + return CP_ACCESS_OK; +} + +#else + +/* + * In user-mode most of the generic timer registers are inaccessible + * however modern kernels (4.12+) allow access to cntvct_el0 + */ + +static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + ARMCPU *cpu = env_archcpu(env); + + /* + * Currently we have no support for QEMUTimer in linux-user so we + * can't call gt_get_countervalue(env), instead we directly + * call the lower level functions. + */ + return cpu_get_clock() / gt_cntfrq_period_ns(cpu); +} + +static const ARMCPRegInfo generic_timer_cp_reginfo[] = { + { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, + .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, + .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), + .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, + }, + { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, + .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .readfn = gt_virt_cnt_read, + }, + REGINFO_SENTINEL +}; + +#endif + +static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + if (arm_feature(env, ARM_FEATURE_LPAE)) { + raw_write(env, ri, value); + } else if (arm_feature(env, ARM_FEATURE_V7)) { + raw_write(env, ri, value & 0xfffff6ff); + } else { + raw_write(env, ri, value & 0xfffff1ff); + } +} + +#ifndef CONFIG_USER_ONLY +/* get_phys_addr() isn't present for user-mode-only targets */ + +static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (ri->opc2 & 4) { + /* + * The ATS12NSO* operations must trap to EL3 or EL2 if executed in + * Secure EL1 (which can only happen if EL3 is AArch64). + * They are simply UNDEF if executed from NS EL1. + * They function normally from EL2 or EL3. + */ + if (arm_current_el(env) == 1) { + if (arm_is_secure_below_el3(env)) { + if (env->cp15.scr_el3 & SCR_EEL2) { + return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; + } + return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; + } + return CP_ACCESS_TRAP_UNCATEGORIZED; + } + } + return CP_ACCESS_OK; +} + +static uint64_t do_ats_write(CPUARMState *env, uint64_t value, + MMUAccessType access_type, ARMMMUIdx mmu_idx) +{ + hwaddr phys_addr; + target_ulong page_size; + int prot; + bool ret; + uint64_t par64; + bool format64 = false; + MemTxAttrs attrs = {}; + ARMMMUFaultInfo fi = {}; + ARMCacheAttrs cacheattrs = {}; + + ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, + &prot, &page_size, &fi, &cacheattrs); + + if (ret) { + /* + * Some kinds of translation fault must cause exceptions rather + * than being reported in the PAR. + */ + int current_el = arm_current_el(env); + int target_el; + uint32_t syn, fsr, fsc; + bool take_exc = false; + + if (fi.s1ptw && current_el == 1 + && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { + /* + * Synchronous stage 2 fault on an access made as part of the + * translation table walk for AT S1E0* or AT S1E1* insn + * executed from NS EL1. If this is a synchronous external abort + * and SCR_EL3.EA == 1, then we take a synchronous external abort + * to EL3. Otherwise the fault is taken as an exception to EL2, + * and HPFAR_EL2 holds the faulting IPA. + */ + if (fi.type == ARMFault_SyncExternalOnWalk && + (env->cp15.scr_el3 & SCR_EA)) { + target_el = 3; + } else { + env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; + if (arm_is_secure_below_el3(env) && fi.s1ns) { + env->cp15.hpfar_el2 |= HPFAR_NS; + } + target_el = 2; + } + take_exc = true; + } else if (fi.type == ARMFault_SyncExternalOnWalk) { + /* + * Synchronous external aborts during a translation table walk + * are taken as Data Abort exceptions. + */ + if (fi.stage2) { + if (current_el == 3) { + target_el = 3; + } else { + target_el = 2; + } + } else { + target_el = exception_target_el(env); + } + take_exc = true; + } + + if (take_exc) { + /* Construct FSR and FSC using same logic as arm_deliver_fault() */ + if (target_el == 2 || arm_el_is_aa64(env, target_el) || + arm_s1_regime_using_lpae_format(env, mmu_idx)) { + fsr = arm_fi_to_lfsc(&fi); + fsc = extract32(fsr, 0, 6); + } else { + fsr = arm_fi_to_sfsc(&fi); + fsc = 0x3f; + } + /* + * Report exception with ESR indicating a fault due to a + * translation table walk for a cache maintenance instruction. + */ + syn = syn_data_abort_no_iss(current_el == target_el, 0, + fi.ea, 1, fi.s1ptw, 1, fsc); + env->exception.vaddress = value; + env->exception.fsr = fsr; + raise_exception(env, EXCP_DATA_ABORT, syn, target_el); + } + } + + if (is_a64(env)) { + format64 = true; + } else if (arm_feature(env, ARM_FEATURE_LPAE)) { + /* + * ATS1Cxx: + * * TTBCR.EAE determines whether the result is returned using the + * 32-bit or the 64-bit PAR format + * * Instructions executed in Hyp mode always use the 64bit format + * + * ATS1S2NSOxx uses the 64bit format if any of the following is true: + * * The Non-secure TTBCR.EAE bit is set to 1 + * * The implementation includes EL2, and the value of HCR.VM is 1 + * + * (Note that HCR.DC makes HCR.VM behave as if it is 1.) + * + * ATS1Hx always uses the 64bit format. + */ + format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); + + if (arm_feature(env, ARM_FEATURE_EL2)) { + if (mmu_idx == ARMMMUIdx_E10_0 || + mmu_idx == ARMMMUIdx_E10_1 || + mmu_idx == ARMMMUIdx_E10_1_PAN) { + format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); + } else { + format64 |= arm_current_el(env) == 2; + } + } + } + + if (format64) { + /* Create a 64-bit PAR */ + par64 = (1 << 11); /* LPAE bit always set */ + if (!ret) { + par64 |= phys_addr & ~0xfffULL; + if (!attrs.secure) { + par64 |= (1 << 9); /* NS */ + } + par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ + par64 |= cacheattrs.shareability << 7; /* SH */ + } else { + uint32_t fsr = arm_fi_to_lfsc(&fi); + + par64 |= 1; /* F */ + par64 |= (fsr & 0x3f) << 1; /* FS */ + if (fi.stage2) { + par64 |= (1 << 9); /* S */ + } + if (fi.s1ptw) { + par64 |= (1 << 8); /* PTW */ + } + } + } else { + /* + * fsr is a DFSR/IFSR value for the short descriptor + * translation table format (with WnR always clear). + * Convert it to a 32-bit PAR. + */ + if (!ret) { + /* We do not set any attribute bits in the PAR */ + if (page_size == (1 << 24) + && arm_feature(env, ARM_FEATURE_V7)) { + par64 = (phys_addr & 0xff000000) | (1 << 1); + } else { + par64 = phys_addr & 0xfffff000; + } + if (!attrs.secure) { + par64 |= (1 << 9); /* NS */ + } + } else { + uint32_t fsr = arm_fi_to_sfsc(&fi); + + par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | + ((fsr & 0xf) << 1) | 1; + } + } + return par64; +} + +static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; + uint64_t par64; + ARMMMUIdx mmu_idx; + int el = arm_current_el(env); + bool secure = arm_is_secure_below_el3(env); + + switch (ri->opc2 & 6) { + case 0: + /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ + switch (el) { + case 3: + mmu_idx = ARMMMUIdx_SE3; + break; + case 2: + g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ + /* fall through */ + case 1: + if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { + mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN + : ARMMMUIdx_Stage1_E1_PAN); + } else { + mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; + } + break; + default: + g_assert_not_reached(); + } + break; + case 2: + /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ + switch (el) { + case 3: + mmu_idx = ARMMMUIdx_SE10_0; + break; + case 2: + g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ + mmu_idx = ARMMMUIdx_Stage1_E0; + break; + case 1: + mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; + break; + default: + g_assert_not_reached(); + } + break; + case 4: + /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ + mmu_idx = ARMMMUIdx_E10_1; + break; + case 6: + /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ + mmu_idx = ARMMMUIdx_E10_0; + break; + default: + g_assert_not_reached(); + } + + par64 = do_ats_write(env, value, access_type, mmu_idx); + + A32_BANKED_CURRENT_REG_SET(env, par, par64); +} + +static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; + uint64_t par64; + + par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); + + A32_BANKED_CURRENT_REG_SET(env, par, par64); +} + +static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 3 && + !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { + return CP_ACCESS_TRAP; + } + return CP_ACCESS_OK; +} + +static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; + ARMMMUIdx mmu_idx; + int secure = arm_is_secure_below_el3(env); + + switch (ri->opc2 & 6) { + case 0: + switch (ri->opc1) { + case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ + if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { + mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN + : ARMMMUIdx_Stage1_E1_PAN); + } else { + mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; + } + break; + case 4: /* AT S1E2R, AT S1E2W */ + mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; + break; + case 6: /* AT S1E3R, AT S1E3W */ + mmu_idx = ARMMMUIdx_SE3; + break; + default: + g_assert_not_reached(); + } + break; + case 2: /* AT S1E0R, AT S1E0W */ + mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; + break; + case 4: /* AT S12E1R, AT S12E1W */ + mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; + break; + case 6: /* AT S12E0R, AT S12E0W */ + mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; + break; + default: + g_assert_not_reached(); + } + + env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); +} +#endif + +static const ARMCPRegInfo vapa_cp_reginfo[] = { + { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .resetvalue = 0, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), + offsetoflow32(CPUARMState, cp15.par_ns) }, + .writefn = par_write }, +#ifndef CONFIG_USER_ONLY + /* This underdecoding is safe because the reginfo is NO_RAW. */ + { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_W, .accessfn = ats_access, + .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, +#endif + REGINFO_SENTINEL +}; + +/* Return basic MPU access permission bits. */ +static uint32_t simple_mpu_ap_bits(uint32_t val) +{ + uint32_t ret; + uint32_t mask; + int i; + ret = 0; + mask = 3; + for (i = 0; i < 16; i += 2) { + ret |= (val >> i) & mask; + mask <<= 2; + } + return ret; +} + +/* Pad basic MPU access permission bits to extended format. */ +static uint32_t extended_mpu_ap_bits(uint32_t val) +{ + uint32_t ret; + uint32_t mask; + int i; + ret = 0; + mask = 3; + for (i = 0; i < 16; i += 2) { + ret |= (val & mask) << i; + mask <<= 2; + } + return ret; +} + +static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); +} + +static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); +} + +static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); +} + +static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); +} + +static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); + + if (!u32p) { + return 0; + } + + u32p += env->pmsav7.rnr[M_REG_NS]; + return *u32p; +} + +static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); + + if (!u32p) { + return; + } + + u32p += env->pmsav7.rnr[M_REG_NS]; + tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ + *u32p = value; +} + +static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + uint32_t nrgs = cpu->pmsav7_dregion; + + if (value >= nrgs) { + qemu_log_mask(LOG_GUEST_ERROR, + "PMSAv7 RGNR write >= # supported regions, %" PRIu32 + " > %" PRIu32 "\n", (uint32_t)value, nrgs); + return; + } + + raw_write(env, ri, value); +} + +static const ARMCPRegInfo pmsav7_cp_reginfo[] = { + /* + * Reset for all these registers is handled in arm_cpu_reset(), + * because the PMSAv7 is also used by M-profile CPUs, which do + * not register cpregs but still need the state to be reset. + */ + { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_NO_RAW, + .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), + .readfn = pmsav7_read, .writefn = pmsav7_write, + .resetfn = arm_cp_reset_ignore }, + { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, + .access = PL1_RW, .type = ARM_CP_NO_RAW, + .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), + .readfn = pmsav7_read, .writefn = pmsav7_write, + .resetfn = arm_cp_reset_ignore }, + { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, + .access = PL1_RW, .type = ARM_CP_NO_RAW, + .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), + .readfn = pmsav7_read, .writefn = pmsav7_write, + .resetfn = arm_cp_reset_ignore }, + { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), + .writefn = pmsav7_rgnr_write, + .resetfn = arm_cp_reset_ignore }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo pmsav5_cp_reginfo[] = { + { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), + .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, + { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), + .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, + { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), + .resetvalue = 0, }, + { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), + .resetvalue = 0, }, + { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, + { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, + /* Protection region base and size registers */ + { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, + { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, + { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, + { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, + { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, + { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, + { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, + { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, + REGINFO_SENTINEL +}; + +static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + TCR *tcr = raw_ptr(env, ri); + int maskshift = extract32(value, 0, 3); + + if (!arm_feature(env, ARM_FEATURE_V8)) { + if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { + /* + * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when + * using Long-desciptor translation table format + */ + value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); + } else if (arm_feature(env, ARM_FEATURE_EL3)) { + /* + * In an implementation that includes the Security Extensions + * TTBCR has additional fields PD0 [4] and PD1 [5] for + * Short-descriptor translation table format. + */ + value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; + } else { + value &= TTBCR_N; + } + } + + /* + * Update the masks corresponding to the TCR bank being written + * Note that we always calculate mask and base_mask, but + * they are only used for short-descriptor tables (ie if EAE is 0); + * for long-descriptor tables the TCR fields are used differently + * and the mask and base_mask values are meaningless. + */ + tcr->raw_tcr = value; + tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); + tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); +} + +static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + TCR *tcr = raw_ptr(env, ri); + + if (arm_feature(env, ARM_FEATURE_LPAE)) { + /* + * With LPAE the TTBCR could result in a change of ASID + * via the TTBCR.A1 bit, so do a TLB flush. + */ + tlb_flush(CPU(cpu)); + } + /* Preserve the high half of TCR_EL1, set via TTBCR2. */ + value = deposit64(tcr->raw_tcr, 0, 32, value); + vmsa_ttbcr_raw_write(env, ri, value); +} + +static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + TCR *tcr = raw_ptr(env, ri); + + /* + * Reset both the TCR as well as the masks corresponding to the bank of + * the TCR being reset. + */ + tcr->raw_tcr = 0; + tcr->mask = 0; + tcr->base_mask = 0xffffc000u; +} + +static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + TCR *tcr = raw_ptr(env, ri); + + /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ + tlb_flush(CPU(cpu)); + tcr->raw_tcr = value; +} + +static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ + if (cpreg_field_is_64bit(ri) && + extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { + ARMCPU *cpu = env_archcpu(env); + tlb_flush(CPU(cpu)); + } + raw_write(env, ri, value); +} + +static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * If we are running with E2&0 regime, then an ASID is active. + * Flush if that might be changing. Note we're not checking + * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that + * holds the active ASID, only checking the field that might. + */ + if (extract64(raw_read(env, ri) ^ value, 48, 16) && + (arm_hcr_el2_eff(env) & HCR_E2H)) { + uint16_t mask = ARMMMUIdxBit_E20_2 | + ARMMMUIdxBit_E20_2_PAN | + ARMMMUIdxBit_E20_0; + + if (arm_is_secure_below_el3(env)) { + mask >>= ARM_MMU_IDX_A_NS; + } + + tlb_flush_by_mmuidx(env_cpu(env), mask); + } + raw_write(env, ri, value); +} + +static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + CPUState *cs = CPU(cpu); + + /* + * A change in VMID to the stage2 page table (Stage2) invalidates + * the combined stage 1&2 tlbs (EL10_1 and EL10_0). + */ + if (raw_read(env, ri) != value) { + uint16_t mask = ARMMMUIdxBit_E10_1 | + ARMMMUIdxBit_E10_1_PAN | + ARMMMUIdxBit_E10_0; + + if (arm_is_secure_below_el3(env)) { + mask >>= ARM_MMU_IDX_A_NS; + } + + tlb_flush_by_mmuidx(cs, mask); + raw_write(env, ri, value); + } +} + +static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { + { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), + offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, + { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), + offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, + { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), + offsetof(CPUARMState, cp15.dfar_ns) } }, + { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), + .resetvalue = 0, }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo vmsa_cp_reginfo[] = { + { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, + { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .writefn = vmsa_ttbr_write, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), + offsetof(CPUARMState, cp15.ttbr0_ns) } }, + { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .writefn = vmsa_ttbr_write, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), + offsetof(CPUARMState, cp15.ttbr1_ns) } }, + { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .writefn = vmsa_tcr_el12_write, + .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, + .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, + { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, + .raw_writefn = vmsa_ttbcr_raw_write, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), + offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, + REGINFO_SENTINEL +}; + +/* + * Note that unlike TTBCR, writing to TTBCR2 does not require flushing + * qemu tlbs nor adjusting cached masks. + */ +static const ARMCPRegInfo ttbcr2_reginfo = { + .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_ALIAS, + .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), + offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, +}; + +static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->cp15.c15_ticonfig = value & 0xe7; + /* The OS_TYPE bit in this register changes the reported CPUID! */ + env->cp15.c0_cpuid = (value & (1 << 5)) ? + ARM_CPUID_TI915T : ARM_CPUID_TI925T; +} + +static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->cp15.c15_threadid = value & 0xffff; +} + +static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Wait-for-interrupt (deprecated) */ + cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); +} + +static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * On OMAP there are registers indicating the max/min index of dcache lines + * containing a dirty line; cache flush operations have to reset these. + */ + env->cp15.c15_i_max = 0x000; + env->cp15.c15_i_min = 0xff0; +} + +static const ARMCPRegInfo omap_cp_reginfo[] = { + { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, + .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), + .resetvalue = 0, }, + { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, + .writefn = omap_ticonfig_write }, + { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, + { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .resetvalue = 0xff0, + .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, + { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, + .writefn = omap_threadid_write }, + { .name = "TI925T_STATUS", .cp = 15, .crn = 15, + .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, + .type = ARM_CP_NO_RAW, + .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, + /* + * TODO: Peripheral port remap register: + * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller + * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), + * when MMU is off. + */ + { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, + .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, + .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, + .writefn = omap_cachemaint_write }, + { .name = "C9", .cp = 15, .crn = 9, + .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, + .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->cp15.c15_cpar = value & 0x3fff; +} + +static const ARMCPRegInfo xscale_cp_reginfo[] = { + { .name = "XSCALE_CPAR", + .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, + .writefn = xscale_cpar_write, }, + { .name = "XSCALE_AUXCR", + .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), + .resetvalue = 0, }, + /* + * XScale specific cache-lockdown: since we have no cache we NOP these + * and hope the guest does not really rely on cache behaviour. + */ + { .name = "XSCALE_LOCK_ICACHE_LINE", + .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NOP }, + { .name = "XSCALE_UNLOCK_ICACHE", + .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NOP }, + { .name = "XSCALE_DCACHE_LOCK", + .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "XSCALE_UNLOCK_DCACHE", + .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NOP }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { + /* + * RAZ/WI the whole crn=15 space, when we don't have a more specific + * implementation of this implementation-defined space. + * Ideally this should eventually disappear in favour of actually + * implementing the correct behaviour for all cores. + */ + { .name = "C15_IMPDEF", .cp = 15, .crn = 15, + .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, + .access = PL1_RW, + .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, + .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { + /* Cache status: RAZ because we have no cache so it's always clean */ + { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, + .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { + /* We never have a a block transfer operation in progress */ + { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, + .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, + .resetvalue = 0 }, + /* The cache ops themselves: these all NOP for QEMU */ + { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, + .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, + { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, + .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, + { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, + .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, + { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, + .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, + { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, + .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, + { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, + .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { + /* + * The cache test-and-clean instructions always return (1 << 30) + * to indicate that there are no dirty cache lines. + */ + { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, + .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, + .resetvalue = (1 << 30) }, + { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, + .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, + .resetvalue = (1 << 30) }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo strongarm_cp_reginfo[] = { + /* Ignore ReadBuffer accesses */ + { .name = "C9_READBUFFER", .cp = 15, .crn = 9, + .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, + .access = PL1_RW, .resetvalue = 0, + .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, + REGINFO_SENTINEL +}; + +static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + unsigned int cur_el = arm_current_el(env); + + if (arm_is_el2_enabled(env) && cur_el == 1) { + return env->cp15.vpidr_el2; + } + return raw_read(env, ri); +} + +static uint64_t mpidr_read_val(CPUARMState *env) +{ + ARMCPU *cpu = env_archcpu(env); + uint64_t mpidr = cpu->mp_affinity; + + if (arm_feature(env, ARM_FEATURE_V7MP)) { + mpidr |= (1U << 31); + /* + * Cores which are uniprocessor (non-coherent) + * but still implement the MP extensions set + * bit 30. (For instance, Cortex-R5). + */ + if (cpu->mp_is_up) { + mpidr |= (1u << 30); + } + } + return mpidr; +} + +static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + unsigned int cur_el = arm_current_el(env); + + if (arm_is_el2_enabled(env) && cur_el == 1) { + return env->cp15.vmpidr_el2; + } + return mpidr_read_val(env); +} + +static const ARMCPRegInfo lpae_cp_reginfo[] = { + /* NOP AMAIR0/1 */ + { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_CONST, .resetvalue = 0 }, + /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ + { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, + .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), + offsetof(CPUARMState, cp15.par_ns)} }, + { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_64BIT | ARM_CP_ALIAS, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), + offsetof(CPUARMState, cp15.ttbr0_ns) }, + .writefn = vmsa_ttbr_write, }, + { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_64BIT | ARM_CP_ALIAS, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), + offsetof(CPUARMState, cp15.ttbr1_ns) }, + .writefn = vmsa_ttbr_write, }, + REGINFO_SENTINEL +}; + +static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return vfp_get_fpcr(env); +} + +static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + vfp_set_fpcr(env, value); +} + +static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return vfp_get_fpsr(env); +} + +static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + vfp_set_fpsr(env, value); +} + +static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { + return CP_ACCESS_TRAP; + } + return CP_ACCESS_OK; +} + +static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->daif = value & PSTATE_DAIF; +} + +static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_PAN; +} + +static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); +} + +static const ARMCPRegInfo pan_reginfo = { + .name = "PAN", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, + .type = ARM_CP_NO_RAW, .access = PL1_RW, + .readfn = aa64_pan_read, .writefn = aa64_pan_write +}; + +static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_UAO; +} + +static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); +} + +static const ARMCPRegInfo uao_reginfo = { + .name = "UAO", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, + .type = ARM_CP_NO_RAW, .access = PL1_RW, + .readfn = aa64_uao_read, .writefn = aa64_uao_write +}; + +static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_DIT; +} + +static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); +} + +static const ARMCPRegInfo dit_reginfo = { + .name = "DIT", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL0_RW, + .readfn = aa64_dit_read, .writefn = aa64_dit_write +}; + +static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_SSBS; +} + +static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); +} + +static const ARMCPRegInfo ssbs_reginfo = { + .name = "SSBS", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, + .type = ARM_CP_NO_RAW, .access = PL0_RW, + .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write +}; + +static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* Cache invalidate/clean to Point of Coherency or Persistence... */ + switch (arm_current_el(env)) { + case 0: + /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ + if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { + return CP_ACCESS_TRAP; + } + /* fall through */ + case 1: + /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ + if (arm_hcr_el2_eff(env) & HCR_TPCP) { + return CP_ACCESS_TRAP_EL2; + } + break; + } + return CP_ACCESS_OK; +} + +static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* Cache invalidate/clean to Point of Unification... */ + switch (arm_current_el(env)) { + case 0: + /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ + if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { + return CP_ACCESS_TRAP; + } + /* fall through */ + case 1: + /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ + if (arm_hcr_el2_eff(env) & HCR_TPU) { + return CP_ACCESS_TRAP_EL2; + } + break; + } + return CP_ACCESS_OK; +} + +/* + * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions + * Page D4-1736 (DDI0487A.b) + */ + +static int vae1_tlbmask(CPUARMState *env) +{ + uint64_t hcr = arm_hcr_el2_eff(env); + uint16_t mask; + + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + mask = ARMMMUIdxBit_E20_2 | + ARMMMUIdxBit_E20_2_PAN | + ARMMMUIdxBit_E20_0; + } else { + mask = ARMMMUIdxBit_E10_1 | + ARMMMUIdxBit_E10_1_PAN | + ARMMMUIdxBit_E10_0; + } + + if (arm_is_secure_below_el3(env)) { + mask >>= ARM_MMU_IDX_A_NS; + } + + return mask; +} + +/* Return 56 if TBI is enabled, 64 otherwise. */ +static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, + uint64_t addr) +{ + uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; + int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); + int select = extract64(addr, 55, 1); + + return (tbi >> select) & 1 ? 56 : 64; +} + +static int vae1_tlbbits(CPUARMState *env, uint64_t addr) +{ + uint64_t hcr = arm_hcr_el2_eff(env); + ARMMMUIdx mmu_idx; + + /* Only the regime of the mmu_idx below is significant. */ + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + mmu_idx = ARMMMUIdx_E20_0; + } else { + mmu_idx = ARMMMUIdx_E10_0; + } + + if (arm_is_secure_below_el3(env)) { + mmu_idx &= ~ARM_MMU_IDX_A_NS; + } + + return tlbbits_for_regime(env, mmu_idx, addr); +} + +static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = vae1_tlbmask(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); +} + +static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = vae1_tlbmask(env); + + if (tlb_force_broadcast(env)) { + tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); + } else { + tlb_flush_by_mmuidx(cs, mask); + } +} + +static int alle1_tlbmask(CPUARMState *env) +{ + /* + * Note that the 'ALL' scope must invalidate both stage 1 and + * stage 2 translations, whereas most other scopes only invalidate + * stage 1 translations. + */ + if (arm_is_secure_below_el3(env)) { + return ARMMMUIdxBit_SE10_1 | + ARMMMUIdxBit_SE10_1_PAN | + ARMMMUIdxBit_SE10_0; + } else { + return ARMMMUIdxBit_E10_1 | + ARMMMUIdxBit_E10_1_PAN | + ARMMMUIdxBit_E10_0; + } +} + +static int e2_tlbmask(CPUARMState *env) +{ + if (arm_is_secure_below_el3(env)) { + return ARMMMUIdxBit_SE20_0 | + ARMMMUIdxBit_SE20_2 | + ARMMMUIdxBit_SE20_2_PAN | + ARMMMUIdxBit_SE2; + } else { + return ARMMMUIdxBit_E20_0 | + ARMMMUIdxBit_E20_2 | + ARMMMUIdxBit_E20_2_PAN | + ARMMMUIdxBit_E2; + } +} + +static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = alle1_tlbmask(env); + + tlb_flush_by_mmuidx(cs, mask); +} + +static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = e2_tlbmask(env); + + tlb_flush_by_mmuidx(cs, mask); +} + +static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + CPUState *cs = CPU(cpu); + + tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); +} + +static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = alle1_tlbmask(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); +} + +static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = e2_tlbmask(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); +} + +static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); +} + +static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA, EL2 + * Currently handles both VAE2 and VALE2, since we don't support + * flush-last-level-only. + */ + CPUState *cs = env_cpu(env); + int mask = e2_tlbmask(env); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + + tlb_flush_page_by_mmuidx(cs, pageaddr, mask); +} + +static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA, EL3 + * Currently handles both VAE3 and VALE3, since we don't support + * flush-last-level-only. + */ + ARMCPU *cpu = env_archcpu(env); + CPUState *cs = CPU(cpu); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + + tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); +} + +static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = vae1_tlbmask(env); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + int bits = vae1_tlbbits(env, pageaddr); + + tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); +} + +static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA, EL1&0 (AArch64 version). + * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, + * since we don't support flush-for-specific-ASID-only or + * flush-last-level-only. + */ + CPUState *cs = env_cpu(env); + int mask = vae1_tlbmask(env); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + int bits = vae1_tlbbits(env, pageaddr); + + if (tlb_force_broadcast(env)) { + tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); + } else { + tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); + } +} + +static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + bool secure = arm_is_secure_below_el3(env); + int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; + int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, + pageaddr); + + tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); +} + +static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); + + tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, + ARMMMUIdxBit_SE3, bits); +} + +static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int cur_el = arm_current_el(env); + + if (cur_el < 2) { + uint64_t hcr = arm_hcr_el2_eff(env); + + if (cur_el == 0) { + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { + return CP_ACCESS_TRAP_EL2; + } + } else { + if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { + return CP_ACCESS_TRAP; + } + if (hcr & HCR_TDZ) { + return CP_ACCESS_TRAP_EL2; + } + } + } else if (hcr & HCR_TDZ) { + return CP_ACCESS_TRAP_EL2; + } + } + return CP_ACCESS_OK; +} + +static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + ARMCPU *cpu = env_archcpu(env); + int dzp_bit = 1 << 4; + + /* DZP indicates whether DC ZVA access is allowed */ + if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { + dzp_bit = 0; + } + return cpu->dcz_blocksize | dzp_bit; +} + +static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (!(env->pstate & PSTATE_SP)) { + /* + * Access to SP_EL0 is undefined if it's being used as + * the stack pointer. + */ + return CP_ACCESS_TRAP_UNCATEGORIZED; + } + return CP_ACCESS_OK; +} + +static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_SP; +} + +static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) +{ + update_spsel(env, val); +} + +static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { + /* M bit is RAZ/WI for PMSA with no MPU implemented */ + value &= ~SCTLR_M; + } + + /* ??? Lots of these bits are not implemented. */ + + if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { + if (ri->opc1 == 6) { /* SCTLR_EL3 */ + value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); + } else { + value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | + SCTLR_ATA0 | SCTLR_ATA); + } + } + + if (raw_read(env, ri) == value) { + /* + * Skip the TLB flush if nothing actually changed; Linux likes + * to do a lot of pointless SCTLR writes. + */ + return; + } + + raw_write(env, ri, value); + + /* This may enable/disable the MMU, so do a TLB flush. */ + tlb_flush(CPU(cpu)); + + if (ri->type & ARM_CP_SUPPRESS_TB_END) { + /* + * Normally we would always end the TB on an SCTLR write; see the + * comment in ARMCPRegInfo sctlr initialization below for why Xscale + * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild + * of hflags from the translator, so do it here. + */ + arm_rebuild_hflags(env); + } +} + +static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { + return CP_ACCESS_TRAP_FP_EL2; + } + if (env->cp15.cptr_el[3] & CPTR_TFP) { + return CP_ACCESS_TRAP_FP_EL3; + } + return CP_ACCESS_OK; +} + +static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; +} + +static const ARMCPRegInfo v8_cp_reginfo[] = { + /* + * Minimal set of EL0-visible registers. This will need to be expanded + * significantly for system emulation of AArch64 CPUs. + */ + { .name = "NZCV", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, + .access = PL0_RW, .type = ARM_CP_NZCV }, + { .name = "DAIF", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, + .type = ARM_CP_NO_RAW, + .access = PL0_RW, .accessfn = aa64_daif_access, + .fieldoffset = offsetof(CPUARMState, daif), + .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, + { .name = "FPCR", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, + .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, + .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, + { .name = "FPSR", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, + .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, + .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, + { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, + .access = PL0_R, .type = ARM_CP_NO_RAW, + .readfn = aa64_dczid_read }, + { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_DC_ZVA, +#ifndef CONFIG_USER_ONLY + /* Avoid overhead of an access check that always passes in user-mode */ + .accessfn = aa64_zva_access, +#endif + }, + { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, + .access = PL1_R, .type = ARM_CP_CURRENTEL }, + /* Cache ops: all NOPs since we don't emulate caches */ + { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NOP, + .accessfn = aa64_cacheop_pou_access }, + { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NOP, + .accessfn = aa64_cacheop_pou_access }, + { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NOP, + .accessfn = aa64_cacheop_pou_access }, + { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, + .access = PL1_W, .accessfn = aa64_cacheop_poc_access, + .type = ARM_CP_NOP }, + { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, + .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, + { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NOP, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, + .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, + { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NOP, + .accessfn = aa64_cacheop_pou_access }, + { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NOP, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, + .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, + /* TLBI operations */ + { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vmalle1is_write }, + { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vmalle1is_write }, + { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vmalle1_write }, + { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1_write }, + { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vmalle1_write }, + { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1_write }, + { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1_write }, + { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1_write }, + { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, + .access = PL2_W, .type = ARM_CP_NOP }, + { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NOP }, + { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle1is_write }, + { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle1is_write }, + { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, + .access = PL2_W, .type = ARM_CP_NOP }, + { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NOP }, + { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle1_write }, + { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle1is_write }, +#ifndef CONFIG_USER_ONLY + /* 64 bit address translation operations */ + { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ + { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, + .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, + .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, + .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), + .writefn = par_write }, +#endif + /* TLB invalidate last level of translation table walk */ + { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimva_is_write }, + { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimvaa_is_write }, + { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimva_write }, + { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimvaa_write }, + { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbimva_hyp_write }, + { .name = "TLBIMVALHIS", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbimva_hyp_is_write }, + { .name = "TLBIIPAS2", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL2_W }, + { .name = "TLBIIPAS2IS", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL2_W }, + { .name = "TLBIIPAS2L", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL2_W }, + { .name = "TLBIIPAS2LIS", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL2_W }, + /* 32 bit cache operations */ + { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, + { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, + .type = ARM_CP_NOP, .access = PL1_W }, + { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, + { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, + { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, + .type = ARM_CP_NOP, .access = PL1_W }, + { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, + .type = ARM_CP_NOP, .access = PL1_W }, + { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, + { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, + { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, + { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, + { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + /* MMU Domain access control / MPU write buffer control */ + { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, + .writefn = dacr_write, .raw_writefn = raw_write, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), + offsetoflow32(CPUARMState, cp15.dacr_ns) } }, + { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, + { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, + /* + * We rely on the access checks not allowing the guest to write to the + * state field when SPSel indicates that it's being used as the stack + * pointer. + */ + { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, + .access = PL1_RW, .accessfn = sp_el0_access, + .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, + { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, + { .name = "SPSel", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, + .type = ARM_CP_NO_RAW, + .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, + { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, + .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), + .access = PL2_RW, .accessfn = fpexc32_access }, + { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, + .access = PL2_RW, .resetvalue = 0, + .writefn = dacr_write, .raw_writefn = raw_write, + .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, + { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, + .access = PL2_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, + { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, + { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, + { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, + { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, + { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, + .resetvalue = 0, + .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, + { .name = "SDCR", .type = ARM_CP_ALIAS, + .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, + .access = PL1_RW, .accessfn = access_trap_aa32s_el1, + .writefn = sdcr_write, + .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, + REGINFO_SENTINEL +}; + +/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ +static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { + { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, + .access = PL2_RW, + .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, + { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, + .access = PL2_RW, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, + .access = PL2_RW, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "VTTBR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 6, .crm = 2, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, + { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, + .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, + .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, + .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, + .access = PL2_RW, .accessfn = access_tda, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "HIFAR", .state = ARM_CP_STATE_AA32, + .type = ARM_CP_CONST, + .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, + .access = PL2_RW, .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +/* Ditto, but for registers which exist in ARMv8 but not v7 */ +static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { + { .name = "HCR2", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, + .access = PL2_RW, + .type = ARM_CP_CONST, .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) +{ + ARMCPU *cpu = env_archcpu(env); + + if (arm_feature(env, ARM_FEATURE_V8)) { + valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ + } else { + valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ + } + + if (arm_feature(env, ARM_FEATURE_EL3)) { + valid_mask &= ~HCR_HCD; + } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { + /* + * Architecturally HCR.TSC is RES0 if EL3 is not implemented. + * However, if we're using the SMC PSCI conduit then QEMU is + * effectively acting like EL3 firmware and so the guest at + * EL2 should retain the ability to prevent EL1 from being + * able to make SMC calls into the ersatz firmware, so in + * that case HCR.TSC should be read/write. + */ + valid_mask &= ~HCR_TSC; + } + + if (arm_feature(env, ARM_FEATURE_AARCH64)) { + if (cpu_isar_feature(aa64_vh, cpu)) { + valid_mask |= HCR_E2H; + } + if (cpu_isar_feature(aa64_lor, cpu)) { + valid_mask |= HCR_TLOR; + } + if (cpu_isar_feature(aa64_pauth, cpu)) { + valid_mask |= HCR_API | HCR_APK; + } + if (cpu_isar_feature(aa64_mte, cpu)) { + valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; + } + } + + /* Clear RES0 bits. */ + value &= valid_mask; + + /* + * These bits change the MMU setup: + * HCR_VM enables stage 2 translation + * HCR_PTW forbids certain page-table setups + * HCR_DC disables stage1 and enables stage2 translation + * HCR_DCT enables tagging on (disabled) stage1 translation + */ + if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { + tlb_flush(CPU(cpu)); + } + env->cp15.hcr_el2 = value; + + /* + * Updates to VI and VF require us to update the status of + * virtual interrupts, which are the logical OR of these bits + * and the state of the input lines from the GIC. (This requires + * that we have the iothread lock, which is done by marking the + * reginfo structs as ARM_CP_IO.) + * Note that if a write to HCR pends a VIRQ or VFIQ it is never + * possible for it to be taken immediately, because VIRQ and + * VFIQ are masked unless running at EL0 or EL1, and HCR + * can only be written at EL2. + */ + g_assert(qemu_mutex_iothread_locked()); + arm_cpu_update_virq(cpu); + arm_cpu_update_vfiq(cpu); +} + +static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + do_hcr_write(env, value, 0); +} + +static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ + value = deposit64(env->cp15.hcr_el2, 32, 32, value); + do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); +} + +static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Handle HCR write, i.e. write to low half of HCR_EL2 */ + value = deposit64(env->cp15.hcr_el2, 0, 32, value); + do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); +} + +static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * For A-profile AArch32 EL3, if NSACR.CP10 + * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. + */ + if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && + !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { + value &= ~(0x3 << 10); + value |= env->cp15.cptr_el[2] & (0x3 << 10); + } + env->cp15.cptr_el[2] = value; +} + +static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* + * For A-profile AArch32 EL3, if NSACR.CP10 + * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. + */ + uint64_t value = env->cp15.cptr_el[2]; + + if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && + !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { + value |= 0x3 << 10; + } + return value; +} + +static const ARMCPRegInfo el2_cp_reginfo[] = { + { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_IO, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), + .writefn = hcr_write }, + { .name = "HCR", .state = ARM_CP_STATE_AA32, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), + .writefn = hcr_writelow }, + { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, + { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, + { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, + { .name = "HIFAR", .state = ARM_CP_STATE_AA32, + .type = ARM_CP_ALIAS, + .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, + .access = PL2_RW, + .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, + { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, + { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, + .access = PL2_RW, .writefn = vbar_write, + .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), + .resetvalue = 0 }, + { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, + .access = PL3_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, + { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), + .readfn = cptr_el2_read, .writefn = cptr_el2_write }, + { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), + .resetvalue = 0 }, + { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, + { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ + { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, + .access = PL2_RW, .writefn = vmsa_tcr_el12_write, + /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ + .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, + { .name = "VTCR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, + .type = ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, + { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, + .access = PL2_RW, + /* + * no .writefn needed as this can't cause an ASID change; + * no .raw_writefn or .resetfn needed as we never use mask/base_mask + */ + .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, + { .name = "VTTBR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 6, .crm = 2, + .type = ARM_CP_64BIT | ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), + .writefn = vttbr_write }, + { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, + .access = PL2_RW, .writefn = vttbr_write, + .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, + { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, + .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, + .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, + { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, + .access = PL2_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, + { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, + .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, + .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, + { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, + .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, + { .name = "TLBIALLNSNH", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiall_nsnh_write }, + { .name = "TLBIALLNSNHIS", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiall_nsnh_is_write }, + { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiall_hyp_write }, + { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiall_hyp_is_write }, + { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbimva_hyp_write }, + { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbimva_hyp_is_write }, + { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbi_aa64_alle2_write }, + { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbi_aa64_vae2_write }, + { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae2_write }, + { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle2is_write }, + { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbi_aa64_vae2is_write }, + { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae2is_write }, +#ifndef CONFIG_USER_ONLY + /* + * Unlike the other EL2-related AT operations, these must + * UNDEF from EL3 if EL2 is not implemented, which is why we + * define them here rather than with the rest of the AT ops. + */ + { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, + .access = PL2_W, .accessfn = at_s1e2_access, + .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, + { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, + .access = PL2_W, .accessfn = at_s1e2_access, + .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, + /* + * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE + * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 + * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose + * to behave as if SCR.NS was 1. + */ + { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, + .access = PL2_W, + .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, + { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, + .access = PL2_W, + .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, + { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, + /* + * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the + * reset values as IMPDEF. We choose to reset to 3 to comply with + * both ARMv7 and ARMv8. + */ + .access = PL2_RW, .resetvalue = 3, + .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, + { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, + .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, + .writefn = gt_cntvoff_write, + .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, + { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, + .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, + .writefn = gt_cntvoff_write, + .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, + { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), + .type = ARM_CP_IO, .access = PL2_RW, + .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, + { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), + .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, + .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, + { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, + .resetfn = gt_hyp_timer_reset, + .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, + { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, + .type = ARM_CP_IO, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), + .resetvalue = 0, + .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, +#endif + /* The only field of MDCR_EL2 that has a defined architectural reset value + * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. + */ + { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, + .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, + .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, + { .name = "HPFAR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, + { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, + { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, + .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo el2_v8_cp_reginfo[] = { + { .name = "HCR2", .state = ARM_CP_STATE_AA32, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, + .access = PL2_RW, + .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), + .writefn = hcr_writehigh }, + REGINFO_SENTINEL +}; + +static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { + return CP_ACCESS_OK; + } + return CP_ACCESS_TRAP_UNCATEGORIZED; +} + +static const ARMCPRegInfo el2_sec_cp_reginfo[] = { + { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, + .access = PL2_RW, .accessfn = sel2_access, + .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, + { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, + .access = PL2_RW, .accessfn = sel2_access, + .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, + REGINFO_SENTINEL +}; + +static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + /* + * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. + * At Secure EL1 it traps to EL3 or EL2. + */ + if (arm_current_el(env) == 3) { + return CP_ACCESS_OK; + } + if (arm_is_secure_below_el3(env)) { + if (env->cp15.scr_el3 & SCR_EEL2) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_TRAP_EL3; + } + /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ + if (isread) { + return CP_ACCESS_OK; + } + return CP_ACCESS_TRAP_UNCATEGORIZED; +} + +static const ARMCPRegInfo el3_cp_reginfo[] = { + { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, + .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), + .resetfn = scr_reset, .writefn = scr_write }, + { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, + .access = PL1_RW, .accessfn = access_trap_aa32s_el1, + .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), + .writefn = scr_write }, + { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, + .access = PL3_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.sder) }, + { .name = "SDER", + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, + .access = PL3_RW, .resetvalue = 0, + .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, + { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_trap_aa32s_el1, + .writefn = vbar_write, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, + { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, + .access = PL3_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, + { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, + .access = PL3_RW, + /* + * no .writefn needed as this can't cause an ASID change; + * we must provide a .raw_writefn and .resetfn because we handle + * reset and migration for the AArch32 TTBCR(S), which might be + * using mask and base_mask. + */ + .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, + .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, + { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, + .access = PL3_RW, + .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, + { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, + .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, + { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, + .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, + { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, + .access = PL3_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, + { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, + .access = PL3_RW, .writefn = vbar_write, + .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), + .resetvalue = 0 }, + { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, + { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, + .access = PL3_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, + { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, + .access = PL3_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, + .access = PL3_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, + .access = PL3_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle3is_write }, + { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae3is_write }, + { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae3is_write }, + { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle3_write }, + { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae3_write }, + { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae3_write }, + REGINFO_SENTINEL +}; + +#ifndef CONFIG_USER_ONLY +/* Test if system register redirection is to occur in the current state. */ +static bool redirect_for_e2h(CPUARMState *env) +{ + return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); +} + +static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + CPReadFn *readfn; + + if (redirect_for_e2h(env)) { + /* Switch to the saved EL2 version of the register. */ + ri = ri->opaque; + readfn = ri->readfn; + } else { + readfn = ri->orig_readfn; + } + if (readfn == NULL) { + readfn = raw_read; + } + return readfn(env, ri); +} + +static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPWriteFn *writefn; + + if (redirect_for_e2h(env)) { + /* Switch to the saved EL2 version of the register. */ + ri = ri->opaque; + writefn = ri->writefn; + } else { + writefn = ri->orig_writefn; + } + if (writefn == NULL) { + writefn = raw_write; + } + writefn(env, ri, value); +} + +static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) +{ + struct E2HAlias { + uint32_t src_key, dst_key, new_key; + const char *src_name, *dst_name, *new_name; + bool (*feature)(const ARMISARegisters *id); + }; + +#define K(op0, op1, crn, crm, op2) \ + ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) + + static const struct E2HAlias aliases[] = { + { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), + "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, + { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), + "CPACR", "CPTR_EL2", "CPACR_EL12" }, + { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), + "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, + { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), + "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, + { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), + "TCR_EL1", "TCR_EL2", "TCR_EL12" }, + { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), + "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, + { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), + "ELR_EL1", "ELR_EL2", "ELR_EL12" }, + { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), + "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, + { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), + "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, + { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), + "ESR_EL1", "ESR_EL2", "ESR_EL12" }, + { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), + "FAR_EL1", "FAR_EL2", "FAR_EL12" }, + { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), + "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, + { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), + "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, + { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), + "VBAR", "VBAR_EL2", "VBAR_EL12" }, + { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), + "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, + { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), + "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, + + /* + * Note that redirection of ZCR is mentioned in the description + * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but + * not in the summary table. + */ + { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), + "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, + + { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), + "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, + + /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ + /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ + }; +#undef K + + size_t i; + + for (i = 0; i < ARRAY_SIZE(aliases); i++) { + const struct E2HAlias *a = &aliases[i]; + ARMCPRegInfo *src_reg, *dst_reg; + + if (a->feature && !a->feature(&cpu->isar)) { + continue; + } + + src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); + dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); + g_assert(src_reg != NULL); + g_assert(dst_reg != NULL); + + /* Cross-compare names to detect typos in the keys. */ + g_assert(strcmp(src_reg->name, a->src_name) == 0); + g_assert(strcmp(dst_reg->name, a->dst_name) == 0); + + /* None of the core system registers use opaque; we will. */ + g_assert(src_reg->opaque == NULL); + + /* Create alias before redirection so we dup the right data. */ + if (a->new_key) { + ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); + uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); + bool ok; + + new_reg->name = a->new_name; + new_reg->type |= ARM_CP_ALIAS; + /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ + new_reg->access &= PL2_RW | PL3_RW; + + ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); + g_assert(ok); + } + + src_reg->opaque = dst_reg; + src_reg->orig_readfn = src_reg->readfn ?: raw_read; + src_reg->orig_writefn = src_reg->writefn ?: raw_write; + if (!src_reg->raw_readfn) { + src_reg->raw_readfn = raw_read; + } + if (!src_reg->raw_writefn) { + src_reg->raw_writefn = raw_write; + } + src_reg->readfn = el2_e2h_read; + src_reg->writefn = el2_e2h_write; + } +} +#endif + +static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int cur_el = arm_current_el(env); + + if (cur_el < 2) { + uint64_t hcr = arm_hcr_el2_eff(env); + + if (cur_el == 0) { + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { + return CP_ACCESS_TRAP_EL2; + } + } else { + if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { + return CP_ACCESS_TRAP; + } + if (hcr & HCR_TID2) { + return CP_ACCESS_TRAP_EL2; + } + } + } else if (hcr & HCR_TID2) { + return CP_ACCESS_TRAP_EL2; + } + } + + if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Writes to OSLAR_EL1 may update the OS lock status, which can be + * read via a bit in OSLSR_EL1. + */ + int oslock; + + if (ri->state == ARM_CP_STATE_AA32) { + oslock = (value == 0xC5ACCE55); + } else { + oslock = value & 1; + } + + env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); +} + +static const ARMCPRegInfo debug_cp_reginfo[] = { + /* + * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped + * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; + * unlike DBGDRAR it is never accessible from EL0. + * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 + * accessor. + */ + { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL0_R, .accessfn = access_tdra, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, + .access = PL1_R, .accessfn = access_tdra, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL0_R, .accessfn = access_tdra, + .type = ARM_CP_CONST, .resetvalue = 0 }, + /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ + { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, + .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, + .access = PL1_RW, .accessfn = access_tda, + .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), + .resetvalue = 0 }, + /* + * MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. + * We don't implement the configurable EL0 access. + */ + { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, + .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, + .type = ARM_CP_ALIAS, + .access = PL1_R, .accessfn = access_tda, + .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, + { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, + .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, + .access = PL1_W, .type = ARM_CP_NO_RAW, + .accessfn = access_tdosa, + .writefn = oslar_write }, + { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, + .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, + .access = PL1_R, .resetvalue = 10, + .accessfn = access_tdosa, + .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, + /* Dummy OSDLR_EL1: 32-bit Linux will read this */ + { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, + .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, + .access = PL1_RW, .accessfn = access_tdosa, + .type = ARM_CP_NOP }, + /* + * Dummy DBGVCR: Linux wants to clear this on startup, but we don't + * implement vector catch debug events yet. + */ + { .name = "DBGVCR", + .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tda, + .type = ARM_CP_NOP }, + /* + * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor + * to save and restore a 32-bit guest's DBGVCR) + */ + { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, + .access = PL2_RW, .accessfn = access_tda, + .type = ARM_CP_NOP }, + /* + * Dummy MDCCINT_EL1, since we don't implement the Debug Communications + * Channel but Linux may try to access this register. The 32-bit + * alias is DBGDCCINT. + */ + { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, + .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tda, + .type = ARM_CP_NOP }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { + /* 64 bit access versions of the (dummy) debug registers */ + { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, + .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, + { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, + .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int cur_el = arm_current_el(env); + int old_len = sve_zcr_len_for_el(env, cur_el); + int new_len; + + /* Bits other than [3:0] are RAZ/WI. */ + QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); + raw_write(env, ri, value & 0xf); + + /* + * Because we arrived here, we know both FP and SVE are enabled; + * otherwise we would have trapped access to the ZCR_ELn register. + */ + new_len = sve_zcr_len_for_el(env, cur_el); + if (new_len < old_len) { + aarch64_sve_narrow_vq(env, new_len + 1); + } +} + +static const ARMCPRegInfo zcr_el1_reginfo = { + .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_SVE, + .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), + .writefn = zcr_write, .raw_writefn = raw_write +}; + +static const ARMCPRegInfo zcr_el2_reginfo = { + .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_SVE, + .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), + .writefn = zcr_write, .raw_writefn = raw_write +}; + +static const ARMCPRegInfo zcr_no_el2_reginfo = { + .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_SVE, + .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore +}; + +static const ARMCPRegInfo zcr_el3_reginfo = { + .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, + .access = PL3_RW, .type = ARM_CP_SVE, + .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), + .writefn = zcr_write, .raw_writefn = raw_write +}; + +static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + int i = ri->crm; + + /* + * Bits [63:49] are hardwired to the value of bit [48]; that is, the + * register reads and behaves as if values written are sign extended. + * Bits [1:0] are RES0. + */ + value = sextract64(value, 0, 49) & ~3ULL; + + raw_write(env, ri, value); + hw_watchpoint_update(cpu, i); +} + +static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + int i = ri->crm; + + raw_write(env, ri, value); + hw_watchpoint_update(cpu, i); +} + +static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + int i = ri->crm; + + raw_write(env, ri, value); + hw_breakpoint_update(cpu, i); +} + +static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + int i = ri->crm; + + /* + * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only + * copy of BAS[0]. + */ + value = deposit64(value, 6, 1, extract64(value, 5, 1)); + value = deposit64(value, 8, 1, extract64(value, 7, 1)); + + raw_write(env, ri, value); + hw_breakpoint_update(cpu, i); +} + +static void define_debug_regs(ARMCPU *cpu) +{ + /* + * Define v7 and v8 architectural debug registers. + * These are just dummy implementations for now. + */ + int i; + int wrps, brps, ctx_cmps; + + /* + * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot + * use AArch32. Given that bit 15 is RES1, if the value is 0 then + * the register must not exist for this cpu. + */ + if (cpu->isar.dbgdidr != 0) { + ARMCPRegInfo dbgdidr = { + .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, + .opc1 = 0, .opc2 = 0, + .access = PL0_R, .accessfn = access_tda, + .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, + }; + define_one_arm_cp_reg(cpu, &dbgdidr); + } + + /* Note that all these register fields hold "number of Xs minus 1". */ + brps = arm_num_brps(cpu); + wrps = arm_num_wrps(cpu); + ctx_cmps = arm_num_ctx_cmps(cpu); + + assert(ctx_cmps <= brps); + + define_arm_cp_regs(cpu, debug_cp_reginfo); + + if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { + define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); + } + + for (i = 0; i < brps; i++) { + ARMCPRegInfo dbgregs[] = { + { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, + .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, + .access = PL1_RW, .accessfn = access_tda, + .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), + .writefn = dbgbvr_write, .raw_writefn = raw_write + }, + { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, + .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, + .access = PL1_RW, .accessfn = access_tda, + .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), + .writefn = dbgbcr_write, .raw_writefn = raw_write + }, + REGINFO_SENTINEL + }; + define_arm_cp_regs(cpu, dbgregs); + } + + for (i = 0; i < wrps; i++) { + ARMCPRegInfo dbgregs[] = { + { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, + .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, + .access = PL1_RW, .accessfn = access_tda, + .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), + .writefn = dbgwvr_write, .raw_writefn = raw_write + }, + { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, + .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, + .access = PL1_RW, .accessfn = access_tda, + .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), + .writefn = dbgwcr_write, .raw_writefn = raw_write + }, + REGINFO_SENTINEL + }; + define_arm_cp_regs(cpu, dbgregs); + } +} + +static void define_pmu_regs(ARMCPU *cpu) +{ + /* + * v7 performance monitor control register: same implementor + * field as main ID register, and we implement four counters in + * addition to the cycle count register. + */ + unsigned int i, pmcrn = PMCR_NUM_COUNTERS; + ARMCPRegInfo pmcr = { + .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, + .access = PL0_RW, + .type = ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), + .accessfn = pmreg_access, .writefn = pmcr_write, + .raw_writefn = raw_write, + }; + ARMCPRegInfo pmcr64 = { + .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), + .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | + PMCRLC, + .writefn = pmcr_write, .raw_writefn = raw_write, + }; + define_one_arm_cp_reg(cpu, &pmcr); + define_one_arm_cp_reg(cpu, &pmcr64); + for (i = 0; i < pmcrn; i++) { + char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); + char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); + char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); + char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); + ARMCPRegInfo pmev_regs[] = { + { .name = pmevcntr_name, .cp = 15, .crn = 14, + .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, + .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, + .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, + .accessfn = pmreg_access }, + { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), + .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_IO, + .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, + .raw_readfn = pmevcntr_rawread, + .raw_writefn = pmevcntr_rawwrite }, + { .name = pmevtyper_name, .cp = 15, .crn = 14, + .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, + .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, + .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, + .accessfn = pmreg_access }, + { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), + .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_IO, + .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, + .raw_writefn = pmevtyper_rawwrite }, + REGINFO_SENTINEL + }; + define_arm_cp_regs(cpu, pmev_regs); + g_free(pmevcntr_name); + g_free(pmevcntr_el0_name); + g_free(pmevtyper_name); + g_free(pmevtyper_el0_name); + } + if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { + ARMCPRegInfo v81_pmu_regs[] = { + { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = extract64(cpu->pmceid0, 32, 32) }, + { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = extract64(cpu->pmceid1, 32, 32) }, + REGINFO_SENTINEL + }; + define_arm_cp_regs(cpu, v81_pmu_regs); + } + if (cpu_isar_feature(any_pmu_8_4, cpu)) { + static const ARMCPRegInfo v84_pmmir = { + .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, + .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = 0 + }; + define_one_arm_cp_reg(cpu, &v84_pmmir); + } +} + +/* + * We don't know until after realize whether there's a GICv3 + * attached, and that is what registers the gicv3 sysregs. + * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 + * at runtime. + */ +static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + ARMCPU *cpu = env_archcpu(env); + uint64_t pfr1 = cpu->isar.id_pfr1; + + if (env->gicv3state) { + pfr1 |= 1 << 28; + } + return pfr1; +} + +#ifndef CONFIG_USER_ONLY +static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + ARMCPU *cpu = env_archcpu(env); + uint64_t pfr0 = cpu->isar.id_aa64pfr0; + + if (env->gicv3state) { + pfr0 |= 1 << 24; + } + return pfr0; +} +#endif + +/* + * Shared logic between LORID and the rest of the LOR* registers. + * Secure state exclusion has already been dealt with. + */ +static CPAccessResult access_lor_ns(CPUARMState *env, + const ARMCPRegInfo *ri, bool isread) +{ + int el = arm_current_el(env); + + if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +static CPAccessResult access_lor_other(CPUARMState *env, + const ARMCPRegInfo *ri, bool isread) +{ + if (arm_is_secure_below_el3(env)) { + /* Access denied in secure mode. */ + return CP_ACCESS_TRAP; + } + return access_lor_ns(env, ri, isread); +} + +/* + * A trivial implementation of ARMv8.1-LOR leaves all of these + * registers fixed at 0, which indicates that there are zero + * supported Limited Ordering regions. + */ +static const ARMCPRegInfo lor_reginfo[] = { + { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, + .access = PL1_RW, .accessfn = access_lor_other, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, + .access = PL1_RW, .accessfn = access_lor_other, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, + .access = PL1_RW, .accessfn = access_lor_other, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, + .access = PL1_RW, .accessfn = access_lor_other, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, + .access = PL1_R, .accessfn = access_lor_ns, + .type = ARM_CP_CONST, .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +#ifdef TARGET_AARCH64 +static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + + if (el < 2 && + arm_feature(env, ARM_FEATURE_EL2) && + !(arm_hcr_el2_eff(env) & HCR_APK)) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && + arm_feature(env, ARM_FEATURE_EL3) && + !(env->cp15.scr_el3 & SCR_APK)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo pauth_reginfo[] = { + { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, + { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, + { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, + { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, + { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, + { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, + { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, + { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, + { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, + { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, + REGINFO_SENTINEL +}; + +static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) +{ + Error *err = NULL; + uint64_t ret; + + /* Success sets NZCV = 0000. */ + env->NF = env->CF = env->VF = 0, env->ZF = 1; + + if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { + /* + * ??? Failed, for unknown reasons in the crypto subsystem. + * The best we can do is log the reason and return the + * timed-out indication to the guest. There is no reason + * we know to expect this failure to be transitory, so the + * guest may well hang retrying the operation. + */ + qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", + ri->name, error_get_pretty(err)); + error_free(err); + + env->ZF = 0; /* NZCF = 0100 */ + return 0; + } + return ret; +} + +/* We do not support re-seeding, so the two registers operate the same. */ +static const ARMCPRegInfo rndr_reginfo[] = { + { .name = "RNDR", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, + .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, + .access = PL0_R, .readfn = rndr_readfn }, + { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, + .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, + .access = PL0_R, .readfn = rndr_readfn }, + REGINFO_SENTINEL +}; + +#ifndef CONFIG_USER_ONLY +static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + /* CTR_EL0 System register -> DminLine, bits [19:16] */ + uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); + uint64_t vaddr_in = (uint64_t) value; + uint64_t vaddr = vaddr_in & ~(dline_size - 1); + void *haddr; + int mem_idx = cpu_mmu_index(env, false); + + /* This won't be crossing page boundaries */ + haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); + if (haddr) { + + ram_addr_t offset; + MemoryRegion *mr; + + /* RCU lock is already being held */ + mr = memory_region_from_host(haddr, &offset); + + if (mr) { + memory_region_writeback(mr, offset, dline_size); + } + } +} + +static const ARMCPRegInfo dcpop_reg[] = { + { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, + .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo dcpodp_reg[] = { + { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, + .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, + REGINFO_SENTINEL +}; +#endif /*CONFIG_USER_ONLY*/ + +static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + + if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { + uint64_t hcr = arm_hcr_el2_eff(env); + if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { + return CP_ACCESS_TRAP_EL2; + } + } + if (el < 3 && + arm_feature(env, ARM_FEATURE_EL3) && + !(env->cp15.scr_el3 & SCR_ATA)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_TCO; +} + +static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) +{ + env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); +} + +static const ARMCPRegInfo mte_reginfo[] = { + { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, + .access = PL1_RW, .accessfn = access_mte, + .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, + { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, + .access = PL1_RW, .accessfn = access_mte, + .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, + { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, + .access = PL2_RW, .accessfn = access_mte, + .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, + { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, + .access = PL3_RW, + .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, + { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, + .access = PL1_RW, .accessfn = access_mte, + .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, + { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, + .access = PL1_RW, .accessfn = access_mte, + .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, + { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, + .access = PL1_R, .accessfn = access_aa64_tid5, + .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, + { .name = "TCO", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, + .type = ARM_CP_NO_RAW, + .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, + { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, + .type = ARM_CP_NOP, .access = PL1_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL1_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo mte_tco_ro_reginfo[] = { + { .name = "TCO", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, + .type = ARM_CP_CONST, .access = PL0_RW, }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { + { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, + .access = PL0_W, .type = ARM_CP_DC_GVA, +#ifndef CONFIG_USER_ONLY + /* Avoid overhead of an access check that always passes in user-mode */ + .accessfn = aa64_zva_access, +#endif + }, + { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, + .access = PL0_W, .type = ARM_CP_DC_GZVA, +#ifndef CONFIG_USER_ONLY + /* Avoid overhead of an access check that always passes in user-mode */ + .accessfn = aa64_zva_access, +#endif + }, + REGINFO_SENTINEL +}; + +#endif + +static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + + if (el == 0) { + uint64_t sctlr = arm_sctlr(env, el); + if (!(sctlr & SCTLR_EnRCTX)) { + return CP_ACCESS_TRAP; + } + } else if (el == 1) { + uint64_t hcr = arm_hcr_el2_eff(env); + if (hcr & HCR_NV) { + return CP_ACCESS_TRAP_EL2; + } + } + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo predinv_reginfo[] = { + { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, + { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, + { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, + /* + * Note the AArch32 opcodes have a different OPC1. + */ + { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, + { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, + { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, + REGINFO_SENTINEL +}; + +static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* Read the high 32 bits of the current CCSIDR */ + return extract64(ccsidr_read(env, ri), 32, 32); +} + +static const ARMCPRegInfo ccsidr2_reginfo[] = { + { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, + .access = PL1_R, + .accessfn = access_aa64_tid2, + .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, + REGINFO_SENTINEL +}; + +static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_feature(env, ARM_FEATURE_V8)) { + return access_aa64_tid3(env, ri, isread); + } + + return CP_ACCESS_OK; +} + +static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo jazelle_regs[] = { + { .name = "JIDR", + .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, + .access = PL1_R, .accessfn = access_jazelle, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "JOSCR", + .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "JMCR", + .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo vhe_reginfo[] = { + { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, + { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, + .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, + .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, +#ifndef CONFIG_USER_ONLY + { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, + .fieldoffset = + offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), + .type = ARM_CP_IO, .access = PL2_RW, + .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, + { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, + .resetfn = gt_hv_timer_reset, + .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, + { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, + .type = ARM_CP_IO, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), + .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, + { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, + .type = ARM_CP_IO | ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = e2h_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), + .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, + { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, + .type = ARM_CP_IO | ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = e2h_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), + .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, + { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = e2h_access, + .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, + { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = e2h_access, + .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, + { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, + .type = ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), + .access = PL2_RW, .accessfn = e2h_access, + .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, + { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, + .type = ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), + .access = PL2_RW, .accessfn = e2h_access, + .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, +#endif + REGINFO_SENTINEL +}; + +#ifndef CONFIG_USER_ONLY +static const ARMCPRegInfo ats1e1_reginfo[] = { + { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo ats1cp_reginfo[] = { + { .name = "ATS1CPRP", + .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write }, + { .name = "ATS1CPWP", + .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write }, + REGINFO_SENTINEL +}; +#endif + +/* + * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and + * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field + * is non-zero, which is never for ARMv7, optionally in ARMv8 + * and mandatorily for ARMv8.2 and up. + * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's + * implementation is RAZ/WI we can ignore this detail, as we + * do for ACTLR. + */ +static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { + { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, + .access = PL1_RW, .accessfn = access_tacr, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +void register_cp_regs_for_features(ARMCPU *cpu) +{ + /* Register all the coprocessor registers based on feature bits */ + CPUARMState *env = &cpu->env; + if (arm_feature(env, ARM_FEATURE_M)) { + /* M profile has no coprocessor registers */ + return; + } + + define_arm_cp_regs(cpu, cp_reginfo); + if (!arm_feature(env, ARM_FEATURE_V8)) { + /* + * Must go early as it is full of wildcards that may be + * overridden by later definitions. + */ + define_arm_cp_regs(cpu, not_v8_cp_reginfo); + } + + if (arm_feature(env, ARM_FEATURE_V6)) { + /* The ID registers all have impdef reset values */ + ARMCPRegInfo v6_idregs[] = { + { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_pfr0 }, + /* + * ID_PFR1 is not a plain ARM_CP_CONST because we don't know + * the value of the GIC field until after we define these regs. + */ + { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_NO_RAW, + .accessfn = access_aa32_tid3, + .readfn = id_pfr1_read, + .writefn = arm_cp_write_ignore }, + { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_dfr0 }, + { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->id_afr0 }, + { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_mmfr0 }, + { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_mmfr1 }, + { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_mmfr2 }, + { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_mmfr3 }, + { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar0 }, + { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar1 }, + { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar2 }, + { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar3 }, + { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar4 }, + { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar5 }, + { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_mmfr4 }, + { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar6 }, + REGINFO_SENTINEL + }; + define_arm_cp_regs(cpu, v6_idregs); + define_arm_cp_regs(cpu, v6_cp_reginfo); + } else { + define_arm_cp_regs(cpu, not_v6_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_V6K)) { + define_arm_cp_regs(cpu, v6k_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_V7MP) && + !arm_feature(env, ARM_FEATURE_PMSA)) { + define_arm_cp_regs(cpu, v7mp_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_V7VE)) { + define_arm_cp_regs(cpu, pmovsset_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_V7)) { + ARMCPRegInfo clidr = { + .name = "CLIDR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid2, + .resetvalue = cpu->clidr + }; + define_one_arm_cp_reg(cpu, &clidr); + define_arm_cp_regs(cpu, v7_cp_reginfo); + define_debug_regs(cpu); + define_pmu_regs(cpu); + } else { + define_arm_cp_regs(cpu, not_v7_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_V8)) { + /* + * AArch64 ID registers, which all have impdef reset values. + * Note that within the ID register ranges the unused slots + * must all RAZ, not UNDEF; future architecture versions may + * define new registers here. + */ + ARMCPRegInfo v8_idregs[] = { + /* + * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system + * emulation because we don't know the right value for the + * GIC field until after we define these regs. + */ + { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, + .access = PL1_R, +#ifdef CONFIG_USER_ONLY + .type = ARM_CP_CONST, + .resetvalue = cpu->isar.id_aa64pfr0 +#else + .type = ARM_CP_NO_RAW, + .accessfn = access_aa64_tid3, + .readfn = id_aa64pfr0_read, + .writefn = arm_cp_write_ignore +#endif + }, + { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64pfr1}, + { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + /* At present, only SVEver == 0 is defined anyway. */ + .resetvalue = 0 }, + { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64dfr0 }, + { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64dfr1 }, + { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->id_aa64afr0 }, + { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->id_aa64afr1 }, + { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64isar0 }, + { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64isar1 }, + { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64mmfr0 }, + { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64mmfr1 }, + { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64mmfr2 }, + { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.mvfr0 }, + { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.mvfr1 }, + { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.mvfr2 }, + { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_pfr2 }, + { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = extract64(cpu->pmceid0, 0, 32) }, + { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = cpu->pmceid0 }, + { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = extract64(cpu->pmceid1, 0, 32) }, + { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = cpu->pmceid1 }, + REGINFO_SENTINEL + }; +#ifdef CONFIG_USER_ONLY + ARMCPRegUserSpaceInfo v8_user_idregs[] = { + { .name = "ID_AA64PFR0_EL1", + .exported_bits = 0x000f000f00ff0000, + .fixed_bits = 0x0000000000000011 }, + { .name = "ID_AA64PFR1_EL1", + .exported_bits = 0x00000000000000f0 }, + { .name = "ID_AA64PFR*_EL1_RESERVED", + .is_glob = true }, + { .name = "ID_AA64ZFR0_EL1" }, + { .name = "ID_AA64MMFR0_EL1", + .fixed_bits = 0x00000000ff000000 }, + { .name = "ID_AA64MMFR1_EL1" }, + { .name = "ID_AA64MMFR*_EL1_RESERVED", + .is_glob = true }, + { .name = "ID_AA64DFR0_EL1", + .fixed_bits = 0x0000000000000006 }, + { .name = "ID_AA64DFR1_EL1" }, + { .name = "ID_AA64DFR*_EL1_RESERVED", + .is_glob = true }, + { .name = "ID_AA64AFR*", + .is_glob = true }, + { .name = "ID_AA64ISAR0_EL1", + .exported_bits = 0x00fffffff0fffff0 }, + { .name = "ID_AA64ISAR1_EL1", + .exported_bits = 0x000000f0ffffffff }, + { .name = "ID_AA64ISAR*_EL1_RESERVED", + .is_glob = true }, + REGUSERINFO_SENTINEL + }; + modify_arm_cp_regs(v8_idregs, v8_user_idregs); +#endif + /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ + if (!arm_feature(env, ARM_FEATURE_EL3) && + !arm_feature(env, ARM_FEATURE_EL2)) { + ARMCPRegInfo rvbar = { + .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, + .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar + }; + define_one_arm_cp_reg(cpu, &rvbar); + } + define_arm_cp_regs(cpu, v8_idregs); + define_arm_cp_regs(cpu, v8_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_EL2)) { + uint64_t vmpidr_def = mpidr_read_val(env); + ARMCPRegInfo vpidr_regs[] = { + { .name = "VPIDR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, + .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, + { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, + .access = PL2_RW, .resetvalue = cpu->midr, + .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, + { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, + .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, + { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, + .access = PL2_RW, + .resetvalue = vmpidr_def, + .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, + REGINFO_SENTINEL + }; + define_arm_cp_regs(cpu, vpidr_regs); + define_arm_cp_regs(cpu, el2_cp_reginfo); + if (arm_feature(env, ARM_FEATURE_V8)) { + define_arm_cp_regs(cpu, el2_v8_cp_reginfo); + } + if (cpu_isar_feature(aa64_sel2, cpu)) { + define_arm_cp_regs(cpu, el2_sec_cp_reginfo); + } + /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ + if (!arm_feature(env, ARM_FEATURE_EL3)) { + ARMCPRegInfo rvbar = { + .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, + .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar + }; + define_one_arm_cp_reg(cpu, &rvbar); + } + } else { + /* + * If EL2 is missing but higher ELs are enabled, we need to + * register the no_el2 reginfos. + */ + if (arm_feature(env, ARM_FEATURE_EL3)) { + /* + * When EL3 exists but not EL2, VPIDR and VMPIDR take the value + * of MIDR_EL1 and MPIDR_EL1. + */ + ARMCPRegInfo vpidr_regs[] = { + { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .type = ARM_CP_CONST, .resetvalue = cpu->midr, + .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, + { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .type = ARM_CP_NO_RAW, + .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, + REGINFO_SENTINEL + }; + define_arm_cp_regs(cpu, vpidr_regs); + define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); + if (arm_feature(env, ARM_FEATURE_V8)) { + define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); + } + } + } + if (arm_feature(env, ARM_FEATURE_EL3)) { + define_arm_cp_regs(cpu, el3_cp_reginfo); + ARMCPRegInfo el3_regs[] = { + { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, + .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, + { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, + .access = PL3_RW, + .raw_writefn = raw_write, .writefn = sctlr_write, + .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), + .resetvalue = cpu->reset_sctlr }, + REGINFO_SENTINEL + }; + + define_arm_cp_regs(cpu, el3_regs); + } + /* + * The behaviour of NSACR is sufficiently various that we don't + * try to describe it in a single reginfo: + * if EL3 is 64 bit, then trap to EL3 from S EL1, + * reads as constant 0xc00 from NS EL1 and NS EL2 + * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 + * if v7 without EL3, register doesn't exist + * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 + */ + if (arm_feature(env, ARM_FEATURE_EL3)) { + if (arm_feature(env, ARM_FEATURE_AARCH64)) { + ARMCPRegInfo nsacr = { + .name = "NSACR", .type = ARM_CP_CONST, + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL1_RW, .accessfn = nsacr_access, + .resetvalue = 0xc00 + }; + define_one_arm_cp_reg(cpu, &nsacr); + } else { + ARMCPRegInfo nsacr = { + .name = "NSACR", + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL3_RW | PL1_R, + .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.nsacr) + }; + define_one_arm_cp_reg(cpu, &nsacr); + } + } else { + if (arm_feature(env, ARM_FEATURE_V8)) { + ARMCPRegInfo nsacr = { + .name = "NSACR", .type = ARM_CP_CONST, + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL1_R, + .resetvalue = 0xc00 + }; + define_one_arm_cp_reg(cpu, &nsacr); + } + } + + if (arm_feature(env, ARM_FEATURE_PMSA)) { + if (arm_feature(env, ARM_FEATURE_V6)) { + /* PMSAv6 not implemented */ + assert(arm_feature(env, ARM_FEATURE_V7)); + define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); + define_arm_cp_regs(cpu, pmsav7_cp_reginfo); + } else { + define_arm_cp_regs(cpu, pmsav5_cp_reginfo); + } + } else { + define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); + define_arm_cp_regs(cpu, vmsa_cp_reginfo); + /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ + if (cpu_isar_feature(aa32_hpd, cpu)) { + define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); + } + } + if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { + define_arm_cp_regs(cpu, t2ee_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { + define_arm_cp_regs(cpu, generic_timer_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_VAPA)) { + define_arm_cp_regs(cpu, vapa_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { + define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { + define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { + define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_OMAPCP)) { + define_arm_cp_regs(cpu, omap_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_STRONGARM)) { + define_arm_cp_regs(cpu, strongarm_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_XSCALE)) { + define_arm_cp_regs(cpu, xscale_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { + define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_LPAE)) { + define_arm_cp_regs(cpu, lpae_cp_reginfo); + } + if (cpu_isar_feature(aa32_jazelle, cpu)) { + define_arm_cp_regs(cpu, jazelle_regs); + } + /* + * Slightly awkwardly, the OMAP and StrongARM cores need all of + * cp15 crn=0 to be writes-ignored, whereas for other cores they should + * be read-only (ie write causes UNDEF exception). + */ + { + ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { + /* + * Pre-v8 MIDR space. + * Note that the MIDR isn't a simple constant register because + * of the TI925 behaviour where writes to another register can + * cause the MIDR value to change. + * + * Unimplemented registers in the c15 0 0 0 space default to + * MIDR. Define MIDR first as this entire space, then CTR, TCMTR + * and friends override accordingly. + */ + { .name = "MIDR", + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .resetvalue = cpu->midr, + .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, + .readfn = midr_read, + .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), + .type = ARM_CP_OVERRIDE }, + /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ + { .name = "DUMMY", + .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "DUMMY", + .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "DUMMY", + .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "DUMMY", + .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "DUMMY", + .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + REGINFO_SENTINEL + }; + ARMCPRegInfo id_v8_midr_cp_reginfo[] = { + { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, + .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), + .readfn = midr_read }, + /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ + { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, + .access = PL1_R, .resetvalue = cpu->midr }, + { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, + .access = PL1_R, .resetvalue = cpu->midr }, + { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, + .access = PL1_R, + .accessfn = access_aa64_tid1, + .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, + REGINFO_SENTINEL + }; + ARMCPRegInfo id_cp_reginfo[] = { + /* These are common to v8 and pre-v8 */ + { .name = "CTR", + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_R, .accessfn = ctr_el0_access, + .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, + { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, + .access = PL0_R, .accessfn = ctr_el0_access, + .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, + /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ + { .name = "TCMTR", + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL1_R, + .accessfn = access_aa32_tid1, + .type = ARM_CP_CONST, .resetvalue = 0 }, + REGINFO_SENTINEL + }; + /* TLBTR is specific to VMSA */ + ARMCPRegInfo id_tlbtr_reginfo = { + .name = "TLBTR", + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, + .access = PL1_R, + .accessfn = access_aa32_tid1, + .type = ARM_CP_CONST, .resetvalue = 0, + }; + /* MPUIR is specific to PMSA V6+ */ + ARMCPRegInfo id_mpuir_reginfo = { + .name = "MPUIR", + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .resetvalue = cpu->pmsav7_dregion << 8 + }; + ARMCPRegInfo crn0_wi_reginfo = { + .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, + .type = ARM_CP_NOP | ARM_CP_OVERRIDE + }; +#ifdef CONFIG_USER_ONLY + ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { + { .name = "MIDR_EL1", + .exported_bits = 0x00000000ffffffff }, + { .name = "REVIDR_EL1" }, + REGUSERINFO_SENTINEL + }; + modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); +#endif + if (arm_feature(env, ARM_FEATURE_OMAPCP) || + arm_feature(env, ARM_FEATURE_STRONGARM)) { + ARMCPRegInfo *r; + /* + * Register the blanket "writes ignored" value first to cover the + * whole space. Then update the specific ID registers to allow write + * access, so that they ignore writes rather than causing them to + * UNDEF. + */ + define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); + for (r = id_pre_v8_midr_cp_reginfo; + r->type != ARM_CP_SENTINEL; r++) { + r->access = PL1_RW; + } + for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { + r->access = PL1_RW; + } + id_mpuir_reginfo.access = PL1_RW; + id_tlbtr_reginfo.access = PL1_RW; + } + if (arm_feature(env, ARM_FEATURE_V8)) { + define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); + } else { + define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); + } + define_arm_cp_regs(cpu, id_cp_reginfo); + if (!arm_feature(env, ARM_FEATURE_PMSA)) { + define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); + } else if (arm_feature(env, ARM_FEATURE_V7)) { + define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); + } + } + + if (arm_feature(env, ARM_FEATURE_MPIDR)) { + ARMCPRegInfo mpidr_cp_reginfo[] = { + { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, + .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, + REGINFO_SENTINEL + }; +#ifdef CONFIG_USER_ONLY + ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { + { .name = "MPIDR_EL1", + .fixed_bits = 0x0000000080000000 }, + REGUSERINFO_SENTINEL + }; + modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); +#endif + define_arm_cp_regs(cpu, mpidr_cp_reginfo); + } + + if (arm_feature(env, ARM_FEATURE_AUXCR)) { + ARMCPRegInfo auxcr_reginfo[] = { + { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tacr, + .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, + { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, + .access = PL3_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + REGINFO_SENTINEL + }; + define_arm_cp_regs(cpu, auxcr_reginfo); + if (cpu_isar_feature(aa32_ac2, cpu)) { + define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); + } + } + + if (arm_feature(env, ARM_FEATURE_CBAR)) { + /* + * CBAR is IMPDEF, but common on Arm Cortex-A implementations. + * There are two flavours: + * (1) older 32-bit only cores have a simple 32-bit CBAR + * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a + * 32-bit register visible to AArch32 at a different encoding + * to the "flavour 1" register and with the bits rearranged to + * be able to squash a 64-bit address into the 32-bit view. + * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but + * in future if we support AArch32-only configs of some of the + * AArch64 cores we might need to add a specific feature flag + * to indicate cores with "flavour 2" CBAR. + */ + if (arm_feature(env, ARM_FEATURE_AARCH64)) { + /* 32 bit view is [31:18] 0...0 [43:32]. */ + uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) + | extract64(cpu->reset_cbar, 32, 12); + ARMCPRegInfo cbar_reginfo[] = { + { .name = "CBAR", + .type = ARM_CP_CONST, + .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, + .access = PL1_R, .resetvalue = cbar32 }, + { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_CONST, + .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, + .access = PL1_R, .resetvalue = cpu->reset_cbar }, + REGINFO_SENTINEL + }; + /* We don't implement a r/w 64 bit CBAR currently */ + assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); + define_arm_cp_regs(cpu, cbar_reginfo); + } else { + ARMCPRegInfo cbar = { + .name = "CBAR", + .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, + .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, + .fieldoffset = offsetof(CPUARMState, + cp15.c15_config_base_address) + }; + if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { + cbar.access = PL1_R; + cbar.fieldoffset = 0; + cbar.type = ARM_CP_CONST; + } + define_one_arm_cp_reg(cpu, &cbar); + } + } + + if (arm_feature(env, ARM_FEATURE_VBAR)) { + ARMCPRegInfo vbar_cp_reginfo[] = { + { .name = "VBAR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .writefn = vbar_write, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), + offsetof(CPUARMState, cp15.vbar_ns) }, + .resetvalue = 0 }, + REGINFO_SENTINEL + }; + define_arm_cp_regs(cpu, vbar_cp_reginfo); + } + + /* Generic registers whose values depend on the implementation */ + { + ARMCPRegInfo sctlr = { + .name = "SCTLR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), + offsetof(CPUARMState, cp15.sctlr_ns) }, + .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, + .raw_writefn = raw_write, + }; + if (arm_feature(env, ARM_FEATURE_XSCALE)) { + /* Normally we would always end the TB on an SCTLR write, but Linux + * arch/arm/mach-pxa/sleep.S expects two instructions following + * an MMU enable to execute from cache. Imitate this behaviour. + */ + sctlr.type |= ARM_CP_SUPPRESS_TB_END; + } + define_one_arm_cp_reg(cpu, &sctlr); + } + + if (cpu_isar_feature(aa64_lor, cpu)) { + define_arm_cp_regs(cpu, lor_reginfo); + } + if (cpu_isar_feature(aa64_pan, cpu)) { + define_one_arm_cp_reg(cpu, &pan_reginfo); + } +#ifndef CONFIG_USER_ONLY + if (cpu_isar_feature(aa64_ats1e1, cpu)) { + define_arm_cp_regs(cpu, ats1e1_reginfo); + } + if (cpu_isar_feature(aa32_ats1e1, cpu)) { + define_arm_cp_regs(cpu, ats1cp_reginfo); + } +#endif + if (cpu_isar_feature(aa64_uao, cpu)) { + define_one_arm_cp_reg(cpu, &uao_reginfo); + } + + if (cpu_isar_feature(aa64_dit, cpu)) { + define_one_arm_cp_reg(cpu, &dit_reginfo); + } + if (cpu_isar_feature(aa64_ssbs, cpu)) { + define_one_arm_cp_reg(cpu, &ssbs_reginfo); + } + + if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { + define_arm_cp_regs(cpu, vhe_reginfo); + } + + if (cpu_isar_feature(aa64_sve, cpu)) { + define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); + if (arm_feature(env, ARM_FEATURE_EL2)) { + define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); + } else { + define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); + } + if (arm_feature(env, ARM_FEATURE_EL3)) { + define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); + } + } + +#ifdef TARGET_AARCH64 + if (cpu_isar_feature(aa64_pauth, cpu)) { + define_arm_cp_regs(cpu, pauth_reginfo); + } + if (cpu_isar_feature(aa64_rndr, cpu)) { + define_arm_cp_regs(cpu, rndr_reginfo); + } +#ifndef CONFIG_USER_ONLY + /* Data Cache clean instructions up to PoP */ + if (cpu_isar_feature(aa64_dcpop, cpu)) { + define_one_arm_cp_reg(cpu, dcpop_reg); + + if (cpu_isar_feature(aa64_dcpodp, cpu)) { + define_one_arm_cp_reg(cpu, dcpodp_reg); + } + } +#endif /*CONFIG_USER_ONLY*/ + + /* + * If full MTE is enabled, add all of the system registers. + * If only "instructions available at EL0" are enabled, + * then define only a RAZ/WI version of PSTATE.TCO. + */ + if (cpu_isar_feature(aa64_mte, cpu)) { + define_arm_cp_regs(cpu, mte_reginfo); + define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); + } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { + define_arm_cp_regs(cpu, mte_tco_ro_reginfo); + define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); + } +#endif + + if (cpu_isar_feature(any_predinv, cpu)) { + define_arm_cp_regs(cpu, predinv_reginfo); + } + + if (cpu_isar_feature(any_ccidx, cpu)) { + define_arm_cp_regs(cpu, ccsidr2_reginfo); + } + +#ifndef CONFIG_USER_ONLY + /* + * Register redirections and aliases must be done last, + * after the registers from the other extensions have been defined. + */ + if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { + define_arm_vh_e2h_redirects_aliases(cpu); + } +#endif +} + +/* + * Modify ARMCPRegInfo for access from userspace. + * + * This is a data driven modification directed by + * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as + * user-space cannot alter any values and dynamic values pertaining to + * execution state are hidden from user space view anyway. + */ +void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) +{ + const ARMCPRegUserSpaceInfo *m; + ARMCPRegInfo *r; + + for (m = mods; m->name; m++) { + GPatternSpec *pat = NULL; + if (m->is_glob) { + pat = g_pattern_spec_new(m->name); + } + for (r = regs; r->type != ARM_CP_SENTINEL; r++) { + if (pat && g_pattern_match_string(pat, r->name)) { + r->type = ARM_CP_CONST; + r->access = PL0U_R; + r->resetvalue = 0; + /* continue */ + } else if (strcmp(r->name, m->name) == 0) { + r->type = ARM_CP_CONST; + r->access = PL0U_R; + r->resetvalue &= m->exported_bits; + r->resetvalue |= m->fixed_bits; + break; + } + } + if (pat) { + g_pattern_spec_free(pat); + } + } +} diff --git a/target/arm/tcg/helper.c b/target/arm/tcg/helper.c index 0f4ebcc46f..09503db37b 100644 --- a/target/arm/tcg/helper.c +++ b/target/arm/tcg/helper.c @@ -37,9 +37,7 @@ #include "semihosting/common-semi.h" #endif #include "cpu-mmu.h" - -#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ -#define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ +#include "cpregs.h" static void switch_mode(CPUARMState *env, int mode); @@ -138,65 +136,6 @@ static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) } } -static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - assert(ri->fieldoffset); - if (cpreg_field_is_64bit(ri)) { - return CPREG_FIELD64(env, ri); - } else { - return CPREG_FIELD32(env, ri); - } -} - -static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - assert(ri->fieldoffset); - if (cpreg_field_is_64bit(ri)) { - CPREG_FIELD64(env, ri) = value; - } else { - CPREG_FIELD32(env, ri) = value; - } -} - -static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return (char *)env + ri->fieldoffset; -} - -uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* Raw read of a coprocessor register (as needed for migration, etc). */ - if (ri->type & ARM_CP_CONST) { - return ri->resetvalue; - } else if (ri->raw_readfn) { - return ri->raw_readfn(env, ri); - } else if (ri->readfn) { - return ri->readfn(env, ri); - } else { - return raw_read(env, ri); - } -} - -static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t v) -{ - /* Raw write of a coprocessor register (as needed for migration, etc). - * Note that constant registers are treated as write-ignored; the - * caller should check for success by whether a readback gives the - * value written. - */ - if (ri->type & ARM_CP_CONST) { - return; - } else if (ri->raw_writefn) { - ri->raw_writefn(env, ri, v); - } else if (ri->writefn) { - ri->writefn(env, ri, v); - } else { - raw_write(env, ri, v); - } -} - /** * arm_get/set_gdb_*: get/set a gdb register * @env: the CPU state @@ -325,8407 +264,358 @@ static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) } #endif /* TARGET_AARCH64 */ -static bool raw_accessors_invalid(const ARMCPRegInfo *ri) -{ - /* - * Return true if the regdef would cause an assertion if you called - * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a - * program bug for it not to have the NO_RAW flag). - * NB that returning false here doesn't necessarily mean that calling - * read/write_raw_cp_reg() is safe, because we can't distinguish "has - * read/write access functions which are safe for raw use" from "has - * read/write access functions which have side effects but has forgotten - * to provide raw access functions". - * The tests here line up with the conditions in read/write_raw_cp_reg() - * and assertions in raw_read()/raw_write(). - */ - if ((ri->type & ARM_CP_CONST) || - ri->fieldoffset || - ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { - return false; - } - return true; -} - -bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) -{ - /* Write the coprocessor state from cpu->env to the (index,value) list. */ - int i; - bool ok = true; - - for (i = 0; i < cpu->cpreg_array_len; i++) { - uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); - const ARMCPRegInfo *ri; - uint64_t newval; - - ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); - if (!ri) { - ok = false; - continue; - } - if (ri->type & ARM_CP_NO_RAW) { - continue; - } - - newval = read_raw_cp_reg(&cpu->env, ri); - if (kvm_sync) { - /* - * Only sync if the previous list->cpustate sync succeeded. - * Rather than tracking the success/failure state for every - * item in the list, we just recheck "does the raw write we must - * have made in write_list_to_cpustate() read back OK" here. - */ - uint64_t oldval = cpu->cpreg_values[i]; - - if (oldval == newval) { - continue; - } - - write_raw_cp_reg(&cpu->env, ri, oldval); - if (read_raw_cp_reg(&cpu->env, ri) != oldval) { - continue; - } - - write_raw_cp_reg(&cpu->env, ri, newval); - } - cpu->cpreg_values[i] = newval; - } - return ok; -} - -bool write_list_to_cpustate(ARMCPU *cpu) +/* + * Return the effective value of HCR_EL2. + * Bits that are not included here: + * RW (read from SCR_EL3.RW as needed) + */ +uint64_t arm_hcr_el2_eff(CPUARMState *env) { - int i; - bool ok = true; - - for (i = 0; i < cpu->cpreg_array_len; i++) { - uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); - uint64_t v = cpu->cpreg_values[i]; - const ARMCPRegInfo *ri; + uint64_t ret = env->cp15.hcr_el2; - ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); - if (!ri) { - ok = false; - continue; - } - if (ri->type & ARM_CP_NO_RAW) { - continue; - } - /* Write value and confirm it reads back as written - * (to catch read-only registers and partially read-only - * registers where the incoming migration value doesn't match) + if (!arm_is_el2_enabled(env)) { + /* + * "This register has no effect if EL2 is not enabled in the + * current Security state". This is ARMv8.4-SecEL2 speak for + * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). + * + * Prior to that, the language was "In an implementation that + * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves + * as if this field is 0 for all purposes other than a direct + * read or write access of HCR_EL2". With lots of enumeration + * on a per-field basis. In current QEMU, this is condition + * is arm_is_secure_below_el3. + * + * Since the v8.4 language applies to the entire register, and + * appears to be backward compatible, use that. */ - write_raw_cp_reg(&cpu->env, ri, v); - if (read_raw_cp_reg(&cpu->env, ri) != v) { - ok = false; - } + return 0; } - return ok; -} -static void add_cpreg_to_list(gpointer key, gpointer opaque) -{ - ARMCPU *cpu = opaque; - uint64_t regidx; - const ARMCPRegInfo *ri; - - regidx = *(uint32_t *)key; - ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); + /* + * For a cpu that supports both aarch64 and aarch32, we can set bits + * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. + * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. + */ + if (!arm_el_is_aa64(env, 2)) { + uint64_t aa32_valid; - if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { - cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); - /* The value array need not be initialized at this point */ - cpu->cpreg_array_len++; + /* + * These bits are up-to-date as of ARMv8.6. + * For HCR, it's easiest to list just the 2 bits that are invalid. + * For HCR2, list those that are valid. + */ + aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); + aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | + HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); + ret &= aa32_valid; } -} -static void count_cpreg(gpointer key, gpointer opaque) -{ - ARMCPU *cpu = opaque; - uint64_t regidx; - const ARMCPRegInfo *ri; - - regidx = *(uint32_t *)key; - ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); - - if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { - cpu->cpreg_array_len++; + if (ret & HCR_TGE) { + /* These bits are up-to-date as of ARMv8.6. */ + if (ret & HCR_E2H) { + ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | + HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | + HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | + HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | + HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | + HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); + } else { + ret |= HCR_FMO | HCR_IMO | HCR_AMO; + } + ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | + HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | + HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | + HCR_TLOR); } -} - -static gint cpreg_key_compare(gconstpointer a, gconstpointer b) -{ - uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); - uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); - if (aidx > bidx) { - return 1; - } - if (aidx < bidx) { - return -1; - } - return 0; + return ret; } -void init_cpreg_list(ARMCPU *cpu) +/* Return the exception level to which exceptions should be taken + * via SVEAccessTrap. If an exception should be routed through + * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should + * take care of raising that exception. + * C.f. the ARM pseudocode function CheckSVEEnabled. + */ +int sve_exception_el(CPUARMState *env, int el) { - /* - * Initialise the cpreg_tuples[] array based on the cp_regs hash. - * Note that we require cpreg_tuples[] to be sorted by key ID. - */ - GList *keys; - int arraylen; - - keys = g_hash_table_get_keys(cpu->cp_regs); - keys = g_list_sort(keys, cpreg_key_compare); - - cpu->cpreg_array_len = 0; - - g_list_foreach(keys, count_cpreg, cpu); - - arraylen = cpu->cpreg_array_len; - cpu->cpreg_indexes = g_new(uint64_t, arraylen); - cpu->cpreg_values = g_new(uint64_t, arraylen); - cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); - cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); - cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; - cpu->cpreg_array_len = 0; - - g_list_foreach(keys, add_cpreg_to_list, cpu); +#ifndef CONFIG_USER_ONLY + uint64_t hcr_el2 = arm_hcr_el2_eff(env); - assert(cpu->cpreg_array_len == arraylen); + if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { + bool disabled = false; - g_list_free(keys); -} + /* The CPACR.ZEN controls traps to EL1: + * 0, 2 : trap EL0 and EL1 accesses + * 1 : trap only EL0 accesses + * 3 : trap no accesses + */ + if (!extract32(env->cp15.cpacr_el1, 16, 1)) { + disabled = true; + } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { + disabled = el == 0; + } + if (disabled) { + /* route_to_el2 */ + return hcr_el2 & HCR_TGE ? 2 : 1; + } -/* - * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. - */ -static CPAccessResult access_el3_aa32ns(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - if (!is_a64(env) && arm_current_el(env) == 3 && - arm_is_secure_below_el3(env)) { - return CP_ACCESS_TRAP_UNCATEGORIZED; + /* Check CPACR.FPEN. */ + if (!extract32(env->cp15.cpacr_el1, 20, 1)) { + disabled = true; + } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { + disabled = el == 0; + } + if (disabled) { + return 0; + } } - return CP_ACCESS_OK; -} -/* - * Some secure-only AArch32 registers trap to EL3 if used from - * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). - * Note that an access from Secure EL1 can only happen if EL3 is AArch64. - * We assume that the .access field is set to PL1_RW. - */ -static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 3) { - return CP_ACCESS_OK; - } - if (arm_is_secure_below_el3(env)) { - if (env->cp15.scr_el3 & SCR_EEL2) { - return CP_ACCESS_TRAP_EL2; + /* CPTR_EL2. Since TZ and TFP are positive, + * they will be zero when EL2 is not present. + */ + if (el <= 2 && arm_is_el2_enabled(env)) { + if (env->cp15.cptr_el[2] & CPTR_TZ) { + return 2; + } + if (env->cp15.cptr_el[2] & CPTR_TFP) { + return 0; } - return CP_ACCESS_TRAP_EL3; } - /* This will be EL1 NS and EL2 NS, which just UNDEF */ - return CP_ACCESS_TRAP_UNCATEGORIZED; -} - -static uint64_t arm_mdcr_el2_eff(CPUARMState *env) -{ - return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; -} - -/* - * Check for traps to "powerdown debug" registers, which are controlled - * by MDCR.TDOSA - */ -static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int el = arm_current_el(env); - uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); - bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || - (arm_hcr_el2_eff(env) & HCR_TGE); - if (el < 2 && mdcr_el2_tdosa) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { - return CP_ACCESS_TRAP_EL3; + /* CPTR_EL3. Since EZ is negative we must check for EL3. */ + if (arm_feature(env, ARM_FEATURE_EL3) + && !(env->cp15.cptr_el[3] & CPTR_EZ)) { + return 3; } - return CP_ACCESS_OK; +#endif + return 0; } -/* - * Check for traps to "debug ROM" registers, which are controlled - * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. - */ -static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) +static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) { - int el = arm_current_el(env); - uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); - bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || - (arm_hcr_el2_eff(env) & HCR_TGE); + uint32_t end_len; - if (el < 2 && mdcr_el2_tdra) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { - return CP_ACCESS_TRAP_EL3; + end_len = start_len &= 0xf; + if (!test_bit(start_len, cpu->sve_vq_map)) { + end_len = find_last_bit(cpu->sve_vq_map, start_len); + assert(end_len < start_len); } - return CP_ACCESS_OK; + return end_len; } /* - * Check for traps to general debug registers, which are controlled - * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. + * Given that SVE is enabled, return the vector length for EL. */ -static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) +uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) { - int el = arm_current_el(env); - uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); - bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || - (arm_hcr_el2_eff(env) & HCR_TGE); + ARMCPU *cpu = env_archcpu(env); + uint32_t zcr_len = cpu->sve_max_vq - 1; - if (el < 2 && mdcr_el2_tda) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { - return CP_ACCESS_TRAP_EL3; + if (el <= 1) { + zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); } - return CP_ACCESS_OK; -} - -/* - * Check for traps to performance monitor registers, which are controlled - * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. - */ -static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int el = arm_current_el(env); - uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); - - if (el < 2 && (mdcr_el2 & MDCR_TPM)) { - return CP_ACCESS_TRAP_EL2; + if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { + zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); } - if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { - return CP_ACCESS_TRAP_EL3; + if (arm_feature(env, ARM_FEATURE_EL3)) { + zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); } - return CP_ACCESS_OK; -} -/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ -static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1) { - uint64_t trap = isread ? HCR_TRVM : HCR_TVM; - if (arm_hcr_el2_eff(env) & trap) { - return CP_ACCESS_TRAP_EL2; - } - } - return CP_ACCESS_OK; + return sve_zcr_get_valid_len(cpu, zcr_len); } -/* Check for traps from EL1 due to HCR_EL2.TSW. */ -static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) +void hw_watchpoint_update(ARMCPU *cpu, int n) { - if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_OK; -} + CPUARMState *env = &cpu->env; + vaddr len = 0; + vaddr wvr = env->cp15.dbgwvr[n]; + uint64_t wcr = env->cp15.dbgwcr[n]; + int mask; + int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; -/* Check for traps from EL1 due to HCR_EL2.TACR. */ -static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { - return CP_ACCESS_TRAP_EL2; + if (env->cpu_watchpoint[n]) { + cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); + env->cpu_watchpoint[n] = NULL; } - return CP_ACCESS_OK; -} -/* Check for traps from EL1 due to HCR_EL2.TTLB. */ -static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { - return CP_ACCESS_TRAP_EL2; + if (!extract64(wcr, 0, 1)) { + /* E bit clear : watchpoint disabled */ + return; } - return CP_ACCESS_OK; -} -static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - raw_write(env, ri, value); - tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ -} - -static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - if (raw_read(env, ri) != value) { - /* - * Unlike real hardware the qemu TLB uses virtual addresses, - * not modified virtual addresses, so this causes a TLB flush. - */ - tlb_flush(CPU(cpu)); - raw_write(env, ri, value); - } -} - -static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) - && !extended_addresses_enabled(env)) { - /* - * For VMSA (when not using the LPAE long descriptor page table - * format) this register includes the ASID, so do a TLB flush. - * For PMSA it is purely a process ID and no action is needed. - */ - tlb_flush(CPU(cpu)); - } - raw_write(env, ri, value); -} - -/* IS variants of TLB operations must affect all cores */ -static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_all_cpus_synced(cs); -} - -static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_all_cpus_synced(cs); -} - -static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); -} - -static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); -} - -/* - * Non-IS variants of TLB operations are upgraded to - * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to - * force broadcast of these operations. - */ -static bool tlb_force_broadcast(CPUARMState *env) -{ - return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); -} - -static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Invalidate all (TLBIALL) */ - CPUState *cs = env_cpu(env); - - if (tlb_force_broadcast(env)) { - tlb_flush_all_cpus_synced(cs); - } else { - tlb_flush(cs); - } -} - -static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ - CPUState *cs = env_cpu(env); - - value &= TARGET_PAGE_MASK; - if (tlb_force_broadcast(env)) { - tlb_flush_page_all_cpus_synced(cs, value); - } else { - tlb_flush_page(cs, value); - } -} - -static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Invalidate by ASID (TLBIASID) */ - CPUState *cs = env_cpu(env); - - if (tlb_force_broadcast(env)) { - tlb_flush_all_cpus_synced(cs); - } else { - tlb_flush(cs); - } -} - -static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ - CPUState *cs = env_cpu(env); - - value &= TARGET_PAGE_MASK; - if (tlb_force_broadcast(env)) { - tlb_flush_page_all_cpus_synced(cs, value); - } else { - tlb_flush_page(cs, value); - } -} - -static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_by_mmuidx(cs, - ARMMMUIdxBit_E10_1 | - ARMMMUIdxBit_E10_1_PAN | - ARMMMUIdxBit_E10_0); -} - -static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, - ARMMMUIdxBit_E10_1 | - ARMMMUIdxBit_E10_1_PAN | - ARMMMUIdxBit_E10_0); -} - - -static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); -} - -static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); -} - -static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); - - tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); -} - -static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); - - tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, - ARMMMUIdxBit_E2); -} - -static const ARMCPRegInfo cp_reginfo[] = { - /* - * Define the secure and non-secure FCSE identifier CP registers - * separately because there is no secure bank in V8 (no _EL3). This allows - * the secure register to be properly reset and migrated. There is also no - * v8 EL1 version of the register so the non-secure instance stands alone. - */ - { .name = "FCSEIDR", - .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, - .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, - .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), - .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, - { .name = "FCSEIDR_S", - .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, - .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, - .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), - .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, - /* - * Define the secure and non-secure context identifier CP registers - * separately because there is no secure bank in V8 (no _EL3). This allows - * the secure register to be properly reset and migrated. In the - * non-secure case, the 32-bit register will have reset and migration - * disabled during registration as it is handled by the 64-bit instance. - */ - { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .secure = ARM_CP_SECSTATE_NS, - .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), - .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, - { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .secure = ARM_CP_SECSTATE_S, - .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), - .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo not_v8_cp_reginfo[] = { - /* - * NB: Some of these registers exist in v8 but with more precise - * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). - */ - /* MMU Domain access control / MPU write buffer control */ - { .name = "DACR", - .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, - .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, - .writefn = dacr_write, .raw_writefn = raw_write, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), - offsetoflow32(CPUARMState, cp15.dacr_ns) } }, - /* - * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. - * For v6 and v5, these mappings are overly broad. - */ - { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, - /* Cache maintenance ops; some of this space may be overridden later. */ - { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, - .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, - .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo not_v6_cp_reginfo[] = { - /* - * Not all pre-v6 cores implemented this WFI, so this is slightly - * over-broad. - */ - { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, - .access = PL1_W, .type = ARM_CP_WFI }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo not_v7_cp_reginfo[] = { - /* - * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which - * is UNPREDICTABLE; we choose to NOP as most implementations do). - */ - { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, - .access = PL1_W, .type = ARM_CP_WFI }, - /* - * L1 cache lockdown. Not architectural in v6 and earlier but in practice - * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and - * OMAPCP will override this space. - */ - { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), - .resetvalue = 0 }, - { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), - .resetvalue = 0 }, - /* v6 doesn't have the cache ID registers but Linux reads them anyway */ - { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, - .resetvalue = 0 }, - /* - * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; - * implementing it as RAZ means the "debug architecture version" bits - * will read as a reserved value, which should cause Linux to not try - * to use the debug hardware. - */ - { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - /* - * MMU TLB control. Note that the wildcarding means we cover not just - * the unified TLB ops but also the dside/iside/inner-shareable variants. - */ - { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, - .type = ARM_CP_NO_RAW }, - { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, - .type = ARM_CP_NO_RAW }, - { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, - .type = ARM_CP_NO_RAW }, - { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, - .type = ARM_CP_NO_RAW }, - { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, - .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, - .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, - REGINFO_SENTINEL -}; - -static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint32_t mask = 0; - - /* In ARMv8 most bits of CPACR_EL1 are RES0. */ - if (!arm_feature(env, ARM_FEATURE_V8)) { - /* - * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. - * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. - * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. - */ - if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { - /* VFP coprocessor: cp10 & cp11 [23:20] */ - mask |= (1 << 31) | (1 << 30) | (0xf << 20); - - if (!arm_feature(env, ARM_FEATURE_NEON)) { - /* ASEDIS [31] bit is RAO/WI */ - value |= (1 << 31); - } - - /* - * VFPv3 and upwards with NEON implement 32 double precision - * registers (D0-D31). - */ - if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { - /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ - value |= (1 << 30); - } - } - value &= mask; - } - - /* - * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 - * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. - */ - if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && - !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { - value &= ~(0xf << 20); - value |= env->cp15.cpacr_el1 & (0xf << 20); - } - - env->cp15.cpacr_el1 = value; -} - -static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* - * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 - * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. - */ - uint64_t value = env->cp15.cpacr_el1; - - if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && - !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { - value &= ~(0xf << 20); - } - return value; -} - - -static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* - * Call cpacr_write() so that we reset with the correct RAO bits set - * for our CPU features. - */ - cpacr_write(env, ri, 0); -} - -static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_feature(env, ARM_FEATURE_V8)) { - /* Check if CPACR accesses are to be trapped to EL2 */ - if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && - (env->cp15.cptr_el[2] & CPTR_TCPAC)) { - return CP_ACCESS_TRAP_EL2; - /* Check if CPACR accesses are to be trapped to EL3 */ - } else if (arm_current_el(env) < 3 && - (env->cp15.cptr_el[3] & CPTR_TCPAC)) { - return CP_ACCESS_TRAP_EL3; - } - } - - return CP_ACCESS_OK; -} - -static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - /* Check if CPTR accesses are set to trap to EL3 */ - if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { - return CP_ACCESS_TRAP_EL3; - } - - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo v6_cp_reginfo[] = { - /* prefetch by MVA in v6, NOP in v7 */ - { .name = "MVA_prefetch", - .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NOP }, - /* - * We need to break the TB after ISB to execute self-modifying code - * correctly and also to take any pending interrupts immediately. - * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. - */ - { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, - .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, - { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, - .access = PL0_W, .type = ARM_CP_NOP }, - { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, - .access = PL0_W, .type = ARM_CP_NOP }, - { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), - offsetof(CPUARMState, cp15.ifar_ns) }, - .resetvalue = 0, }, - /* - * Watchpoint Fault Address Register : should actually only be present - * for 1136, 1176, 11MPCore. - */ - { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, - { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, - .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), - .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, - REGINFO_SENTINEL -}; - -/* Definitions for the PMU registers */ -#define PMCRN_MASK 0xf800 -#define PMCRN_SHIFT 11 -#define PMCRLC 0x40 -#define PMCRDP 0x20 -#define PMCRX 0x10 -#define PMCRD 0x8 -#define PMCRC 0x4 -#define PMCRP 0x2 -#define PMCRE 0x1 -/* - * Mask of PMCR bits writeable by guest (not including WO bits like C, P, - * which can be written as 1 to trigger behaviour but which stay RAZ). - */ -#define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) - -#define PMXEVTYPER_P 0x80000000 -#define PMXEVTYPER_U 0x40000000 -#define PMXEVTYPER_NSK 0x20000000 -#define PMXEVTYPER_NSU 0x10000000 -#define PMXEVTYPER_NSH 0x08000000 -#define PMXEVTYPER_M 0x04000000 -#define PMXEVTYPER_MT 0x02000000 -#define PMXEVTYPER_EVTCOUNT 0x0000ffff -#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ - PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ - PMXEVTYPER_M | PMXEVTYPER_MT | \ - PMXEVTYPER_EVTCOUNT) - -#define PMCCFILTR 0xf8000000 -#define PMCCFILTR_M PMXEVTYPER_M -#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) - -static inline uint32_t pmu_num_counters(CPUARMState *env) -{ - return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; -} - -/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ -static inline uint64_t pmu_counter_mask(CPUARMState *env) -{ - return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); -} - -typedef struct pm_event { - uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ - /* If the event is supported on this CPU (used to generate PMCEID[01]) */ - bool (*supported)(CPUARMState *); - /* - * Retrieve the current count of the underlying event. The programmed - * counters hold a difference from the return value from this function - */ - uint64_t (*get_count)(CPUARMState *); - /* - * Return how many nanoseconds it will take (at a minimum) for count events - * to occur. A negative value indicates the counter will never overflow, or - * that the counter has otherwise arranged for the overflow bit to be set - * and the PMU interrupt to be raised on overflow. - */ - int64_t (*ns_per_count)(uint64_t); -} pm_event; - -static bool event_always_supported(CPUARMState *env) -{ - return true; -} - -static uint64_t swinc_get_count(CPUARMState *env) -{ - /* - * SW_INCR events are written directly to the pmevcntr's by writes to - * PMSWINC, so there is no underlying count maintained by the PMU itself - */ - return 0; -} - -static int64_t swinc_ns_per(uint64_t ignored) -{ - return -1; -} - -/* - * Return the underlying cycle count for the PMU cycle counters. If we're in - * usermode, simply return 0. - */ -static uint64_t cycles_get_count(CPUARMState *env) -{ -#ifndef CONFIG_USER_ONLY - return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), - ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); -#else - return cpu_get_host_ticks(); -#endif -} - -#ifndef CONFIG_USER_ONLY -static int64_t cycles_ns_per(uint64_t cycles) -{ - return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; -} - -static bool instructions_supported(CPUARMState *env) -{ - return icount_enabled() == 1; /* Precise instruction counting */ -} - -static uint64_t instructions_get_count(CPUARMState *env) -{ - return (uint64_t)icount_get_raw(); -} - -static int64_t instructions_ns_per(uint64_t icount) -{ - return icount_to_ns((int64_t)icount); -} -#endif - -static bool pmu_8_1_events_supported(CPUARMState *env) -{ - /* For events which are supported in any v8.1 PMU */ - return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); -} - -static bool pmu_8_4_events_supported(CPUARMState *env) -{ - /* For events which are supported in any v8.1 PMU */ - return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); -} - -static uint64_t zero_event_get_count(CPUARMState *env) -{ - /* For events which on QEMU never fire, so their count is always zero */ - return 0; -} - -static int64_t zero_event_ns_per(uint64_t cycles) -{ - /* An event which never fires can never overflow */ - return -1; -} - -static const pm_event pm_events[] = { - { .number = 0x000, /* SW_INCR */ - .supported = event_always_supported, - .get_count = swinc_get_count, - .ns_per_count = swinc_ns_per, - }, -#ifndef CONFIG_USER_ONLY - { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ - .supported = instructions_supported, - .get_count = instructions_get_count, - .ns_per_count = instructions_ns_per, - }, - { .number = 0x011, /* CPU_CYCLES, Cycle */ - .supported = event_always_supported, - .get_count = cycles_get_count, - .ns_per_count = cycles_ns_per, - }, -#endif - { .number = 0x023, /* STALL_FRONTEND */ - .supported = pmu_8_1_events_supported, - .get_count = zero_event_get_count, - .ns_per_count = zero_event_ns_per, - }, - { .number = 0x024, /* STALL_BACKEND */ - .supported = pmu_8_1_events_supported, - .get_count = zero_event_get_count, - .ns_per_count = zero_event_ns_per, - }, - { .number = 0x03c, /* STALL */ - .supported = pmu_8_4_events_supported, - .get_count = zero_event_get_count, - .ns_per_count = zero_event_ns_per, - }, -}; - -/* - * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of - * events (i.e. the statistical profiling extension), this implementation - * should first be updated to something sparse instead of the current - * supported_event_map[] array. - */ -#define MAX_EVENT_ID 0x3c -#define UNSUPPORTED_EVENT UINT16_MAX -static uint16_t supported_event_map[MAX_EVENT_ID + 1]; - -/* - * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map - * of ARM event numbers to indices in our pm_events array. - * - * Note: Events in the 0x40XX range are not currently supported. - */ -void pmu_init(ARMCPU *cpu) -{ - unsigned int i; - - /* - * Empty supported_event_map and cpu->pmceid[01] before adding supported - * events to them - */ - for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { - supported_event_map[i] = UNSUPPORTED_EVENT; - } - cpu->pmceid0 = 0; - cpu->pmceid1 = 0; - - for (i = 0; i < ARRAY_SIZE(pm_events); i++) { - const pm_event *cnt = &pm_events[i]; - assert(cnt->number <= MAX_EVENT_ID); - /* We do not currently support events in the 0x40xx range */ - assert(cnt->number <= 0x3f); - - if (cnt->supported(&cpu->env)) { - supported_event_map[cnt->number] = i; - uint64_t event_mask = 1ULL << (cnt->number & 0x1f); - if (cnt->number & 0x20) { - cpu->pmceid1 |= event_mask; - } else { - cpu->pmceid0 |= event_mask; - } - } - } -} - -/* - * Check at runtime whether a PMU event is supported for the current machine - */ -static bool event_supported(uint16_t number) -{ - if (number > MAX_EVENT_ID) { - return false; - } - return supported_event_map[number] != UNSUPPORTED_EVENT; -} - -static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - /* Performance monitor registers user accessibility is controlled - * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable - * trapping to EL2 or EL3 for other accesses. - */ - int el = arm_current_el(env); - uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); - - if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { - return CP_ACCESS_TRAP; - } - if (el < 2 && (mdcr_el2 & MDCR_TPM)) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { - return CP_ACCESS_TRAP_EL3; - } - - return CP_ACCESS_OK; -} - -static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* ER: event counter read trap control */ - if (arm_feature(env, ARM_FEATURE_V8) - && arm_current_el(env) == 0 - && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 - && isread) { - return CP_ACCESS_OK; - } - - return pmreg_access(env, ri, isread); -} - -static CPAccessResult pmreg_access_swinc(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* SW: software increment write trap control */ - if (arm_feature(env, ARM_FEATURE_V8) - && arm_current_el(env) == 0 - && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 - && !isread) { - return CP_ACCESS_OK; - } - - return pmreg_access(env, ri, isread); -} - -static CPAccessResult pmreg_access_selr(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* ER: event counter read trap control */ - if (arm_feature(env, ARM_FEATURE_V8) - && arm_current_el(env) == 0 - && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { - return CP_ACCESS_OK; - } - - return pmreg_access(env, ri, isread); -} - -static CPAccessResult pmreg_access_ccntr(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* CR: cycle counter read trap control */ - if (arm_feature(env, ARM_FEATURE_V8) - && arm_current_el(env) == 0 - && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 - && isread) { - return CP_ACCESS_OK; - } - - return pmreg_access(env, ri, isread); -} - -/* Returns true if the counter (pass 31 for PMCCNTR) should count events using - * the current EL, security state, and register configuration. - */ -static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) -{ - uint64_t filter; - bool e, p, u, nsk, nsu, nsh, m; - bool enabled, prohibited, filtered; - bool secure = arm_is_secure(env); - int el = arm_current_el(env); - uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); - uint8_t hpmn = mdcr_el2 & MDCR_HPMN; - - if (!arm_feature(env, ARM_FEATURE_PMU)) { - return false; - } - - if (!arm_feature(env, ARM_FEATURE_EL2) || - (counter < hpmn || counter == 31)) { - e = env->cp15.c9_pmcr & PMCRE; - } else { - e = mdcr_el2 & MDCR_HPME; - } - enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); - - if (!secure) { - if (el == 2 && (counter < hpmn || counter == 31)) { - prohibited = mdcr_el2 & MDCR_HPMD; - } else { - prohibited = false; - } - } else { - prohibited = arm_feature(env, ARM_FEATURE_EL3) && - !(env->cp15.mdcr_el3 & MDCR_SPME); - } - - if (prohibited && counter == 31) { - prohibited = env->cp15.c9_pmcr & PMCRDP; - } - - if (counter == 31) { - filter = env->cp15.pmccfiltr_el0; - } else { - filter = env->cp15.c14_pmevtyper[counter]; - } - - p = filter & PMXEVTYPER_P; - u = filter & PMXEVTYPER_U; - nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); - nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); - nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); - m = arm_el_is_aa64(env, 1) && - arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); - - if (el == 0) { - filtered = secure ? u : u != nsu; - } else if (el == 1) { - filtered = secure ? p : p != nsk; - } else if (el == 2) { - filtered = !nsh; - } else { /* EL3 */ - filtered = m != p; - } - - if (counter != 31) { - /* - * If not checking PMCCNTR, ensure the counter is setup to an event we - * support - */ - uint16_t event = filter & PMXEVTYPER_EVTCOUNT; - if (!event_supported(event)) { - return false; - } - } - - return enabled && !prohibited && !filtered; -} - -static void pmu_update_irq(CPUARMState *env) -{ - ARMCPU *cpu = env_archcpu(env); - qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && - (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); -} - -/* - * Ensure c15_ccnt is the guest-visible count so that operations such as - * enabling/disabling the counter or filtering, modifying the count itself, - * etc. can be done logically. This is essentially a no-op if the counter is - * not enabled at the time of the call. - */ -static void pmccntr_op_start(CPUARMState *env) -{ - uint64_t cycles = cycles_get_count(env); - - if (pmu_counter_enabled(env, 31)) { - uint64_t eff_cycles = cycles; - if (env->cp15.c9_pmcr & PMCRD) { - /* Increment once every 64 processor clock cycles */ - eff_cycles /= 64; - } - - uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; - - uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ - 1ull << 63 : 1ull << 31; - if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { - env->cp15.c9_pmovsr |= (1 << 31); - pmu_update_irq(env); - } - - env->cp15.c15_ccnt = new_pmccntr; - } - env->cp15.c15_ccnt_delta = cycles; -} - -/* - * If PMCCNTR is enabled, recalculate the delta between the clock and the - * guest-visible count. A call to pmccntr_op_finish should follow every call to - * pmccntr_op_start. - */ -static void pmccntr_op_finish(CPUARMState *env) -{ - if (pmu_counter_enabled(env, 31)) { -#ifndef CONFIG_USER_ONLY - /* Calculate when the counter will next overflow */ - uint64_t remaining_cycles = -env->cp15.c15_ccnt; - if (!(env->cp15.c9_pmcr & PMCRLC)) { - remaining_cycles = (uint32_t)remaining_cycles; - } - int64_t overflow_in = cycles_ns_per(remaining_cycles); - - if (overflow_in > 0) { - int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + - overflow_in; - ARMCPU *cpu = env_archcpu(env); - timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); - } -#endif - - uint64_t prev_cycles = env->cp15.c15_ccnt_delta; - if (env->cp15.c9_pmcr & PMCRD) { - /* Increment once every 64 processor clock cycles */ - prev_cycles /= 64; - } - env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; - } -} - -static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) -{ - - uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; - uint64_t count = 0; - if (event_supported(event)) { - uint16_t event_idx = supported_event_map[event]; - count = pm_events[event_idx].get_count(env); - } - - if (pmu_counter_enabled(env, counter)) { - uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; - - if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { - env->cp15.c9_pmovsr |= (1 << counter); - pmu_update_irq(env); - } - env->cp15.c14_pmevcntr[counter] = new_pmevcntr; - } - env->cp15.c14_pmevcntr_delta[counter] = count; -} - -static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) -{ - if (pmu_counter_enabled(env, counter)) { -#ifndef CONFIG_USER_ONLY - uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; - uint16_t event_idx = supported_event_map[event]; - uint64_t delta = UINT32_MAX - - (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; - int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); - - if (overflow_in > 0) { - int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + - overflow_in; - ARMCPU *cpu = env_archcpu(env); - timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); - } -#endif - - env->cp15.c14_pmevcntr_delta[counter] -= - env->cp15.c14_pmevcntr[counter]; - } -} - -void pmu_op_start(CPUARMState *env) -{ - unsigned int i; - pmccntr_op_start(env); - for (i = 0; i < pmu_num_counters(env); i++) { - pmevcntr_op_start(env, i); - } -} - -void pmu_op_finish(CPUARMState *env) -{ - unsigned int i; - pmccntr_op_finish(env); - for (i = 0; i < pmu_num_counters(env); i++) { - pmevcntr_op_finish(env, i); - } -} - -void pmu_pre_el_change(ARMCPU *cpu, void *ignored) -{ - pmu_op_start(&cpu->env); -} - -void pmu_post_el_change(ARMCPU *cpu, void *ignored) -{ - pmu_op_finish(&cpu->env); -} - -void arm_pmu_timer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - /* - * Update all the counter values based on the current underlying counts, - * triggering interrupts to be raised, if necessary. pmu_op_finish() also - * has the effect of setting the cpu->pmu_timer to the next earliest time a - * counter may expire. - */ - pmu_op_start(&cpu->env); - pmu_op_finish(&cpu->env); -} - -static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmu_op_start(env); - - if (value & PMCRC) { - /* The counter has been reset */ - env->cp15.c15_ccnt = 0; - } - - if (value & PMCRP) { - unsigned int i; - for (i = 0; i < pmu_num_counters(env); i++) { - env->cp15.c14_pmevcntr[i] = 0; - } - } - - env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; - env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); - - pmu_op_finish(env); -} - -static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - unsigned int i; - for (i = 0; i < pmu_num_counters(env); i++) { - /* Increment a counter's count iff: */ - if ((value & (1 << i)) && /* counter's bit is set */ - /* counter is enabled and not filtered */ - pmu_counter_enabled(env, i) && - /* counter is SW_INCR */ - (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { - pmevcntr_op_start(env, i); - - /* - * Detect if this write causes an overflow since we can't predict - * PMSWINC overflows like we can for other events - */ - uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; - - if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { - env->cp15.c9_pmovsr |= (1 << i); - pmu_update_irq(env); - } - - env->cp15.c14_pmevcntr[i] = new_pmswinc; - - pmevcntr_op_finish(env, i); - } - } -} - -static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - uint64_t ret; - pmccntr_op_start(env); - ret = env->cp15.c15_ccnt; - pmccntr_op_finish(env); - return ret; -} - -static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and - * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the - * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are - * accessed. - */ - env->cp15.c9_pmselr = value & 0x1f; -} - -static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmccntr_op_start(env); - env->cp15.c15_ccnt = value; - pmccntr_op_finish(env); -} - -static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint64_t cur_val = pmccntr_read(env, NULL); - - pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); -} - -static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmccntr_op_start(env); - env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; - pmccntr_op_finish(env); -} - -static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmccntr_op_start(env); - /* M is not accessible from AArch32 */ - env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | - (value & PMCCFILTR); - pmccntr_op_finish(env); -} - -static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* M is not visible in AArch32 */ - return env->cp15.pmccfiltr_el0 & PMCCFILTR; -} - -static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - value &= pmu_counter_mask(env); - env->cp15.c9_pmcnten |= value; -} - -static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - value &= pmu_counter_mask(env); - env->cp15.c9_pmcnten &= ~value; -} - -static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - value &= pmu_counter_mask(env); - env->cp15.c9_pmovsr &= ~value; - pmu_update_irq(env); -} - -static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - value &= pmu_counter_mask(env); - env->cp15.c9_pmovsr |= value; - pmu_update_irq(env); -} - -static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value, const uint8_t counter) -{ - if (counter == 31) { - pmccfiltr_write(env, ri, value); - } else if (counter < pmu_num_counters(env)) { - pmevcntr_op_start(env, counter); - - /* - * If this counter's event type is changing, store the current - * underlying count for the new type in c14_pmevcntr_delta[counter] so - * pmevcntr_op_finish has the correct baseline when it converts back to - * a delta. - */ - uint16_t old_event = env->cp15.c14_pmevtyper[counter] & - PMXEVTYPER_EVTCOUNT; - uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; - if (old_event != new_event) { - uint64_t count = 0; - if (event_supported(new_event)) { - uint16_t event_idx = supported_event_map[new_event]; - count = pm_events[event_idx].get_count(env); - } - env->cp15.c14_pmevcntr_delta[counter] = count; - } - - env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; - pmevcntr_op_finish(env, counter); - } - /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when - * PMSELR value is equal to or greater than the number of implemented - * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. - */ -} - -static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, - const uint8_t counter) -{ - if (counter == 31) { - return env->cp15.pmccfiltr_el0; - } else if (counter < pmu_num_counters(env)) { - return env->cp15.c14_pmevtyper[counter]; - } else { - /* - * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER - * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). - */ - return 0; - } -} - -static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - pmevtyper_write(env, ri, value, counter); -} - -static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - env->cp15.c14_pmevtyper[counter] = value; - - /* - * pmevtyper_rawwrite is called between a pair of pmu_op_start and - * pmu_op_finish calls when loading saved state for a migration. Because - * we're potentially updating the type of event here, the value written to - * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a - * different counter type. Therefore, we need to set this value to the - * current count for the counter type we're writing so that pmu_op_finish - * has the correct count for its calculation. - */ - uint16_t event = value & PMXEVTYPER_EVTCOUNT; - if (event_supported(event)) { - uint16_t event_idx = supported_event_map[event]; - env->cp15.c14_pmevcntr_delta[counter] = - pm_events[event_idx].get_count(env); - } -} - -static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - return pmevtyper_read(env, ri, counter); -} - -static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); -} - -static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); -} - -static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value, uint8_t counter) -{ - if (counter < pmu_num_counters(env)) { - pmevcntr_op_start(env, counter); - env->cp15.c14_pmevcntr[counter] = value; - pmevcntr_op_finish(env, counter); - } - /* - * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR - * are CONSTRAINED UNPREDICTABLE. - */ -} - -static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, - uint8_t counter) -{ - if (counter < pmu_num_counters(env)) { - uint64_t ret; - pmevcntr_op_start(env, counter); - ret = env->cp15.c14_pmevcntr[counter]; - pmevcntr_op_finish(env, counter); - return ret; - } else { - /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR - * are CONSTRAINED UNPREDICTABLE. */ - return 0; - } -} - -static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - pmevcntr_write(env, ri, value, counter); -} - -static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - return pmevcntr_read(env, ri, counter); -} - -static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - assert(counter < pmu_num_counters(env)); - env->cp15.c14_pmevcntr[counter] = value; - pmevcntr_write(env, ri, value, counter); -} - -static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - assert(counter < pmu_num_counters(env)); - return env->cp15.c14_pmevcntr[counter]; -} - -static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); -} - -static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); -} - -static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - if (arm_feature(env, ARM_FEATURE_V8)) { - env->cp15.c9_pmuserenr = value & 0xf; - } else { - env->cp15.c9_pmuserenr = value & 1; - } -} - -static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* We have no event counters so only the C bit can be changed */ - value &= pmu_counter_mask(env); - env->cp15.c9_pminten |= value; - pmu_update_irq(env); -} - -static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - value &= pmu_counter_mask(env); - env->cp15.c9_pminten &= ~value; - pmu_update_irq(env); -} - -static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Note that even though the AArch64 view of this register has bits - * [10:0] all RES0 we can only mask the bottom 5, to comply with the - * architectural requirements for bits which are RES0 only in some - * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 - * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) - */ - raw_write(env, ri, value & ~0x1FULL); -} - -static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ - /* Begin with base v8.0 state. */ - uint32_t valid_mask = 0x3fff; - ARMCPU *cpu = env_archcpu(env); - - if (ri->state == ARM_CP_STATE_AA64) { - if (arm_feature(env, ARM_FEATURE_AARCH64) && - !cpu_isar_feature(aa64_aa32_el1, cpu)) { - value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ - } - valid_mask &= ~SCR_NET; - - if (cpu_isar_feature(aa64_lor, cpu)) { - valid_mask |= SCR_TLOR; - } - if (cpu_isar_feature(aa64_pauth, cpu)) { - valid_mask |= SCR_API | SCR_APK; - } - if (cpu_isar_feature(aa64_sel2, cpu)) { - valid_mask |= SCR_EEL2; - } - if (cpu_isar_feature(aa64_mte, cpu)) { - valid_mask |= SCR_ATA; - } - } else { - valid_mask &= ~(SCR_RW | SCR_ST); - } - - if (!arm_feature(env, ARM_FEATURE_EL2)) { - valid_mask &= ~SCR_HCE; - - /* On ARMv7, SMD (or SCD as it is called in v7) is only - * supported if EL2 exists. The bit is UNK/SBZP when - * EL2 is unavailable. In QEMU ARMv7, we force it to always zero - * when EL2 is unavailable. - * On ARMv8, this bit is always available. - */ - if (arm_feature(env, ARM_FEATURE_V7) && - !arm_feature(env, ARM_FEATURE_V8)) { - valid_mask &= ~SCR_SMD; - } - } - - /* Clear all-context RES0 bits. */ - value &= valid_mask; - raw_write(env, ri, value); -} - -static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* - * scr_write will set the RES1 bits on an AArch64-only CPU. - * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. - */ - scr_write(env, ri, 0); -} - -static CPAccessResult access_aa64_tid2(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - ARMCPU *cpu = env_archcpu(env); - - /* Acquire the CSSELR index from the bank corresponding to the CCSIDR - * bank - */ - uint32_t index = A32_BANKED_REG_GET(env, csselr, - ri->secure & ARM_CP_SECSTATE_S); - - return cpu->ccsidr[index]; -} - -static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - raw_write(env, ri, value & 0xf); -} - -static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - CPUState *cs = env_cpu(env); - bool el1 = arm_current_el(env) == 1; - uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; - uint64_t ret = 0; - - if (hcr_el2 & HCR_IMO) { - if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { - ret |= CPSR_I; - } - } else { - if (cs->interrupt_request & CPU_INTERRUPT_HARD) { - ret |= CPSR_I; - } - } - - if (hcr_el2 & HCR_FMO) { - if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { - ret |= CPSR_F; - } - } else { - if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { - ret |= CPSR_F; - } - } - - /* External aborts are not possible in QEMU so A bit is always clear */ - return ret; -} - -static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_feature(env, ARM_FEATURE_V8)) { - return access_aa64_tid1(env, ri, isread); - } - - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo v7_cp_reginfo[] = { - /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ - { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, - .access = PL1_W, .type = ARM_CP_NOP }, - /* Performance monitors are implementation defined in v7, - * but with an ARM recommended set of registers, which we - * follow. - * - * Performance registers fall into three categories: - * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) - * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) - * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) - * For the cases controlled by PMUSERENR we must set .access to PL0_RW - * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. - */ - { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, - .access = PL0_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), - .writefn = pmcntenset_write, - .accessfn = pmreg_access, - .raw_writefn = raw_write }, - { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, - .access = PL0_RW, .accessfn = pmreg_access, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, - .writefn = pmcntenset_write, .raw_writefn = raw_write }, - { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, - .access = PL0_RW, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), - .accessfn = pmreg_access, - .writefn = pmcntenclr_write, - .type = ARM_CP_ALIAS }, - { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), - .writefn = pmcntenclr_write }, - { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, - .access = PL0_RW, .type = ARM_CP_IO, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), - .accessfn = pmreg_access, - .writefn = pmovsr_write, - .raw_writefn = raw_write }, - { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), - .writefn = pmovsr_write, - .raw_writefn = raw_write }, - { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, - .access = PL0_W, .accessfn = pmreg_access_swinc, - .type = ARM_CP_NO_RAW | ARM_CP_IO, - .writefn = pmswinc_write }, - { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, - .access = PL0_W, .accessfn = pmreg_access_swinc, - .type = ARM_CP_NO_RAW | ARM_CP_IO, - .writefn = pmswinc_write }, - { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, - .access = PL0_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), - .accessfn = pmreg_access_selr, .writefn = pmselr_write, - .raw_writefn = raw_write}, - { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, - .access = PL0_RW, .accessfn = pmreg_access_selr, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), - .writefn = pmselr_write, .raw_writefn = raw_write, }, - { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, - .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, - .readfn = pmccntr_read, .writefn = pmccntr_write32, - .accessfn = pmreg_access_ccntr }, - { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, - .access = PL0_RW, .accessfn = pmreg_access_ccntr, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), - .readfn = pmccntr_read, .writefn = pmccntr_write, - .raw_readfn = raw_read, .raw_writefn = raw_write, }, - { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, - .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .resetvalue = 0, }, - { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, - .writefn = pmccfiltr_write, .raw_writefn = raw_write, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), - .resetvalue = 0, }, - { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, - .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = pmreg_access, - .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, - { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, - .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = pmreg_access, - .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, - { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, - .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = pmreg_access_xevcntr, - .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, - { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, - .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = pmreg_access_xevcntr, - .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, - { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, - .access = PL0_R | PL1_RW, .accessfn = access_tpm, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), - .resetvalue = 0, - .writefn = pmuserenr_write, .raw_writefn = raw_write }, - { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, - .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), - .resetvalue = 0, - .writefn = pmuserenr_write, .raw_writefn = raw_write }, - { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tpm, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), - .resetvalue = 0, - .writefn = pmintenset_write, .raw_writefn = raw_write }, - { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tpm, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), - .writefn = pmintenset_write, .raw_writefn = raw_write, - .resetvalue = 0x0 }, - { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, - .access = PL1_RW, .accessfn = access_tpm, - .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), - .writefn = pmintenclr_write, }, - { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, - .access = PL1_RW, .accessfn = access_tpm, - .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), - .writefn = pmintenclr_write }, - { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, - .access = PL1_R, - .accessfn = access_aa64_tid2, - .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, - { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, - .access = PL1_RW, - .accessfn = access_aa64_tid2, - .writefn = csselr_write, .resetvalue = 0, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), - offsetof(CPUARMState, cp15.csselr_ns) } }, - /* Auxiliary ID register: this actually has an IMPDEF value but for now - * just RAZ for all cores: - */ - { .name = "AIDR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid1, - .resetvalue = 0 }, - /* Auxiliary fault status registers: these also are IMPDEF, and we - * choose to RAZ/WI for all cores. - */ - { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_CONST, .resetvalue = 0 }, - /* MAIR can just read-as-written because we don't implement caches - * and so don't need to care about memory attributes. - */ - { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), - .resetvalue = 0 }, - { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, - .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), - .resetvalue = 0 }, - /* For non-long-descriptor page tables these are PRRR and NMRR; - * regardless they still act as reads-as-written for QEMU. - */ - /* MAIR0/1 are defined separately from their 64-bit counterpart which - * allows them to assign the correct fieldoffset based on the endianness - * handled in the field definitions. - */ - { .name = "MAIR0", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), - offsetof(CPUARMState, cp15.mair0_ns) }, - .resetfn = arm_cp_reset_ignore }, - { .name = "MAIR1", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), - offsetof(CPUARMState, cp15.mair1_ns) }, - .resetfn = arm_cp_reset_ignore }, - { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, - /* 32 bit ITLB invalidates */ - { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiall_write }, - { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimva_write }, - { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiasid_write }, - /* 32 bit DTLB invalidates */ - { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiall_write }, - { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimva_write }, - { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiasid_write }, - /* 32 bit TLB invalidates */ - { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiall_write }, - { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimva_write }, - { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiasid_write }, - { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimvaa_write }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo v7mp_cp_reginfo[] = { - /* 32 bit TLB invalidates, Inner Shareable */ - { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiall_is_write }, - { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimva_is_write }, - { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiasid_is_write }, - { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimvaa_is_write }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo pmovsset_cp_reginfo[] = { - /* PMOVSSET is not implemented in v7 before v7ve */ - { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), - .writefn = pmovsset_write, - .raw_writefn = raw_write }, - { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), - .writefn = pmovsset_write, - .raw_writefn = raw_write }, - REGINFO_SENTINEL -}; - -static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - value &= 1; - env->teecr = value; -} - -static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 0 && (env->teecr & 1)) { - return CP_ACCESS_TRAP; - } - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo t2ee_cp_reginfo[] = { - { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), - .resetvalue = 0, - .writefn = teecr_write }, - { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, - .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), - .accessfn = teehbr_access, .resetvalue = 0 }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo v6k_cp_reginfo[] = { - { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, - .access = PL0_RW, - .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, - { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL0_RW, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), - offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, - .resetfn = arm_cp_reset_ignore }, - { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, - .access = PL0_R|PL1_W, - .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), - .resetvalue = 0}, - { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, - .access = PL0_R|PL1_W, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), - offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, - .resetfn = arm_cp_reset_ignore }, - { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, - { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, - .access = PL1_RW, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), - offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, - .resetvalue = 0 }, - REGINFO_SENTINEL -}; - -#ifndef CONFIG_USER_ONLY - -static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - /* - * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. - * Writable only at the highest implemented exception level. - */ - int el = arm_current_el(env); - uint64_t hcr; - uint32_t cntkctl; - - switch (el) { - case 0: - hcr = arm_hcr_el2_eff(env); - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - cntkctl = env->cp15.cnthctl_el2; - } else { - cntkctl = env->cp15.c14_cntkctl; - } - if (!extract32(cntkctl, 0, 2)) { - return CP_ACCESS_TRAP; - } - break; - case 1: - if (!isread && ri->state == ARM_CP_STATE_AA32 && - arm_is_secure_below_el3(env)) { - /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ - return CP_ACCESS_TRAP_UNCATEGORIZED; - } - break; - case 2: - case 3: - break; - } - - if (!isread && el < arm_highest_el(env)) { - return CP_ACCESS_TRAP_UNCATEGORIZED; - } - - return CP_ACCESS_OK; -} - -static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, - bool isread) -{ - unsigned int cur_el = arm_current_el(env); - bool has_el2 = arm_is_el2_enabled(env); - uint64_t hcr = arm_hcr_el2_eff(env); - - switch (cur_el) { - case 0: - /* If HCR_EL2. == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - return (extract32(env->cp15.cnthctl_el2, timeridx, 1) - ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); - } - - /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ - if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { - return CP_ACCESS_TRAP; - } - - /* If HCR_EL2. == '10': check CNTHCTL_EL2.EL1PCTEN. */ - if (hcr & HCR_E2H) { - if (timeridx == GTIMER_PHYS && - !extract32(env->cp15.cnthctl_el2, 10, 1)) { - return CP_ACCESS_TRAP_EL2; - } - } else { - /* If HCR_EL2. == 0: check CNTHCTL_EL2.EL1PCEN. */ - if (has_el2 && timeridx == GTIMER_PHYS && - !extract32(env->cp15.cnthctl_el2, 1, 1)) { - return CP_ACCESS_TRAP_EL2; - } - } - break; - - case 1: - /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ - if (has_el2 && timeridx == GTIMER_PHYS && - (hcr & HCR_E2H - ? !extract32(env->cp15.cnthctl_el2, 10, 1) - : !extract32(env->cp15.cnthctl_el2, 0, 1))) { - return CP_ACCESS_TRAP_EL2; - } - break; - } - return CP_ACCESS_OK; -} - -static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, - bool isread) -{ - unsigned int cur_el = arm_current_el(env); - bool has_el2 = arm_is_el2_enabled(env); - uint64_t hcr = arm_hcr_el2_eff(env); - - switch (cur_el) { - case 0: - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - /* If HCR_EL2. == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ - return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) - ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); - } - - /* - * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from - * EL0 if EL0[PV]TEN is zero. - */ - if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { - return CP_ACCESS_TRAP; - } - /* fall through */ - - case 1: - if (has_el2 && timeridx == GTIMER_PHYS) { - if (hcr & HCR_E2H) { - /* If HCR_EL2. == '10': check CNTHCTL_EL2.EL1PTEN. */ - if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { - return CP_ACCESS_TRAP_EL2; - } - } else { - /* If HCR_EL2. == 0: check CNTHCTL_EL2.EL1PCEN. */ - if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { - return CP_ACCESS_TRAP_EL2; - } - } - } - break; - } - return CP_ACCESS_OK; -} - -static CPAccessResult gt_pct_access(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - return gt_counter_access(env, GTIMER_PHYS, isread); -} - -static CPAccessResult gt_vct_access(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - return gt_counter_access(env, GTIMER_VIRT, isread); -} - -static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - return gt_timer_access(env, GTIMER_PHYS, isread); -} - -static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - return gt_timer_access(env, GTIMER_VIRT, isread); -} - -static CPAccessResult gt_stimer_access(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* - * The AArch64 register view of the secure physical timer is - * always accessible from EL3, and configurably accessible from - * Secure EL1. - */ - switch (arm_current_el(env)) { - case 1: - if (!arm_is_secure(env)) { - return CP_ACCESS_TRAP; - } - if (!(env->cp15.scr_el3 & SCR_ST)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; - case 0: - case 2: - return CP_ACCESS_TRAP; - case 3: - return CP_ACCESS_OK; - default: - g_assert_not_reached(); - } -} - -static uint64_t gt_get_countervalue(CPUARMState *env) -{ - ARMCPU *cpu = env_archcpu(env); - - return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); -} - -static void gt_recalc_timer(ARMCPU *cpu, int timeridx) -{ - ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; - - if (gt->ctl & 1) { - /* - * Timer enabled: calculate and set current ISTATUS, irq, and - * reset timer to when ISTATUS next has to change - */ - uint64_t offset = timeridx == GTIMER_VIRT ? - cpu->env.cp15.cntvoff_el2 : 0; - uint64_t count = gt_get_countervalue(&cpu->env); - /* Note that this must be unsigned 64 bit arithmetic: */ - int istatus = count - offset >= gt->cval; - uint64_t nexttick; - int irqstate; - - gt->ctl = deposit32(gt->ctl, 2, 1, istatus); - - irqstate = (istatus && !(gt->ctl & 2)); - qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); - - if (istatus) { - /* Next transition is when count rolls back over to zero */ - nexttick = UINT64_MAX; - } else { - /* Next transition is when we hit cval */ - nexttick = gt->cval + offset; - } - /* - * Note that the desired next expiry time might be beyond the - * signed-64-bit range of a QEMUTimer -- in this case we just - * set the timer for as far in the future as possible. When the - * timer expires we will reset the timer for any remaining period. - */ - if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { - timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); - } else { - timer_mod(cpu->gt_timer[timeridx], nexttick); - } - trace_arm_gt_recalc(timeridx, irqstate, nexttick); - } else { - /* Timer disabled: ISTATUS and timer output always clear */ - gt->ctl &= ~4; - qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); - timer_del(cpu->gt_timer[timeridx]); - trace_arm_gt_recalc_disabled(timeridx); - } -} - -static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, - int timeridx) -{ - ARMCPU *cpu = env_archcpu(env); - - timer_del(cpu->gt_timer[timeridx]); -} - -static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_get_countervalue(env); -} - -static uint64_t gt_virt_cnt_offset(CPUARMState *env) -{ - uint64_t hcr; - - switch (arm_current_el(env)) { - case 2: - hcr = arm_hcr_el2_eff(env); - if (hcr & HCR_E2H) { - return 0; - } - break; - case 0: - hcr = arm_hcr_el2_eff(env); - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - return 0; - } - break; - } - - return env->cp15.cntvoff_el2; -} - -static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_get_countervalue(env) - gt_virt_cnt_offset(env); -} - -static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - int timeridx, - uint64_t value) -{ - trace_arm_gt_cval_write(timeridx, value); - env->cp15.c14_timer[timeridx].cval = value; - gt_recalc_timer(env_archcpu(env), timeridx); -} - -static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, - int timeridx) -{ - uint64_t offset = 0; - - switch (timeridx) { - case GTIMER_VIRT: - case GTIMER_HYPVIRT: - offset = gt_virt_cnt_offset(env); - break; - } - - return (uint32_t)(env->cp15.c14_timer[timeridx].cval - - (gt_get_countervalue(env) - offset)); -} - -static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - int timeridx, - uint64_t value) -{ - uint64_t offset = 0; - - switch (timeridx) { - case GTIMER_VIRT: - case GTIMER_HYPVIRT: - offset = gt_virt_cnt_offset(env); - break; - } - - trace_arm_gt_tval_write(timeridx, value); - env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + - sextract64(value, 0, 32); - gt_recalc_timer(env_archcpu(env), timeridx); -} - -static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - int timeridx, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; - - trace_arm_gt_ctl_write(timeridx, value); - env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); - if ((oldval ^ value) & 1) { - /* Enable toggled */ - gt_recalc_timer(cpu, timeridx); - } else if ((oldval ^ value) & 2) { - /* - * IMASK toggled: don't need to recalculate, - * just set the interrupt line based on ISTATUS - */ - int irqstate = (oldval & 4) && !(value & 2); - - trace_arm_gt_imask_toggle(timeridx, irqstate); - qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); - } -} - -static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - gt_timer_reset(env, ri, GTIMER_PHYS); -} - -static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_cval_write(env, ri, GTIMER_PHYS, value); -} - -static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_tval_read(env, ri, GTIMER_PHYS); -} - -static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_tval_write(env, ri, GTIMER_PHYS, value); -} - -static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_ctl_write(env, ri, GTIMER_PHYS, value); -} - -static int gt_phys_redir_timeridx(CPUARMState *env) -{ - switch (arm_mmu_idx(env)) { - case ARMMMUIdx_E20_0: - case ARMMMUIdx_E20_2: - case ARMMMUIdx_E20_2_PAN: - case ARMMMUIdx_SE20_0: - case ARMMMUIdx_SE20_2: - case ARMMMUIdx_SE20_2_PAN: - return GTIMER_HYP; - default: - return GTIMER_PHYS; - } -} - -static int gt_virt_redir_timeridx(CPUARMState *env) -{ - switch (arm_mmu_idx(env)) { - case ARMMMUIdx_E20_0: - case ARMMMUIdx_E20_2: - case ARMMMUIdx_E20_2_PAN: - case ARMMMUIdx_SE20_0: - case ARMMMUIdx_SE20_2: - case ARMMMUIdx_SE20_2_PAN: - return GTIMER_HYPVIRT; - default: - return GTIMER_VIRT; - } -} - -static uint64_t gt_phys_redir_cval_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_phys_redir_timeridx(env); - return env->cp15.c14_timer[timeridx].cval; -} - -static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_phys_redir_timeridx(env); - gt_cval_write(env, ri, timeridx, value); -} - -static uint64_t gt_phys_redir_tval_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_phys_redir_timeridx(env); - return gt_tval_read(env, ri, timeridx); -} - -static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_phys_redir_timeridx(env); - gt_tval_write(env, ri, timeridx, value); -} - -static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_phys_redir_timeridx(env); - return env->cp15.c14_timer[timeridx].ctl; -} - -static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_phys_redir_timeridx(env); - gt_ctl_write(env, ri, timeridx, value); -} - -static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - gt_timer_reset(env, ri, GTIMER_VIRT); -} - -static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_cval_write(env, ri, GTIMER_VIRT, value); -} - -static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_tval_read(env, ri, GTIMER_VIRT); -} - -static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_tval_write(env, ri, GTIMER_VIRT, value); -} - -static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_ctl_write(env, ri, GTIMER_VIRT, value); -} - -static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - trace_arm_gt_cntvoff_write(value); - raw_write(env, ri, value); - gt_recalc_timer(cpu, GTIMER_VIRT); -} - -static uint64_t gt_virt_redir_cval_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_virt_redir_timeridx(env); - return env->cp15.c14_timer[timeridx].cval; -} - -static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_virt_redir_timeridx(env); - gt_cval_write(env, ri, timeridx, value); -} - -static uint64_t gt_virt_redir_tval_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_virt_redir_timeridx(env); - return gt_tval_read(env, ri, timeridx); -} - -static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_virt_redir_timeridx(env); - gt_tval_write(env, ri, timeridx, value); -} - -static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_virt_redir_timeridx(env); - return env->cp15.c14_timer[timeridx].ctl; -} - -static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_virt_redir_timeridx(env); - gt_ctl_write(env, ri, timeridx, value); -} - -static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - gt_timer_reset(env, ri, GTIMER_HYP); -} - -static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_cval_write(env, ri, GTIMER_HYP, value); -} - -static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_tval_read(env, ri, GTIMER_HYP); -} - -static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_tval_write(env, ri, GTIMER_HYP, value); -} - -static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_ctl_write(env, ri, GTIMER_HYP, value); -} - -static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - gt_timer_reset(env, ri, GTIMER_SEC); -} - -static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_cval_write(env, ri, GTIMER_SEC, value); -} - -static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_tval_read(env, ri, GTIMER_SEC); -} - -static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_tval_write(env, ri, GTIMER_SEC, value); -} - -static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_ctl_write(env, ri, GTIMER_SEC, value); -} - -static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - gt_timer_reset(env, ri, GTIMER_HYPVIRT); -} - -static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_cval_write(env, ri, GTIMER_HYPVIRT, value); -} - -static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_tval_read(env, ri, GTIMER_HYPVIRT); -} - -static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_tval_write(env, ri, GTIMER_HYPVIRT, value); -} - -static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); -} - -void arm_gt_ptimer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - gt_recalc_timer(cpu, GTIMER_PHYS); -} - -void arm_gt_vtimer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - gt_recalc_timer(cpu, GTIMER_VIRT); -} - -void arm_gt_htimer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - gt_recalc_timer(cpu, GTIMER_HYP); -} - -void arm_gt_stimer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - gt_recalc_timer(cpu, GTIMER_SEC); -} - -void arm_gt_hvtimer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - gt_recalc_timer(cpu, GTIMER_HYPVIRT); -} - -static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) -{ - ARMCPU *cpu = env_archcpu(env); - - cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; -} - -static const ARMCPRegInfo generic_timer_cp_reginfo[] = { - /* - * Note that CNTFRQ is purely reads-as-written for the benefit - * of software; writing it doesn't actually change the timer frequency. - * Our reset value matches the fixed frequency we implement the timer at. - */ - { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, - .type = ARM_CP_ALIAS, - .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), - }, - { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, - .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), - .resetfn = arm_gt_cntfrq_reset, - }, - /* overall control: mostly access permissions */ - { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), - .resetvalue = 0, - }, - /* per-timer control */ - { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, - .secure = ARM_CP_SECSTATE_NS, - .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, - .accessfn = gt_ptimer_access, - .fieldoffset = offsetoflow32(CPUARMState, - cp15.c14_timer[GTIMER_PHYS].ctl), - .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, - .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, - }, - { .name = "CNTP_CTL_S", - .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, - .secure = ARM_CP_SECSTATE_S, - .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, - .accessfn = gt_ptimer_access, - .fieldoffset = offsetoflow32(CPUARMState, - cp15.c14_timer[GTIMER_SEC].ctl), - .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, - }, - { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, - .type = ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_ptimer_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), - .resetvalue = 0, - .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, - .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, - }, - { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, - .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, - .accessfn = gt_vtimer_access, - .fieldoffset = offsetoflow32(CPUARMState, - cp15.c14_timer[GTIMER_VIRT].ctl), - .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, - .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, - }, - { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, - .type = ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_vtimer_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), - .resetvalue = 0, - .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, - .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, - }, - /* TimerValue views: a 32 bit downcounting view of the underlying state */ - { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, - .secure = ARM_CP_SECSTATE_NS, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_ptimer_access, - .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, - }, - { .name = "CNTP_TVAL_S", - .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, - .secure = ARM_CP_SECSTATE_S, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_ptimer_access, - .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, - }, - { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, - .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, - }, - { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_vtimer_access, - .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, - }, - { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, - .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, - }, - /* The counter itself */ - { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, - .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = gt_pct_access, - .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, - }, - { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, - .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = gt_pct_access, .readfn = gt_cnt_read, - }, - { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, - .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = gt_vct_access, - .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, - }, - { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, - .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, - }, - /* Comparison value, indicating when the timer goes off */ - { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, - .secure = ARM_CP_SECSTATE_NS, - .access = PL0_RW, - .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), - .accessfn = gt_ptimer_access, - .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, - .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, - }, - { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, - .secure = ARM_CP_SECSTATE_S, - .access = PL0_RW, - .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), - .accessfn = gt_ptimer_access, - .writefn = gt_sec_cval_write, .raw_writefn = raw_write, - }, - { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, - .access = PL0_RW, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), - .resetvalue = 0, .accessfn = gt_ptimer_access, - .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, - .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, - }, - { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, - .access = PL0_RW, - .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), - .accessfn = gt_vtimer_access, - .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, - .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, - }, - { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, - .access = PL0_RW, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), - .resetvalue = 0, .accessfn = gt_vtimer_access, - .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, - .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, - }, - /* - * Secure timer -- this is actually restricted to only EL3 - * and configurably Secure-EL1 via the accessfn. - */ - { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, - .accessfn = gt_stimer_access, - .readfn = gt_sec_tval_read, - .writefn = gt_sec_tval_write, - .resetfn = gt_sec_timer_reset, - }, - { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, - .type = ARM_CP_IO, .access = PL1_RW, - .accessfn = gt_stimer_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), - .resetvalue = 0, - .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, - }, - { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, - .type = ARM_CP_IO, .access = PL1_RW, - .accessfn = gt_stimer_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), - .writefn = gt_sec_cval_write, .raw_writefn = raw_write, - }, - REGINFO_SENTINEL -}; - -static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { - return CP_ACCESS_TRAP; - } - return CP_ACCESS_OK; -} - -#else - -/* - * In user-mode most of the generic timer registers are inaccessible - * however modern kernels (4.12+) allow access to cntvct_el0 - */ - -static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - ARMCPU *cpu = env_archcpu(env); - - /* - * Currently we have no support for QEMUTimer in linux-user so we - * can't call gt_get_countervalue(env), instead we directly - * call the lower level functions. - */ - return cpu_get_clock() / gt_cntfrq_period_ns(cpu); -} - -static const ARMCPRegInfo generic_timer_cp_reginfo[] = { - { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, - .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, - .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), - .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, - }, - { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, - .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .readfn = gt_virt_cnt_read, - }, - REGINFO_SENTINEL -}; - -#endif - -static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ - if (arm_feature(env, ARM_FEATURE_LPAE)) { - raw_write(env, ri, value); - } else if (arm_feature(env, ARM_FEATURE_V7)) { - raw_write(env, ri, value & 0xfffff6ff); - } else { - raw_write(env, ri, value & 0xfffff1ff); - } -} - -#ifndef CONFIG_USER_ONLY -/* get_phys_addr() isn't present for user-mode-only targets */ - -static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (ri->opc2 & 4) { - /* - * The ATS12NSO* operations must trap to EL3 or EL2 if executed in - * Secure EL1 (which can only happen if EL3 is AArch64). - * They are simply UNDEF if executed from NS EL1. - * They function normally from EL2 or EL3. - */ - if (arm_current_el(env) == 1) { - if (arm_is_secure_below_el3(env)) { - if (env->cp15.scr_el3 & SCR_EEL2) { - return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; - } - return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; - } - return CP_ACCESS_TRAP_UNCATEGORIZED; - } - } - return CP_ACCESS_OK; -} - -#ifdef CONFIG_TCG -static uint64_t do_ats_write(CPUARMState *env, uint64_t value, - MMUAccessType access_type, ARMMMUIdx mmu_idx) -{ - hwaddr phys_addr; - target_ulong page_size; - int prot; - bool ret; - uint64_t par64; - bool format64 = false; - MemTxAttrs attrs = {}; - ARMMMUFaultInfo fi = {}; - ARMCacheAttrs cacheattrs = {}; - - ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, - &prot, &page_size, &fi, &cacheattrs); - - if (ret) { - /* - * Some kinds of translation fault must cause exceptions rather - * than being reported in the PAR. - */ - int current_el = arm_current_el(env); - int target_el; - uint32_t syn, fsr, fsc; - bool take_exc = false; - - if (fi.s1ptw && current_el == 1 - && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { - /* - * Synchronous stage 2 fault on an access made as part of the - * translation table walk for AT S1E0* or AT S1E1* insn - * executed from NS EL1. If this is a synchronous external abort - * and SCR_EL3.EA == 1, then we take a synchronous external abort - * to EL3. Otherwise the fault is taken as an exception to EL2, - * and HPFAR_EL2 holds the faulting IPA. - */ - if (fi.type == ARMFault_SyncExternalOnWalk && - (env->cp15.scr_el3 & SCR_EA)) { - target_el = 3; - } else { - env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; - if (arm_is_secure_below_el3(env) && fi.s1ns) { - env->cp15.hpfar_el2 |= HPFAR_NS; - } - target_el = 2; - } - take_exc = true; - } else if (fi.type == ARMFault_SyncExternalOnWalk) { - /* - * Synchronous external aborts during a translation table walk - * are taken as Data Abort exceptions. - */ - if (fi.stage2) { - if (current_el == 3) { - target_el = 3; - } else { - target_el = 2; - } - } else { - target_el = exception_target_el(env); - } - take_exc = true; - } - - if (take_exc) { - /* Construct FSR and FSC using same logic as arm_deliver_fault() */ - if (target_el == 2 || arm_el_is_aa64(env, target_el) || - arm_s1_regime_using_lpae_format(env, mmu_idx)) { - fsr = arm_fi_to_lfsc(&fi); - fsc = extract32(fsr, 0, 6); - } else { - fsr = arm_fi_to_sfsc(&fi); - fsc = 0x3f; - } - /* - * Report exception with ESR indicating a fault due to a - * translation table walk for a cache maintenance instruction. - */ - syn = syn_data_abort_no_iss(current_el == target_el, 0, - fi.ea, 1, fi.s1ptw, 1, fsc); - env->exception.vaddress = value; - env->exception.fsr = fsr; - raise_exception(env, EXCP_DATA_ABORT, syn, target_el); - } - } - - if (is_a64(env)) { - format64 = true; - } else if (arm_feature(env, ARM_FEATURE_LPAE)) { - /* - * ATS1Cxx: - * * TTBCR.EAE determines whether the result is returned using the - * 32-bit or the 64-bit PAR format - * * Instructions executed in Hyp mode always use the 64bit format - * - * ATS1S2NSOxx uses the 64bit format if any of the following is true: - * * The Non-secure TTBCR.EAE bit is set to 1 - * * The implementation includes EL2, and the value of HCR.VM is 1 - * - * (Note that HCR.DC makes HCR.VM behave as if it is 1.) - * - * ATS1Hx always uses the 64bit format. - */ - format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); - - if (arm_feature(env, ARM_FEATURE_EL2)) { - if (mmu_idx == ARMMMUIdx_E10_0 || - mmu_idx == ARMMMUIdx_E10_1 || - mmu_idx == ARMMMUIdx_E10_1_PAN) { - format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); - } else { - format64 |= arm_current_el(env) == 2; - } - } - } - - if (format64) { - /* Create a 64-bit PAR */ - par64 = (1 << 11); /* LPAE bit always set */ - if (!ret) { - par64 |= phys_addr & ~0xfffULL; - if (!attrs.secure) { - par64 |= (1 << 9); /* NS */ - } - par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ - par64 |= cacheattrs.shareability << 7; /* SH */ - } else { - uint32_t fsr = arm_fi_to_lfsc(&fi); - - par64 |= 1; /* F */ - par64 |= (fsr & 0x3f) << 1; /* FS */ - if (fi.stage2) { - par64 |= (1 << 9); /* S */ - } - if (fi.s1ptw) { - par64 |= (1 << 8); /* PTW */ - } - } - } else { - /* - * fsr is a DFSR/IFSR value for the short descriptor - * translation table format (with WnR always clear). - * Convert it to a 32-bit PAR. - */ - if (!ret) { - /* We do not set any attribute bits in the PAR */ - if (page_size == (1 << 24) - && arm_feature(env, ARM_FEATURE_V7)) { - par64 = (phys_addr & 0xff000000) | (1 << 1); - } else { - par64 = phys_addr & 0xfffff000; - } - if (!attrs.secure) { - par64 |= (1 << 9); /* NS */ - } - } else { - uint32_t fsr = arm_fi_to_sfsc(&fi); - - par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | - ((fsr & 0xf) << 1) | 1; - } - } - return par64; -} -#endif /* CONFIG_TCG */ - -static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ -#ifdef CONFIG_TCG - MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; - uint64_t par64; - ARMMMUIdx mmu_idx; - int el = arm_current_el(env); - bool secure = arm_is_secure_below_el3(env); - - switch (ri->opc2 & 6) { - case 0: - /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ - switch (el) { - case 3: - mmu_idx = ARMMMUIdx_SE3; - break; - case 2: - g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ - /* fall through */ - case 1: - if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { - mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN - : ARMMMUIdx_Stage1_E1_PAN); - } else { - mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; - } - break; - default: - g_assert_not_reached(); - } - break; - case 2: - /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ - switch (el) { - case 3: - mmu_idx = ARMMMUIdx_SE10_0; - break; - case 2: - g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ - mmu_idx = ARMMMUIdx_Stage1_E0; - break; - case 1: - mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; - break; - default: - g_assert_not_reached(); - } - break; - case 4: - /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ - mmu_idx = ARMMMUIdx_E10_1; - break; - case 6: - /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ - mmu_idx = ARMMMUIdx_E10_0; - break; - default: - g_assert_not_reached(); - } - - par64 = do_ats_write(env, value, access_type, mmu_idx); - - A32_BANKED_CURRENT_REG_SET(env, par, par64); -#else - /* Handled by hardware accelerator. */ - g_assert_not_reached(); -#endif /* CONFIG_TCG */ -} - -static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ -#ifdef CONFIG_TCG - MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; - uint64_t par64; - - par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); - - A32_BANKED_CURRENT_REG_SET(env, par, par64); -#else - /* Handled by hardware accelerator. */ - g_assert_not_reached(); -#endif /* CONFIG_TCG */ -} - -static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 3 && - !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { - return CP_ACCESS_TRAP; - } - return CP_ACCESS_OK; -} - -static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ -#ifdef CONFIG_TCG - MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; - ARMMMUIdx mmu_idx; - int secure = arm_is_secure_below_el3(env); - - switch (ri->opc2 & 6) { - case 0: - switch (ri->opc1) { - case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ - if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { - mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN - : ARMMMUIdx_Stage1_E1_PAN); - } else { - mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; - } - break; - case 4: /* AT S1E2R, AT S1E2W */ - mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; - break; - case 6: /* AT S1E3R, AT S1E3W */ - mmu_idx = ARMMMUIdx_SE3; - break; - default: - g_assert_not_reached(); - } - break; - case 2: /* AT S1E0R, AT S1E0W */ - mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; - break; - case 4: /* AT S12E1R, AT S12E1W */ - mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; - break; - case 6: /* AT S12E0R, AT S12E0W */ - mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; - break; - default: - g_assert_not_reached(); - } - - env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); -#else - /* Handled by hardware accelerator. */ - g_assert_not_reached(); -#endif /* CONFIG_TCG */ -} -#endif - -static const ARMCPRegInfo vapa_cp_reginfo[] = { - { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .resetvalue = 0, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), - offsetoflow32(CPUARMState, cp15.par_ns) }, - .writefn = par_write }, -#ifndef CONFIG_USER_ONLY - /* This underdecoding is safe because the reginfo is NO_RAW. */ - { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_W, .accessfn = ats_access, - .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, -#endif - REGINFO_SENTINEL -}; - -/* Return basic MPU access permission bits. */ -static uint32_t simple_mpu_ap_bits(uint32_t val) -{ - uint32_t ret; - uint32_t mask; - int i; - ret = 0; - mask = 3; - for (i = 0; i < 16; i += 2) { - ret |= (val >> i) & mask; - mask <<= 2; - } - return ret; -} - -/* Pad basic MPU access permission bits to extended format. */ -static uint32_t extended_mpu_ap_bits(uint32_t val) -{ - uint32_t ret; - uint32_t mask; - int i; - ret = 0; - mask = 3; - for (i = 0; i < 16; i += 2) { - ret |= (val & mask) << i; - mask <<= 2; - } - return ret; -} - -static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); -} - -static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); -} - -static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); -} - -static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); -} - -static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); - - if (!u32p) { - return 0; - } - - u32p += env->pmsav7.rnr[M_REG_NS]; - return *u32p; -} - -static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); - - if (!u32p) { - return; - } - - u32p += env->pmsav7.rnr[M_REG_NS]; - tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ - *u32p = value; -} - -static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - uint32_t nrgs = cpu->pmsav7_dregion; - - if (value >= nrgs) { - qemu_log_mask(LOG_GUEST_ERROR, - "PMSAv7 RGNR write >= # supported regions, %" PRIu32 - " > %" PRIu32 "\n", (uint32_t)value, nrgs); - return; - } - - raw_write(env, ri, value); -} - -static const ARMCPRegInfo pmsav7_cp_reginfo[] = { - /* - * Reset for all these registers is handled in arm_cpu_reset(), - * because the PMSAv7 is also used by M-profile CPUs, which do - * not register cpregs but still need the state to be reset. - */ - { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_NO_RAW, - .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), - .readfn = pmsav7_read, .writefn = pmsav7_write, - .resetfn = arm_cp_reset_ignore }, - { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, - .access = PL1_RW, .type = ARM_CP_NO_RAW, - .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), - .readfn = pmsav7_read, .writefn = pmsav7_write, - .resetfn = arm_cp_reset_ignore }, - { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, - .access = PL1_RW, .type = ARM_CP_NO_RAW, - .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), - .readfn = pmsav7_read, .writefn = pmsav7_write, - .resetfn = arm_cp_reset_ignore }, - { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), - .writefn = pmsav7_rgnr_write, - .resetfn = arm_cp_reset_ignore }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo pmsav5_cp_reginfo[] = { - { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), - .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, - { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), - .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, - { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), - .resetvalue = 0, }, - { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), - .resetvalue = 0, }, - { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, - { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, - /* Protection region base and size registers */ - { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, - { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, - { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, - { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, - { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, - { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, - { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, - { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, - REGINFO_SENTINEL -}; - -static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - TCR *tcr = raw_ptr(env, ri); - int maskshift = extract32(value, 0, 3); - - if (!arm_feature(env, ARM_FEATURE_V8)) { - if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { - /* - * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when - * using Long-desciptor translation table format - */ - value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); - } else if (arm_feature(env, ARM_FEATURE_EL3)) { - /* - * In an implementation that includes the Security Extensions - * TTBCR has additional fields PD0 [4] and PD1 [5] for - * Short-descriptor translation table format. - */ - value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; - } else { - value &= TTBCR_N; - } - } - - /* - * Update the masks corresponding to the TCR bank being written - * Note that we always calculate mask and base_mask, but - * they are only used for short-descriptor tables (ie if EAE is 0); - * for long-descriptor tables the TCR fields are used differently - * and the mask and base_mask values are meaningless. - */ - tcr->raw_tcr = value; - tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); - tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); -} - -static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - TCR *tcr = raw_ptr(env, ri); - - if (arm_feature(env, ARM_FEATURE_LPAE)) { - /* - * With LPAE the TTBCR could result in a change of ASID - * via the TTBCR.A1 bit, so do a TLB flush. - */ - tlb_flush(CPU(cpu)); - } - /* Preserve the high half of TCR_EL1, set via TTBCR2. */ - value = deposit64(tcr->raw_tcr, 0, 32, value); - vmsa_ttbcr_raw_write(env, ri, value); -} - -static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - TCR *tcr = raw_ptr(env, ri); - - /* - * Reset both the TCR as well as the masks corresponding to the bank of - * the TCR being reset. - */ - tcr->raw_tcr = 0; - tcr->mask = 0; - tcr->base_mask = 0xffffc000u; -} - -static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - TCR *tcr = raw_ptr(env, ri); - - /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ - tlb_flush(CPU(cpu)); - tcr->raw_tcr = value; -} - -static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ - if (cpreg_field_is_64bit(ri) && - extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { - ARMCPU *cpu = env_archcpu(env); - tlb_flush(CPU(cpu)); - } - raw_write(env, ri, value); -} - -static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * If we are running with E2&0 regime, then an ASID is active. - * Flush if that might be changing. Note we're not checking - * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that - * holds the active ASID, only checking the field that might. - */ - if (extract64(raw_read(env, ri) ^ value, 48, 16) && - (arm_hcr_el2_eff(env) & HCR_E2H)) { - uint16_t mask = ARMMMUIdxBit_E20_2 | - ARMMMUIdxBit_E20_2_PAN | - ARMMMUIdxBit_E20_0; - - if (arm_is_secure_below_el3(env)) { - mask >>= ARM_MMU_IDX_A_NS; - } - - tlb_flush_by_mmuidx(env_cpu(env), mask); - } - raw_write(env, ri, value); -} - -static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - CPUState *cs = CPU(cpu); - - /* - * A change in VMID to the stage2 page table (Stage2) invalidates - * the combined stage 1&2 tlbs (EL10_1 and EL10_0). - */ - if (raw_read(env, ri) != value) { - uint16_t mask = ARMMMUIdxBit_E10_1 | - ARMMMUIdxBit_E10_1_PAN | - ARMMMUIdxBit_E10_0; - - if (arm_is_secure_below_el3(env)) { - mask >>= ARM_MMU_IDX_A_NS; - } - - tlb_flush_by_mmuidx(cs, mask); - raw_write(env, ri, value); - } -} - -static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { - { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), - offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, - { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), - offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, - { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), - offsetof(CPUARMState, cp15.dfar_ns) } }, - { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), - .resetvalue = 0, }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo vmsa_cp_reginfo[] = { - { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, - { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .writefn = vmsa_ttbr_write, .resetvalue = 0, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), - offsetof(CPUARMState, cp15.ttbr0_ns) } }, - { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .writefn = vmsa_ttbr_write, .resetvalue = 0, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), - offsetof(CPUARMState, cp15.ttbr1_ns) } }, - { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .writefn = vmsa_tcr_el12_write, - .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, - .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, - { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, - .raw_writefn = vmsa_ttbcr_raw_write, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), - offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, - REGINFO_SENTINEL -}; - -/* - * Note that unlike TTBCR, writing to TTBCR2 does not require flushing - * qemu tlbs nor adjusting cached masks. - */ -static const ARMCPRegInfo ttbcr2_reginfo = { - .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_ALIAS, - .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), - offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, -}; - -static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->cp15.c15_ticonfig = value & 0xe7; - /* The OS_TYPE bit in this register changes the reported CPUID! */ - env->cp15.c0_cpuid = (value & (1 << 5)) ? - ARM_CPUID_TI915T : ARM_CPUID_TI925T; -} - -static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->cp15.c15_threadid = value & 0xffff; -} - -static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Wait-for-interrupt (deprecated) */ - cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); -} - -static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * On OMAP there are registers indicating the max/min index of dcache lines - * containing a dirty line; cache flush operations have to reset these. - */ - env->cp15.c15_i_max = 0x000; - env->cp15.c15_i_min = 0xff0; -} - -static const ARMCPRegInfo omap_cp_reginfo[] = { - { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, - .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), - .resetvalue = 0, }, - { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, - .writefn = omap_ticonfig_write }, - { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, - { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .resetvalue = 0xff0, - .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, - { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, - .writefn = omap_threadid_write }, - { .name = "TI925T_STATUS", .cp = 15, .crn = 15, - .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, - .type = ARM_CP_NO_RAW, - .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, - /* - * TODO: Peripheral port remap register: - * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller - * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), - * when MMU is off. - */ - { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, - .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, - .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, - .writefn = omap_cachemaint_write }, - { .name = "C9", .cp = 15, .crn = 9, - .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, - .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, - REGINFO_SENTINEL -}; - -static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->cp15.c15_cpar = value & 0x3fff; -} - -static const ARMCPRegInfo xscale_cp_reginfo[] = { - { .name = "XSCALE_CPAR", - .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, - .writefn = xscale_cpar_write, }, - { .name = "XSCALE_AUXCR", - .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), - .resetvalue = 0, }, - /* - * XScale specific cache-lockdown: since we have no cache we NOP these - * and hope the guest does not really rely on cache behaviour. - */ - { .name = "XSCALE_LOCK_ICACHE_LINE", - .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NOP }, - { .name = "XSCALE_UNLOCK_ICACHE", - .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NOP }, - { .name = "XSCALE_DCACHE_LOCK", - .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "XSCALE_UNLOCK_DCACHE", - .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NOP }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { - /* - * RAZ/WI the whole crn=15 space, when we don't have a more specific - * implementation of this implementation-defined space. - * Ideally this should eventually disappear in favour of actually - * implementing the correct behaviour for all cores. - */ - { .name = "C15_IMPDEF", .cp = 15, .crn = 15, - .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, - .access = PL1_RW, - .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, - .resetvalue = 0 }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { - /* Cache status: RAZ because we have no cache so it's always clean */ - { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, - .resetvalue = 0 }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { - /* We never have a a block transfer operation in progress */ - { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, - .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, - .resetvalue = 0 }, - /* The cache ops themselves: these all NOP for QEMU */ - { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, - .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, - { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, - .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, - { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, - .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, - { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, - .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, - { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, - .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, - { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, - .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { - /* - * The cache test-and-clean instructions always return (1 << 30) - * to indicate that there are no dirty cache lines. - */ - { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, - .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, - .resetvalue = (1 << 30) }, - { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, - .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, - .resetvalue = (1 << 30) }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo strongarm_cp_reginfo[] = { - /* Ignore ReadBuffer accesses */ - { .name = "C9_READBUFFER", .cp = 15, .crn = 9, - .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, - .access = PL1_RW, .resetvalue = 0, - .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, - REGINFO_SENTINEL -}; - -static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - unsigned int cur_el = arm_current_el(env); - - if (arm_is_el2_enabled(env) && cur_el == 1) { - return env->cp15.vpidr_el2; - } - return raw_read(env, ri); -} - -static uint64_t mpidr_read_val(CPUARMState *env) -{ - ARMCPU *cpu = env_archcpu(env); - uint64_t mpidr = cpu->mp_affinity; - - if (arm_feature(env, ARM_FEATURE_V7MP)) { - mpidr |= (1U << 31); - /* - * Cores which are uniprocessor (non-coherent) - * but still implement the MP extensions set - * bit 30. (For instance, Cortex-R5). - */ - if (cpu->mp_is_up) { - mpidr |= (1u << 30); - } - } - return mpidr; -} - -static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - unsigned int cur_el = arm_current_el(env); - - if (arm_is_el2_enabled(env) && cur_el == 1) { - return env->cp15.vmpidr_el2; - } - return mpidr_read_val(env); -} - -static const ARMCPRegInfo lpae_cp_reginfo[] = { - /* NOP AMAIR0/1 */ - { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_CONST, .resetvalue = 0 }, - /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ - { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, - .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), - offsetof(CPUARMState, cp15.par_ns)} }, - { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_64BIT | ARM_CP_ALIAS, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), - offsetof(CPUARMState, cp15.ttbr0_ns) }, - .writefn = vmsa_ttbr_write, }, - { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_64BIT | ARM_CP_ALIAS, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), - offsetof(CPUARMState, cp15.ttbr1_ns) }, - .writefn = vmsa_ttbr_write, }, - REGINFO_SENTINEL -}; - -static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return vfp_get_fpcr(env); -} - -static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - vfp_set_fpcr(env, value); -} - -static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return vfp_get_fpsr(env); -} - -static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - vfp_set_fpsr(env, value); -} - -static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { - return CP_ACCESS_TRAP; - } - return CP_ACCESS_OK; -} - -static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->daif = value & PSTATE_DAIF; -} - -static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_PAN; -} - -static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); -} - -static const ARMCPRegInfo pan_reginfo = { - .name = "PAN", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, - .type = ARM_CP_NO_RAW, .access = PL1_RW, - .readfn = aa64_pan_read, .writefn = aa64_pan_write -}; - -static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_UAO; -} - -static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); -} - -static const ARMCPRegInfo uao_reginfo = { - .name = "UAO", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, - .type = ARM_CP_NO_RAW, .access = PL1_RW, - .readfn = aa64_uao_read, .writefn = aa64_uao_write -}; - -static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_DIT; -} - -static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); -} - -static const ARMCPRegInfo dit_reginfo = { - .name = "DIT", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL0_RW, - .readfn = aa64_dit_read, .writefn = aa64_dit_write -}; - -static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_SSBS; -} - -static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); -} - -static const ARMCPRegInfo ssbs_reginfo = { - .name = "SSBS", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, - .type = ARM_CP_NO_RAW, .access = PL0_RW, - .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write -}; - -static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* Cache invalidate/clean to Point of Coherency or Persistence... */ - switch (arm_current_el(env)) { - case 0: - /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ - if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { - return CP_ACCESS_TRAP; - } - /* fall through */ - case 1: - /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ - if (arm_hcr_el2_eff(env) & HCR_TPCP) { - return CP_ACCESS_TRAP_EL2; - } - break; - } - return CP_ACCESS_OK; -} - -static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* Cache invalidate/clean to Point of Unification... */ - switch (arm_current_el(env)) { - case 0: - /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ - if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { - return CP_ACCESS_TRAP; - } - /* fall through */ - case 1: - /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ - if (arm_hcr_el2_eff(env) & HCR_TPU) { - return CP_ACCESS_TRAP_EL2; - } - break; - } - return CP_ACCESS_OK; -} - -/* - * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions - * Page D4-1736 (DDI0487A.b) - */ - -static int vae1_tlbmask(CPUARMState *env) -{ - uint64_t hcr = arm_hcr_el2_eff(env); - uint16_t mask; - - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - mask = ARMMMUIdxBit_E20_2 | - ARMMMUIdxBit_E20_2_PAN | - ARMMMUIdxBit_E20_0; - } else { - mask = ARMMMUIdxBit_E10_1 | - ARMMMUIdxBit_E10_1_PAN | - ARMMMUIdxBit_E10_0; - } - - if (arm_is_secure_below_el3(env)) { - mask >>= ARM_MMU_IDX_A_NS; - } - - return mask; -} - -/* Return 56 if TBI is enabled, 64 otherwise. */ -static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, - uint64_t addr) -{ - uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; - int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); - int select = extract64(addr, 55, 1); - - return (tbi >> select) & 1 ? 56 : 64; -} - -static int vae1_tlbbits(CPUARMState *env, uint64_t addr) -{ - uint64_t hcr = arm_hcr_el2_eff(env); - ARMMMUIdx mmu_idx; - - /* Only the regime of the mmu_idx below is significant. */ - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - mmu_idx = ARMMMUIdx_E20_0; - } else { - mmu_idx = ARMMMUIdx_E10_0; - } - - if (arm_is_secure_below_el3(env)) { - mmu_idx &= ~ARM_MMU_IDX_A_NS; - } - - return tlbbits_for_regime(env, mmu_idx, addr); -} - -static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = vae1_tlbmask(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); -} - -static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = vae1_tlbmask(env); - - if (tlb_force_broadcast(env)) { - tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); - } else { - tlb_flush_by_mmuidx(cs, mask); - } -} - -static int alle1_tlbmask(CPUARMState *env) -{ - /* - * Note that the 'ALL' scope must invalidate both stage 1 and - * stage 2 translations, whereas most other scopes only invalidate - * stage 1 translations. - */ - if (arm_is_secure_below_el3(env)) { - return ARMMMUIdxBit_SE10_1 | - ARMMMUIdxBit_SE10_1_PAN | - ARMMMUIdxBit_SE10_0; - } else { - return ARMMMUIdxBit_E10_1 | - ARMMMUIdxBit_E10_1_PAN | - ARMMMUIdxBit_E10_0; - } -} - -static int e2_tlbmask(CPUARMState *env) -{ - if (arm_is_secure_below_el3(env)) { - return ARMMMUIdxBit_SE20_0 | - ARMMMUIdxBit_SE20_2 | - ARMMMUIdxBit_SE20_2_PAN | - ARMMMUIdxBit_SE2; - } else { - return ARMMMUIdxBit_E20_0 | - ARMMMUIdxBit_E20_2 | - ARMMMUIdxBit_E20_2_PAN | - ARMMMUIdxBit_E2; - } -} - -static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = alle1_tlbmask(env); - - tlb_flush_by_mmuidx(cs, mask); -} - -static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = e2_tlbmask(env); - - tlb_flush_by_mmuidx(cs, mask); -} - -static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - CPUState *cs = CPU(cpu); - - tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); -} - -static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = alle1_tlbmask(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); -} - -static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = e2_tlbmask(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); -} - -static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); -} - -static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA, EL2 - * Currently handles both VAE2 and VALE2, since we don't support - * flush-last-level-only. - */ - CPUState *cs = env_cpu(env); - int mask = e2_tlbmask(env); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - - tlb_flush_page_by_mmuidx(cs, pageaddr, mask); -} - -static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA, EL3 - * Currently handles both VAE3 and VALE3, since we don't support - * flush-last-level-only. - */ - ARMCPU *cpu = env_archcpu(env); - CPUState *cs = CPU(cpu); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - - tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); -} - -static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = vae1_tlbmask(env); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - int bits = vae1_tlbbits(env, pageaddr); - - tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); -} - -static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA, EL1&0 (AArch64 version). - * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, - * since we don't support flush-for-specific-ASID-only or - * flush-last-level-only. - */ - CPUState *cs = env_cpu(env); - int mask = vae1_tlbmask(env); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - int bits = vae1_tlbbits(env, pageaddr); - - if (tlb_force_broadcast(env)) { - tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); - } else { - tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); - } -} - -static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - bool secure = arm_is_secure_below_el3(env); - int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; - int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, - pageaddr); - - tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); -} - -static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); - - tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, - ARMMMUIdxBit_SE3, bits); -} - -#ifdef TARGET_AARCH64 -static uint64_t tlbi_aa64_range_get_length(CPUARMState *env, - uint64_t value) -{ - unsigned int page_shift; - unsigned int page_size_granule; - uint64_t num; - uint64_t scale; - uint64_t exponent; - uint64_t length; - - num = extract64(value, 39, 4); - scale = extract64(value, 44, 2); - page_size_granule = extract64(value, 46, 2); - - page_shift = page_size_granule * 2 + 12; - - if (page_size_granule == 0) { - qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n", - page_size_granule); - return 0; - } - - exponent = (5 * scale) + 1; - length = (num + 1) << (exponent + page_shift); - - return length; -} - -static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value, - bool two_ranges) -{ - /* TODO: ARMv8.7 FEAT_LPA2 */ - uint64_t pageaddr; - - if (two_ranges) { - pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS; - } else { - pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS; - } - - return pageaddr; -} - -static void do_rvae_write(CPUARMState *env, uint64_t value, - int idxmap, bool synced) -{ - ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); - bool two_ranges = regime_has_2_ranges(one_idx); - uint64_t baseaddr, length; - int bits; - - baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges); - length = tlbi_aa64_range_get_length(env, value); - bits = tlbbits_for_regime(env, one_idx, baseaddr); - - if (synced) { - tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), - baseaddr, - length, - idxmap, - bits); - } else { - tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr, - length, idxmap, bits); - } -} - -static void tlbi_aa64_rvae1_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, EL1&0. - * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, - * since we don't support flush-for-specific-ASID-only or - * flush-last-level-only. - */ - - do_rvae_write(env, value, vae1_tlbmask(env), - tlb_force_broadcast(env)); -} - -static void tlbi_aa64_rvae1is_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, Inner/Outer Shareable EL1&0. - * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, - * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support - * flush-for-specific-ASID-only, flush-last-level-only or inner/outer - * shareable specific flushes. - */ - - do_rvae_write(env, value, vae1_tlbmask(env), true); -} - -static int vae2_tlbmask(CPUARMState *env) -{ - return (arm_is_secure_below_el3(env) - ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); -} - -static void tlbi_aa64_rvae2_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, EL2. - * Currently handles all of RVAE2 and RVALE2, - * since we don't support flush-for-specific-ASID-only or - * flush-last-level-only. - */ - - do_rvae_write(env, value, vae2_tlbmask(env), - tlb_force_broadcast(env)); - - -} - -static void tlbi_aa64_rvae2is_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, Inner/Outer Shareable, EL2. - * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, - * since we don't support flush-for-specific-ASID-only, - * flush-last-level-only or inner/outer shareable specific flushes. - */ - - do_rvae_write(env, value, vae2_tlbmask(env), true); - -} - -static void tlbi_aa64_rvae3_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, EL3. - * Currently handles all of RVAE3 and RVALE3, - * since we don't support flush-for-specific-ASID-only or - * flush-last-level-only. - */ - - do_rvae_write(env, value, ARMMMUIdxBit_SE3, - tlb_force_broadcast(env)); -} - -static void tlbi_aa64_rvae3is_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, EL3, Inner/Outer Shareable. - * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, - * since we don't support flush-for-specific-ASID-only, - * flush-last-level-only or inner/outer specific flushes. - */ - - do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); -} -#endif - -static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int cur_el = arm_current_el(env); - - if (cur_el < 2) { - uint64_t hcr = arm_hcr_el2_eff(env); - - if (cur_el == 0) { - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { - return CP_ACCESS_TRAP_EL2; - } - } else { - if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { - return CP_ACCESS_TRAP; - } - if (hcr & HCR_TDZ) { - return CP_ACCESS_TRAP_EL2; - } - } - } else if (hcr & HCR_TDZ) { - return CP_ACCESS_TRAP_EL2; - } - } - return CP_ACCESS_OK; -} - -static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - ARMCPU *cpu = env_archcpu(env); - int dzp_bit = 1 << 4; - - /* DZP indicates whether DC ZVA access is allowed */ - if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { - dzp_bit = 0; - } - return cpu->dcz_blocksize | dzp_bit; -} - -static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (!(env->pstate & PSTATE_SP)) { - /* - * Access to SP_EL0 is undefined if it's being used as - * the stack pointer. - */ - return CP_ACCESS_TRAP_UNCATEGORIZED; - } - return CP_ACCESS_OK; -} - -static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_SP; -} - -static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) -{ - update_spsel(env, val); -} - -static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { - /* M bit is RAZ/WI for PMSA with no MPU implemented */ - value &= ~SCTLR_M; - } - - /* ??? Lots of these bits are not implemented. */ - - if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { - if (ri->opc1 == 6) { /* SCTLR_EL3 */ - value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); - } else { - value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | - SCTLR_ATA0 | SCTLR_ATA); - } - } - - if (raw_read(env, ri) == value) { - /* - * Skip the TLB flush if nothing actually changed; Linux likes - * to do a lot of pointless SCTLR writes. - */ - return; - } - - raw_write(env, ri, value); - - /* This may enable/disable the MMU, so do a TLB flush. */ - tlb_flush(CPU(cpu)); - - if (ri->type & ARM_CP_SUPPRESS_TB_END) { - /* - * Normally we would always end the TB on an SCTLR write; see the - * comment in ARMCPRegInfo sctlr initialization below for why Xscale - * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild - * of hflags from the translator, so do it here. - */ - arm_rebuild_hflags(env); - } -} - -static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { - return CP_ACCESS_TRAP_FP_EL2; - } - if (env->cp15.cptr_el[3] & CPTR_TFP) { - return CP_ACCESS_TRAP_FP_EL3; - } - return CP_ACCESS_OK; -} - -static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; -} - -static const ARMCPRegInfo v8_cp_reginfo[] = { - /* - * Minimal set of EL0-visible registers. This will need to be expanded - * significantly for system emulation of AArch64 CPUs. - */ - { .name = "NZCV", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, - .access = PL0_RW, .type = ARM_CP_NZCV }, - { .name = "DAIF", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, - .type = ARM_CP_NO_RAW, - .access = PL0_RW, .accessfn = aa64_daif_access, - .fieldoffset = offsetof(CPUARMState, daif), - .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, - { .name = "FPCR", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, - .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, - .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, - { .name = "FPSR", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, - .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, - .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, - { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, - .access = PL0_R, .type = ARM_CP_NO_RAW, - .readfn = aa64_dczid_read }, - { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_DC_ZVA, -#ifndef CONFIG_USER_ONLY - /* Avoid overhead of an access check that always passes in user-mode */ - .accessfn = aa64_zva_access, -#endif - }, - { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, - .access = PL1_R, .type = ARM_CP_CURRENTEL }, - /* Cache ops: all NOPs since we don't emulate caches */ - { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NOP, - .accessfn = aa64_cacheop_pou_access }, - { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NOP, - .accessfn = aa64_cacheop_pou_access }, - { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NOP, - .accessfn = aa64_cacheop_pou_access }, - { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, - .access = PL1_W, .accessfn = aa64_cacheop_poc_access, - .type = ARM_CP_NOP }, - { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, - .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, - { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NOP, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, - .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, - { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NOP, - .accessfn = aa64_cacheop_pou_access }, - { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NOP, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, - .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, - /* TLBI operations */ - { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1is_write }, - { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1is_write }, - { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1_write }, - { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1_write }, - { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1_write }, - { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1_write }, - { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1_write }, - { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1_write }, - { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1is_write }, - { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1is_write }, - { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1_write }, - { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1is_write }, -#ifndef CONFIG_USER_ONLY - /* 64 bit address translation operations */ - { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ - { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, - .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, - .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), - .writefn = par_write }, -#endif - /* TLB invalidate last level of translation table walk */ - { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimva_is_write }, - { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimvaa_is_write }, - { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimva_write }, - { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimvaa_write }, - { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbimva_hyp_write }, - { .name = "TLBIMVALHIS", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbimva_hyp_is_write }, - { .name = "TLBIIPAS2", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL2_W }, - { .name = "TLBIIPAS2IS", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL2_W }, - { .name = "TLBIIPAS2L", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL2_W }, - { .name = "TLBIIPAS2LIS", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL2_W }, - /* 32 bit cache operations */ - { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, - { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, - .type = ARM_CP_NOP, .access = PL1_W }, - { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, - { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, - { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, - .type = ARM_CP_NOP, .access = PL1_W }, - { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, - .type = ARM_CP_NOP, .access = PL1_W }, - { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, - { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, - { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, - { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, - { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - /* MMU Domain access control / MPU write buffer control */ - { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, - .writefn = dacr_write, .raw_writefn = raw_write, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), - offsetoflow32(CPUARMState, cp15.dacr_ns) } }, - { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, - { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, - /* - * We rely on the access checks not allowing the guest to write to the - * state field when SPSel indicates that it's being used as the stack - * pointer. - */ - { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, - .access = PL1_RW, .accessfn = sp_el0_access, - .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, - { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, - { .name = "SPSel", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, - .type = ARM_CP_NO_RAW, - .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, - { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, - .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), - .access = PL2_RW, .accessfn = fpexc32_access }, - { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, - .access = PL2_RW, .resetvalue = 0, - .writefn = dacr_write, .raw_writefn = raw_write, - .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, - { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, - .access = PL2_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, - { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, - { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, - { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, - { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, - { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, - .resetvalue = 0, - .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, - { .name = "SDCR", .type = ARM_CP_ALIAS, - .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, - .access = PL1_RW, .accessfn = access_trap_aa32s_el1, - .writefn = sdcr_write, - .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, - REGINFO_SENTINEL -}; - -/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ -static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { - { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, - .access = PL2_RW, - .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, - { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, - .access = PL2_RW, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, - .access = PL2_RW, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "VTTBR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 6, .crm = 2, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, - { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, - .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, - .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, - .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, - .access = PL2_RW, .accessfn = access_tda, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "HIFAR", .state = ARM_CP_STATE_AA32, - .type = ARM_CP_CONST, - .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, - .access = PL2_RW, .resetvalue = 0 }, - REGINFO_SENTINEL -}; - -/* Ditto, but for registers which exist in ARMv8 but not v7 */ -static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { - { .name = "HCR2", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, - .access = PL2_RW, - .type = ARM_CP_CONST, .resetvalue = 0 }, - REGINFO_SENTINEL -}; - -static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) -{ - ARMCPU *cpu = env_archcpu(env); - - if (arm_feature(env, ARM_FEATURE_V8)) { - valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ - } else { - valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ - } - - if (arm_feature(env, ARM_FEATURE_EL3)) { - valid_mask &= ~HCR_HCD; - } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { - /* - * Architecturally HCR.TSC is RES0 if EL3 is not implemented. - * However, if we're using the SMC PSCI conduit then QEMU is - * effectively acting like EL3 firmware and so the guest at - * EL2 should retain the ability to prevent EL1 from being - * able to make SMC calls into the ersatz firmware, so in - * that case HCR.TSC should be read/write. - */ - valid_mask &= ~HCR_TSC; - } - - if (arm_feature(env, ARM_FEATURE_AARCH64)) { - if (cpu_isar_feature(aa64_vh, cpu)) { - valid_mask |= HCR_E2H; - } - if (cpu_isar_feature(aa64_lor, cpu)) { - valid_mask |= HCR_TLOR; - } - if (cpu_isar_feature(aa64_pauth, cpu)) { - valid_mask |= HCR_API | HCR_APK; - } - if (cpu_isar_feature(aa64_mte, cpu)) { - valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; - } - } - - /* Clear RES0 bits. */ - value &= valid_mask; - - /* - * These bits change the MMU setup: - * HCR_VM enables stage 2 translation - * HCR_PTW forbids certain page-table setups - * HCR_DC disables stage1 and enables stage2 translation - * HCR_DCT enables tagging on (disabled) stage1 translation - */ - if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { - tlb_flush(CPU(cpu)); - } - env->cp15.hcr_el2 = value; - - /* - * Updates to VI and VF require us to update the status of - * virtual interrupts, which are the logical OR of these bits - * and the state of the input lines from the GIC. (This requires - * that we have the iothread lock, which is done by marking the - * reginfo structs as ARM_CP_IO.) - * Note that if a write to HCR pends a VIRQ or VFIQ it is never - * possible for it to be taken immediately, because VIRQ and - * VFIQ are masked unless running at EL0 or EL1, and HCR - * can only be written at EL2. - */ - g_assert(qemu_mutex_iothread_locked()); - arm_cpu_update_virq(cpu); - arm_cpu_update_vfiq(cpu); -} - -static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ - do_hcr_write(env, value, 0); -} - -static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ - value = deposit64(env->cp15.hcr_el2, 32, 32, value); - do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); -} - -static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Handle HCR write, i.e. write to low half of HCR_EL2 */ - value = deposit64(env->cp15.hcr_el2, 0, 32, value); - do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); -} - -/* - * Return the effective value of HCR_EL2. - * Bits that are not included here: - * RW (read from SCR_EL3.RW as needed) - */ -uint64_t arm_hcr_el2_eff(CPUARMState *env) -{ - uint64_t ret = env->cp15.hcr_el2; - - if (!arm_is_el2_enabled(env)) { - /* - * "This register has no effect if EL2 is not enabled in the - * current Security state". This is ARMv8.4-SecEL2 speak for - * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). - * - * Prior to that, the language was "In an implementation that - * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves - * as if this field is 0 for all purposes other than a direct - * read or write access of HCR_EL2". With lots of enumeration - * on a per-field basis. In current QEMU, this is condition - * is arm_is_secure_below_el3. - * - * Since the v8.4 language applies to the entire register, and - * appears to be backward compatible, use that. - */ - return 0; - } - - /* - * For a cpu that supports both aarch64 and aarch32, we can set bits - * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. - * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. - */ - if (!arm_el_is_aa64(env, 2)) { - uint64_t aa32_valid; - - /* - * These bits are up-to-date as of ARMv8.6. - * For HCR, it's easiest to list just the 2 bits that are invalid. - * For HCR2, list those that are valid. - */ - aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); - aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | - HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); - ret &= aa32_valid; - } - - if (ret & HCR_TGE) { - /* These bits are up-to-date as of ARMv8.6. */ - if (ret & HCR_E2H) { - ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | - HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | - HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | - HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | - HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | - HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); - } else { - ret |= HCR_FMO | HCR_IMO | HCR_AMO; - } - ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | - HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | - HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | - HCR_TLOR); - } - - return ret; -} - -static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * For A-profile AArch32 EL3, if NSACR.CP10 - * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. - */ - if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && - !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { - value &= ~(0x3 << 10); - value |= env->cp15.cptr_el[2] & (0x3 << 10); - } - env->cp15.cptr_el[2] = value; -} - -static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* - * For A-profile AArch32 EL3, if NSACR.CP10 - * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. - */ - uint64_t value = env->cp15.cptr_el[2]; - - if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && - !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { - value |= 0x3 << 10; - } - return value; -} - -static const ARMCPRegInfo el2_cp_reginfo[] = { - { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_IO, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), - .writefn = hcr_write }, - { .name = "HCR", .state = ARM_CP_STATE_AA32, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), - .writefn = hcr_writelow }, - { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, - { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, - { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, - { .name = "HIFAR", .state = ARM_CP_STATE_AA32, - .type = ARM_CP_ALIAS, - .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, - .access = PL2_RW, - .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, - { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, - { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, - .access = PL2_RW, .writefn = vbar_write, - .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), - .resetvalue = 0 }, - { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, - .access = PL3_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, - { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, - .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), - .readfn = cptr_el2_read, .writefn = cptr_el2_write }, - { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), - .resetvalue = 0 }, - { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, - { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ - { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, - .access = PL2_RW, .writefn = vmsa_tcr_el12_write, - /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ - .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, - { .name = "VTCR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, - .type = ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, - { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, - .access = PL2_RW, - /* - * no .writefn needed as this can't cause an ASID change; - * no .raw_writefn or .resetfn needed as we never use mask/base_mask - */ - .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, - { .name = "VTTBR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 6, .crm = 2, - .type = ARM_CP_64BIT | ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), - .writefn = vttbr_write }, - { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, - .access = PL2_RW, .writefn = vttbr_write, - .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, - { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, - .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, - .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, - { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, - .access = PL2_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, - { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, - .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, - .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, - { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, - .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, - { .name = "TLBIALLNSNH", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiall_nsnh_write }, - { .name = "TLBIALLNSNHIS", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiall_nsnh_is_write }, - { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiall_hyp_write }, - { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiall_hyp_is_write }, - { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbimva_hyp_write }, - { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbimva_hyp_is_write }, - { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbi_aa64_alle2_write }, - { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbi_aa64_vae2_write }, - { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae2_write }, - { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle2is_write }, - { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbi_aa64_vae2is_write }, - { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae2is_write }, -#ifndef CONFIG_USER_ONLY - /* - * Unlike the other EL2-related AT operations, these must - * UNDEF from EL3 if EL2 is not implemented, which is why we - * define them here rather than with the rest of the AT ops. - */ - { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, - .access = PL2_W, .accessfn = at_s1e2_access, - .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, - { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, - .access = PL2_W, .accessfn = at_s1e2_access, - .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, - /* - * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE - * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 - * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose - * to behave as if SCR.NS was 1. - */ - { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, - .access = PL2_W, - .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, - { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, - .access = PL2_W, - .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, - { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, - /* - * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the - * reset values as IMPDEF. We choose to reset to 3 to comply with - * both ARMv7 and ARMv8. - */ - .access = PL2_RW, .resetvalue = 3, - .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, - { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, - .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, - .writefn = gt_cntvoff_write, - .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, - { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, - .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, - .writefn = gt_cntvoff_write, - .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, - { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), - .type = ARM_CP_IO, .access = PL2_RW, - .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, - { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), - .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, - .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, - { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, - .resetfn = gt_hyp_timer_reset, - .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, - { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, - .type = ARM_CP_IO, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), - .resetvalue = 0, - .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, -#endif - /* The only field of MDCR_EL2 that has a defined architectural reset value - * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. - */ - { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, - .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, - .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, - { .name = "HPFAR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, - { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, - { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, - .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo el2_v8_cp_reginfo[] = { - { .name = "HCR2", .state = ARM_CP_STATE_AA32, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, - .access = PL2_RW, - .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), - .writefn = hcr_writehigh }, - REGINFO_SENTINEL -}; - -static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { - return CP_ACCESS_OK; - } - return CP_ACCESS_TRAP_UNCATEGORIZED; -} - -static const ARMCPRegInfo el2_sec_cp_reginfo[] = { - { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, - .access = PL2_RW, .accessfn = sel2_access, - .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, - { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, - .access = PL2_RW, .accessfn = sel2_access, - .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, - REGINFO_SENTINEL -}; - -static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - /* - * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. - * At Secure EL1 it traps to EL3 or EL2. - */ - if (arm_current_el(env) == 3) { - return CP_ACCESS_OK; - } - if (arm_is_secure_below_el3(env)) { - if (env->cp15.scr_el3 & SCR_EEL2) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_TRAP_EL3; - } - /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ - if (isread) { - return CP_ACCESS_OK; - } - return CP_ACCESS_TRAP_UNCATEGORIZED; -} - -static const ARMCPRegInfo el3_cp_reginfo[] = { - { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, - .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), - .resetfn = scr_reset, .writefn = scr_write }, - { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, - .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, - .access = PL1_RW, .accessfn = access_trap_aa32s_el1, - .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), - .writefn = scr_write }, - { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, - .access = PL3_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.sder) }, - { .name = "SDER", - .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, - .access = PL3_RW, .resetvalue = 0, - .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, - { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_trap_aa32s_el1, - .writefn = vbar_write, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, - { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, - .access = PL3_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, - { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, - .access = PL3_RW, - /* - * no .writefn needed as this can't cause an ASID change; - * we must provide a .raw_writefn and .resetfn because we handle - * reset and migration for the AArch32 TTBCR(S), which might be - * using mask and base_mask. - */ - .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, - .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, - { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, - .access = PL3_RW, - .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, - { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, - .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, - { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, - .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, - { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, - .access = PL3_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, - { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, - .access = PL3_RW, .writefn = vbar_write, - .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), - .resetvalue = 0 }, - { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, - .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, - { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, - .access = PL3_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, - { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, - .access = PL3_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, - .access = PL3_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, - .access = PL3_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle3is_write }, - { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae3is_write }, - { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae3is_write }, - { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle3_write }, - { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae3_write }, - { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae3_write }, - REGINFO_SENTINEL -}; - -#ifndef CONFIG_USER_ONLY -/* Test if system register redirection is to occur in the current state. */ -static bool redirect_for_e2h(CPUARMState *env) -{ - return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); -} - -static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - CPReadFn *readfn; - - if (redirect_for_e2h(env)) { - /* Switch to the saved EL2 version of the register. */ - ri = ri->opaque; - readfn = ri->readfn; - } else { - readfn = ri->orig_readfn; - } - if (readfn == NULL) { - readfn = raw_read; - } - return readfn(env, ri); -} - -static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPWriteFn *writefn; - - if (redirect_for_e2h(env)) { - /* Switch to the saved EL2 version of the register. */ - ri = ri->opaque; - writefn = ri->writefn; - } else { - writefn = ri->orig_writefn; - } - if (writefn == NULL) { - writefn = raw_write; - } - writefn(env, ri, value); -} - -static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) -{ - struct E2HAlias { - uint32_t src_key, dst_key, new_key; - const char *src_name, *dst_name, *new_name; - bool (*feature)(const ARMISARegisters *id); - }; - -#define K(op0, op1, crn, crm, op2) \ - ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) - - static const struct E2HAlias aliases[] = { - { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), - "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, - { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), - "CPACR", "CPTR_EL2", "CPACR_EL12" }, - { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), - "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, - { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), - "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, - { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), - "TCR_EL1", "TCR_EL2", "TCR_EL12" }, - { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), - "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, - { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), - "ELR_EL1", "ELR_EL2", "ELR_EL12" }, - { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), - "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, - { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), - "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, - { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), - "ESR_EL1", "ESR_EL2", "ESR_EL12" }, - { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), - "FAR_EL1", "FAR_EL2", "FAR_EL12" }, - { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), - "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, - { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), - "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, - { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), - "VBAR", "VBAR_EL2", "VBAR_EL12" }, - { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), - "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, - { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), - "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, - - /* - * Note that redirection of ZCR is mentioned in the description - * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but - * not in the summary table. - */ - { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), - "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, - - { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), - "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, - - /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ - /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ - }; -#undef K - - size_t i; - - for (i = 0; i < ARRAY_SIZE(aliases); i++) { - const struct E2HAlias *a = &aliases[i]; - ARMCPRegInfo *src_reg, *dst_reg; - - if (a->feature && !a->feature(&cpu->isar)) { - continue; - } - - src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); - dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); - g_assert(src_reg != NULL); - g_assert(dst_reg != NULL); - - /* Cross-compare names to detect typos in the keys. */ - g_assert(strcmp(src_reg->name, a->src_name) == 0); - g_assert(strcmp(dst_reg->name, a->dst_name) == 0); - - /* None of the core system registers use opaque; we will. */ - g_assert(src_reg->opaque == NULL); - - /* Create alias before redirection so we dup the right data. */ - if (a->new_key) { - ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); - uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); - bool ok; - - new_reg->name = a->new_name; - new_reg->type |= ARM_CP_ALIAS; - /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ - new_reg->access &= PL2_RW | PL3_RW; - - ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); - g_assert(ok); - } - - src_reg->opaque = dst_reg; - src_reg->orig_readfn = src_reg->readfn ?: raw_read; - src_reg->orig_writefn = src_reg->writefn ?: raw_write; - if (!src_reg->raw_readfn) { - src_reg->raw_readfn = raw_read; - } - if (!src_reg->raw_writefn) { - src_reg->raw_writefn = raw_write; - } - src_reg->readfn = el2_e2h_read; - src_reg->writefn = el2_e2h_write; - } -} -#endif - -static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int cur_el = arm_current_el(env); - - if (cur_el < 2) { - uint64_t hcr = arm_hcr_el2_eff(env); - - if (cur_el == 0) { - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { - return CP_ACCESS_TRAP_EL2; - } - } else { - if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { - return CP_ACCESS_TRAP; - } - if (hcr & HCR_TID2) { - return CP_ACCESS_TRAP_EL2; - } - } - } else if (hcr & HCR_TID2) { - return CP_ACCESS_TRAP_EL2; - } - } - - if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Writes to OSLAR_EL1 may update the OS lock status, which can be - * read via a bit in OSLSR_EL1. - */ - int oslock; - - if (ri->state == ARM_CP_STATE_AA32) { - oslock = (value == 0xC5ACCE55); - } else { - oslock = value & 1; - } - - env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); -} - -static const ARMCPRegInfo debug_cp_reginfo[] = { - /* - * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped - * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; - * unlike DBGDRAR it is never accessible from EL0. - * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 - * accessor. - */ - { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL0_R, .accessfn = access_tdra, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, - .access = PL1_R, .accessfn = access_tdra, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL0_R, .accessfn = access_tdra, - .type = ARM_CP_CONST, .resetvalue = 0 }, - /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ - { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, - .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, - .access = PL1_RW, .accessfn = access_tda, - .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), - .resetvalue = 0 }, - /* - * MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. - * We don't implement the configurable EL0 access. - */ - { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, - .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, - .type = ARM_CP_ALIAS, - .access = PL1_R, .accessfn = access_tda, - .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, - { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, - .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .accessfn = access_tdosa, - .writefn = oslar_write }, - { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, - .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, - .access = PL1_R, .resetvalue = 10, - .accessfn = access_tdosa, - .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, - /* Dummy OSDLR_EL1: 32-bit Linux will read this */ - { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, - .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, - .access = PL1_RW, .accessfn = access_tdosa, - .type = ARM_CP_NOP }, - /* - * Dummy DBGVCR: Linux wants to clear this on startup, but we don't - * implement vector catch debug events yet. - */ - { .name = "DBGVCR", - .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tda, - .type = ARM_CP_NOP }, - /* - * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor - * to save and restore a 32-bit guest's DBGVCR) - */ - { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, - .access = PL2_RW, .accessfn = access_tda, - .type = ARM_CP_NOP }, - /* - * Dummy MDCCINT_EL1, since we don't implement the Debug Communications - * Channel but Linux may try to access this register. The 32-bit - * alias is DBGDCCINT. - */ - { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, - .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tda, - .type = ARM_CP_NOP }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { - /* 64 bit access versions of the (dummy) debug registers */ - { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, - .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, - { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, - .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, - REGINFO_SENTINEL -}; - -/* Return the exception level to which exceptions should be taken - * via SVEAccessTrap. If an exception should be routed through - * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should - * take care of raising that exception. - * C.f. the ARM pseudocode function CheckSVEEnabled. - */ -int sve_exception_el(CPUARMState *env, int el) -{ -#ifndef CONFIG_USER_ONLY - uint64_t hcr_el2 = arm_hcr_el2_eff(env); - - if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { - bool disabled = false; - - /* The CPACR.ZEN controls traps to EL1: - * 0, 2 : trap EL0 and EL1 accesses - * 1 : trap only EL0 accesses - * 3 : trap no accesses - */ - if (!extract32(env->cp15.cpacr_el1, 16, 1)) { - disabled = true; - } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { - disabled = el == 0; - } - if (disabled) { - /* route_to_el2 */ - return hcr_el2 & HCR_TGE ? 2 : 1; - } - - /* Check CPACR.FPEN. */ - if (!extract32(env->cp15.cpacr_el1, 20, 1)) { - disabled = true; - } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { - disabled = el == 0; - } - if (disabled) { - return 0; - } - } - - /* CPTR_EL2. Since TZ and TFP are positive, - * they will be zero when EL2 is not present. - */ - if (el <= 2 && arm_is_el2_enabled(env)) { - if (env->cp15.cptr_el[2] & CPTR_TZ) { - return 2; - } - if (env->cp15.cptr_el[2] & CPTR_TFP) { - return 0; - } - } - - /* CPTR_EL3. Since EZ is negative we must check for EL3. */ - if (arm_feature(env, ARM_FEATURE_EL3) - && !(env->cp15.cptr_el[3] & CPTR_EZ)) { - return 3; - } -#endif - return 0; -} - -static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) -{ - uint32_t end_len; - - end_len = start_len &= 0xf; - if (!test_bit(start_len, cpu->sve_vq_map)) { - end_len = find_last_bit(cpu->sve_vq_map, start_len); - assert(end_len < start_len); - } - return end_len; -} - -/* - * Given that SVE is enabled, return the vector length for EL. - */ -uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) -{ - ARMCPU *cpu = env_archcpu(env); - uint32_t zcr_len = cpu->sve_max_vq - 1; - - if (el <= 1) { - zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); - } - if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { - zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); - } - if (arm_feature(env, ARM_FEATURE_EL3)) { - zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); - } - - return sve_zcr_get_valid_len(cpu, zcr_len); -} - -static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int cur_el = arm_current_el(env); - int old_len = sve_zcr_len_for_el(env, cur_el); - int new_len; - - /* Bits other than [3:0] are RAZ/WI. */ - QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); - raw_write(env, ri, value & 0xf); - - /* - * Because we arrived here, we know both FP and SVE are enabled; - * otherwise we would have trapped access to the ZCR_ELn register. - */ - new_len = sve_zcr_len_for_el(env, cur_el); - if (new_len < old_len) { - aarch64_sve_narrow_vq(env, new_len + 1); - } -} - -static const ARMCPRegInfo zcr_el1_reginfo = { - .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_SVE, - .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), - .writefn = zcr_write, .raw_writefn = raw_write -}; - -static const ARMCPRegInfo zcr_el2_reginfo = { - .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_SVE, - .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), - .writefn = zcr_write, .raw_writefn = raw_write -}; - -static const ARMCPRegInfo zcr_no_el2_reginfo = { - .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_SVE, - .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore -}; - -static const ARMCPRegInfo zcr_el3_reginfo = { - .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, - .access = PL3_RW, .type = ARM_CP_SVE, - .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), - .writefn = zcr_write, .raw_writefn = raw_write -}; - -void hw_watchpoint_update(ARMCPU *cpu, int n) -{ - CPUARMState *env = &cpu->env; - vaddr len = 0; - vaddr wvr = env->cp15.dbgwvr[n]; - uint64_t wcr = env->cp15.dbgwcr[n]; - int mask; - int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; - - if (env->cpu_watchpoint[n]) { - cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); - env->cpu_watchpoint[n] = NULL; - } - - if (!extract64(wcr, 0, 1)) { - /* E bit clear : watchpoint disabled */ - return; - } - - switch (extract64(wcr, 3, 2)) { - case 0: - /* LSC 00 is reserved and must behave as if the wp is disabled */ - return; - case 1: - flags |= BP_MEM_READ; - break; - case 2: - flags |= BP_MEM_WRITE; - break; - case 3: - flags |= BP_MEM_ACCESS; - break; - } - - /* Attempts to use both MASK and BAS fields simultaneously are - * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, - * thus generating a watchpoint for every byte in the masked region. - */ - mask = extract64(wcr, 24, 4); - if (mask == 1 || mask == 2) { - /* Reserved values of MASK; we must act as if the mask value was - * some non-reserved value, or as if the watchpoint were disabled. - * We choose the latter. - */ - return; - } else if (mask) { - /* Watchpoint covers an aligned area up to 2GB in size */ - len = 1ULL << mask; - /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE - * whether the watchpoint fires when the unmasked bits match; we opt - * to generate the exceptions. - */ - wvr &= ~(len - 1); - } else { - /* Watchpoint covers bytes defined by the byte address select bits */ - int bas = extract64(wcr, 5, 8); - int basstart; - - if (extract64(wvr, 2, 1)) { - /* Deprecated case of an only 4-aligned address. BAS[7:4] are - * ignored, and BAS[3:0] define which bytes to watch. - */ - bas &= 0xf; - } - - if (bas == 0) { - /* This must act as if the watchpoint is disabled */ - return; - } - - /* The BAS bits are supposed to be programmed to indicate a contiguous - * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether - * we fire for each byte in the word/doubleword addressed by the WVR. - * We choose to ignore any non-zero bits after the first range of 1s. - */ - basstart = ctz32(bas); - len = cto32(bas >> basstart); - wvr += basstart; - } - - cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, - &env->cpu_watchpoint[n]); -} - -void hw_watchpoint_update_all(ARMCPU *cpu) -{ - int i; - CPUARMState *env = &cpu->env; - - /* Completely clear out existing QEMU watchpoints and our array, to - * avoid possible stale entries following migration load. - */ - cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); - memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); - - for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { - hw_watchpoint_update(cpu, i); - } -} - -static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - int i = ri->crm; - - /* - * Bits [63:49] are hardwired to the value of bit [48]; that is, the - * register reads and behaves as if values written are sign extended. - * Bits [1:0] are RES0. - */ - value = sextract64(value, 0, 49) & ~3ULL; - - raw_write(env, ri, value); - hw_watchpoint_update(cpu, i); -} - -static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - int i = ri->crm; - - raw_write(env, ri, value); - hw_watchpoint_update(cpu, i); -} - -void hw_breakpoint_update(ARMCPU *cpu, int n) -{ - CPUARMState *env = &cpu->env; - uint64_t bvr = env->cp15.dbgbvr[n]; - uint64_t bcr = env->cp15.dbgbcr[n]; - vaddr addr; - int bt; - int flags = BP_CPU; - - if (env->cpu_breakpoint[n]) { - cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); - env->cpu_breakpoint[n] = NULL; - } - - if (!extract64(bcr, 0, 1)) { - /* E bit clear : watchpoint disabled */ - return; - } - - bt = extract64(bcr, 20, 4); - - switch (bt) { - case 4: /* unlinked address mismatch (reserved if AArch64) */ - case 5: /* linked address mismatch (reserved if AArch64) */ - qemu_log_mask(LOG_UNIMP, - "arm: address mismatch breakpoint types not implemented\n"); - return; - case 0: /* unlinked address match */ - case 1: /* linked address match */ - { - /* Bits [63:49] are hardwired to the value of bit [48]; that is, - * we behave as if the register was sign extended. Bits [1:0] are - * RES0. The BAS field is used to allow setting breakpoints on 16 - * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether - * a bp will fire if the addresses covered by the bp and the addresses - * covered by the insn overlap but the insn doesn't start at the - * start of the bp address range. We choose to require the insn and - * the bp to have the same address. The constraints on writing to - * BAS enforced in dbgbcr_write mean we have only four cases: - * 0b0000 => no breakpoint - * 0b0011 => breakpoint on addr - * 0b1100 => breakpoint on addr + 2 - * 0b1111 => breakpoint on addr - * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). - */ - int bas = extract64(bcr, 5, 4); - addr = sextract64(bvr, 0, 49) & ~3ULL; - if (bas == 0) { - return; - } - if (bas == 0xc) { - addr += 2; - } - break; - } - case 2: /* unlinked context ID match */ - case 8: /* unlinked VMID match (reserved if no EL2) */ - case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ - qemu_log_mask(LOG_UNIMP, - "arm: unlinked context breakpoint types not implemented\n"); - return; - case 9: /* linked VMID match (reserved if no EL2) */ - case 11: /* linked context ID and VMID match (reserved if no EL2) */ - case 3: /* linked context ID match */ - default: - /* We must generate no events for Linked context matches (unless - * they are linked to by some other bp/wp, which is handled in - * updates for the linking bp/wp). We choose to also generate no events - * for reserved values. - */ - return; - } - - cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); -} - -void hw_breakpoint_update_all(ARMCPU *cpu) -{ - int i; - CPUARMState *env = &cpu->env; - - /* Completely clear out existing QEMU breakpoints and our array, to - * avoid possible stale entries following migration load. - */ - cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); - memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); - - for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { - hw_breakpoint_update(cpu, i); - } -} - -static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - int i = ri->crm; - - raw_write(env, ri, value); - hw_breakpoint_update(cpu, i); -} - -static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - int i = ri->crm; - - /* - * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only - * copy of BAS[0]. - */ - value = deposit64(value, 6, 1, extract64(value, 5, 1)); - value = deposit64(value, 8, 1, extract64(value, 7, 1)); - - raw_write(env, ri, value); - hw_breakpoint_update(cpu, i); -} - -static void define_debug_regs(ARMCPU *cpu) -{ - /* - * Define v7 and v8 architectural debug registers. - * These are just dummy implementations for now. - */ - int i; - int wrps, brps, ctx_cmps; - - /* - * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot - * use AArch32. Given that bit 15 is RES1, if the value is 0 then - * the register must not exist for this cpu. - */ - if (cpu->isar.dbgdidr != 0) { - ARMCPRegInfo dbgdidr = { - .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, - .opc1 = 0, .opc2 = 0, - .access = PL0_R, .accessfn = access_tda, - .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, - }; - define_one_arm_cp_reg(cpu, &dbgdidr); - } - - /* Note that all these register fields hold "number of Xs minus 1". */ - brps = arm_num_brps(cpu); - wrps = arm_num_wrps(cpu); - ctx_cmps = arm_num_ctx_cmps(cpu); - - assert(ctx_cmps <= brps); - - define_arm_cp_regs(cpu, debug_cp_reginfo); - - if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { - define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); - } - - for (i = 0; i < brps; i++) { - ARMCPRegInfo dbgregs[] = { - { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, - .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, - .access = PL1_RW, .accessfn = access_tda, - .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), - .writefn = dbgbvr_write, .raw_writefn = raw_write - }, - { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, - .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, - .access = PL1_RW, .accessfn = access_tda, - .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), - .writefn = dbgbcr_write, .raw_writefn = raw_write - }, - REGINFO_SENTINEL - }; - define_arm_cp_regs(cpu, dbgregs); - } - - for (i = 0; i < wrps; i++) { - ARMCPRegInfo dbgregs[] = { - { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, - .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, - .access = PL1_RW, .accessfn = access_tda, - .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), - .writefn = dbgwvr_write, .raw_writefn = raw_write - }, - { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, - .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, - .access = PL1_RW, .accessfn = access_tda, - .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), - .writefn = dbgwcr_write, .raw_writefn = raw_write - }, - REGINFO_SENTINEL - }; - define_arm_cp_regs(cpu, dbgregs); - } -} - -static void define_pmu_regs(ARMCPU *cpu) -{ - /* - * v7 performance monitor control register: same implementor - * field as main ID register, and we implement four counters in - * addition to the cycle count register. - */ - unsigned int i, pmcrn = PMCR_NUM_COUNTERS; - ARMCPRegInfo pmcr = { - .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, - .access = PL0_RW, - .type = ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), - .accessfn = pmreg_access, .writefn = pmcr_write, - .raw_writefn = raw_write, - }; - ARMCPRegInfo pmcr64 = { - .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), - .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | - PMCRLC, - .writefn = pmcr_write, .raw_writefn = raw_write, - }; - define_one_arm_cp_reg(cpu, &pmcr); - define_one_arm_cp_reg(cpu, &pmcr64); - for (i = 0; i < pmcrn; i++) { - char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); - char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); - char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); - char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); - ARMCPRegInfo pmev_regs[] = { - { .name = pmevcntr_name, .cp = 15, .crn = 14, - .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, - .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, - .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, - .accessfn = pmreg_access }, - { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), - .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_IO, - .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, - .raw_readfn = pmevcntr_rawread, - .raw_writefn = pmevcntr_rawwrite }, - { .name = pmevtyper_name, .cp = 15, .crn = 14, - .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, - .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, - .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, - .accessfn = pmreg_access }, - { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), - .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_IO, - .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, - .raw_writefn = pmevtyper_rawwrite }, - REGINFO_SENTINEL - }; - define_arm_cp_regs(cpu, pmev_regs); - g_free(pmevcntr_name); - g_free(pmevcntr_el0_name); - g_free(pmevtyper_name); - g_free(pmevtyper_el0_name); - } - if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { - ARMCPRegInfo v81_pmu_regs[] = { - { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = extract64(cpu->pmceid0, 32, 32) }, - { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = extract64(cpu->pmceid1, 32, 32) }, - REGINFO_SENTINEL - }; - define_arm_cp_regs(cpu, v81_pmu_regs); - } - if (cpu_isar_feature(any_pmu_8_4, cpu)) { - static const ARMCPRegInfo v84_pmmir = { - .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, - .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = 0 - }; - define_one_arm_cp_reg(cpu, &v84_pmmir); - } -} - -/* - * We don't know until after realize whether there's a GICv3 - * attached, and that is what registers the gicv3 sysregs. - * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 - * at runtime. - */ -static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - ARMCPU *cpu = env_archcpu(env); - uint64_t pfr1 = cpu->isar.id_pfr1; - - if (env->gicv3state) { - pfr1 |= 1 << 28; - } - return pfr1; -} - -#ifndef CONFIG_USER_ONLY -static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - ARMCPU *cpu = env_archcpu(env); - uint64_t pfr0 = cpu->isar.id_aa64pfr0; - - if (env->gicv3state) { - pfr0 |= 1 << 24; - } - return pfr0; -} -#endif - -/* - * Shared logic between LORID and the rest of the LOR* registers. - * Secure state exclusion has already been dealt with. - */ -static CPAccessResult access_lor_ns(CPUARMState *env, - const ARMCPRegInfo *ri, bool isread) -{ - int el = arm_current_el(env); - - if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -static CPAccessResult access_lor_other(CPUARMState *env, - const ARMCPRegInfo *ri, bool isread) -{ - if (arm_is_secure_below_el3(env)) { - /* Access denied in secure mode. */ - return CP_ACCESS_TRAP; - } - return access_lor_ns(env, ri, isread); -} - -/* - * A trivial implementation of ARMv8.1-LOR leaves all of these - * registers fixed at 0, which indicates that there are zero - * supported Limited Ordering regions. - */ -static const ARMCPRegInfo lor_reginfo[] = { - { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, - .access = PL1_RW, .accessfn = access_lor_other, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, - .access = PL1_RW, .accessfn = access_lor_other, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, - .access = PL1_RW, .accessfn = access_lor_other, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, - .access = PL1_RW, .accessfn = access_lor_other, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, - .access = PL1_R, .accessfn = access_lor_ns, - .type = ARM_CP_CONST, .resetvalue = 0 }, - REGINFO_SENTINEL -}; - -#ifdef TARGET_AARCH64 -static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int el = arm_current_el(env); - - if (el < 2 && - arm_feature(env, ARM_FEATURE_EL2) && - !(arm_hcr_el2_eff(env) & HCR_APK)) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 && - arm_feature(env, ARM_FEATURE_EL3) && - !(env->cp15.scr_el3 & SCR_APK)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo pauth_reginfo[] = { - { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, - { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, - { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, - { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, - { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, - { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, - { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, - { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, - { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, - { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo tlbirange_reginfo[] = { - { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1_write }, - { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1_write }, - { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1_write }, - { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1_write }, - { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae2is_write }, - { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae2is_write }, - { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae2is_write }, - { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae2is_write }, - { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae2_write }, - { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae2_write }, - { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3is_write }, - { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3is_write }, - { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3is_write }, - { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3is_write }, - { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3_write }, - { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3_write }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo tlbios_reginfo[] = { - { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1is_write }, - { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, - .access = PL1_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1is_write }, - { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle2is_write }, - { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1is_write }, - { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1is_write }, - { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle3is_write }, - REGINFO_SENTINEL -}; - -static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) -{ - Error *err = NULL; - uint64_t ret; - - /* Success sets NZCV = 0000. */ - env->NF = env->CF = env->VF = 0, env->ZF = 1; - - if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { - /* - * ??? Failed, for unknown reasons in the crypto subsystem. - * The best we can do is log the reason and return the - * timed-out indication to the guest. There is no reason - * we know to expect this failure to be transitory, so the - * guest may well hang retrying the operation. - */ - qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", - ri->name, error_get_pretty(err)); - error_free(err); - - env->ZF = 0; /* NZCF = 0100 */ - return 0; - } - return ret; -} - -/* We do not support re-seeding, so the two registers operate the same. */ -static const ARMCPRegInfo rndr_reginfo[] = { - { .name = "RNDR", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, - .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, - .access = PL0_R, .readfn = rndr_readfn }, - { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, - .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, - .access = PL0_R, .readfn = rndr_readfn }, - REGINFO_SENTINEL -}; - -#ifndef CONFIG_USER_ONLY -static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - /* CTR_EL0 System register -> DminLine, bits [19:16] */ - uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); - uint64_t vaddr_in = (uint64_t) value; - uint64_t vaddr = vaddr_in & ~(dline_size - 1); - void *haddr; - int mem_idx = cpu_mmu_index(env, false); - - /* This won't be crossing page boundaries */ - haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); - if (haddr) { - - ram_addr_t offset; - MemoryRegion *mr; - - /* RCU lock is already being held */ - mr = memory_region_from_host(haddr, &offset); - - if (mr) { - memory_region_writeback(mr, offset, dline_size); - } - } -} - -static const ARMCPRegInfo dcpop_reg[] = { - { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, - .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo dcpodp_reg[] = { - { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, - .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, - REGINFO_SENTINEL -}; -#endif /*CONFIG_USER_ONLY*/ - -static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int el = arm_current_el(env); - - if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { - uint64_t hcr = arm_hcr_el2_eff(env); - if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { - return CP_ACCESS_TRAP_EL2; - } - } - if (el < 3 && - arm_feature(env, ARM_FEATURE_EL3) && - !(env->cp15.scr_el3 & SCR_ATA)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_TCO; -} - -static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) -{ - env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); -} - -static const ARMCPRegInfo mte_reginfo[] = { - { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, - .access = PL1_RW, .accessfn = access_mte, - .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, - { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, - .access = PL1_RW, .accessfn = access_mte, - .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, - { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, - .access = PL2_RW, .accessfn = access_mte, - .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, - { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, - .access = PL3_RW, - .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, - { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, - .access = PL1_RW, .accessfn = access_mte, - .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, - { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, - .access = PL1_RW, .accessfn = access_mte, - .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, - { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, - .access = PL1_R, .accessfn = access_aa64_tid5, - .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, - { .name = "TCO", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, - .type = ARM_CP_NO_RAW, - .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, - { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, - .type = ARM_CP_NOP, .access = PL1_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL1_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo mte_tco_ro_reginfo[] = { - { .name = "TCO", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, - .type = ARM_CP_CONST, .access = PL0_RW, }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { - { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, - .access = PL0_W, .type = ARM_CP_DC_GVA, -#ifndef CONFIG_USER_ONLY - /* Avoid overhead of an access check that always passes in user-mode */ - .accessfn = aa64_zva_access, -#endif - }, - { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, - .access = PL0_W, .type = ARM_CP_DC_GZVA, -#ifndef CONFIG_USER_ONLY - /* Avoid overhead of an access check that always passes in user-mode */ - .accessfn = aa64_zva_access, -#endif - }, - REGINFO_SENTINEL -}; - -#endif - -static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int el = arm_current_el(env); - - if (el == 0) { - uint64_t sctlr = arm_sctlr(env, el); - if (!(sctlr & SCTLR_EnRCTX)) { - return CP_ACCESS_TRAP; - } - } else if (el == 1) { - uint64_t hcr = arm_hcr_el2_eff(env); - if (hcr & HCR_NV) { - return CP_ACCESS_TRAP_EL2; - } - } - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo predinv_reginfo[] = { - { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, - { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, - { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, - /* - * Note the AArch32 opcodes have a different OPC1. - */ - { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, - { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, - { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, - REGINFO_SENTINEL -}; - -static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* Read the high 32 bits of the current CCSIDR */ - return extract64(ccsidr_read(env, ri), 32, 32); -} - -static const ARMCPRegInfo ccsidr2_reginfo[] = { - { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, - .access = PL1_R, - .accessfn = access_aa64_tid2, - .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, - REGINFO_SENTINEL -}; - -static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_feature(env, ARM_FEATURE_V8)) { - return access_aa64_tid3(env, ri, isread); - } - - return CP_ACCESS_OK; -} - -static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo jazelle_regs[] = { - { .name = "JIDR", - .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, - .access = PL1_R, .accessfn = access_jazelle, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "JOSCR", - .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "JMCR", - .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo vhe_reginfo[] = { - { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, - { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, - .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, - .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, -#ifndef CONFIG_USER_ONLY - { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, - .fieldoffset = - offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), - .type = ARM_CP_IO, .access = PL2_RW, - .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, - { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, - .resetfn = gt_hv_timer_reset, - .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, - { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, - .type = ARM_CP_IO, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), - .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, - { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, - .type = ARM_CP_IO | ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = e2h_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), - .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, - { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, - .type = ARM_CP_IO | ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = e2h_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), - .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, - { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = e2h_access, - .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, - { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = e2h_access, - .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, - { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, - .type = ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), - .access = PL2_RW, .accessfn = e2h_access, - .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, - { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, - .type = ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), - .access = PL2_RW, .accessfn = e2h_access, - .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, -#endif - REGINFO_SENTINEL -}; - -#ifndef CONFIG_USER_ONLY -static const ARMCPRegInfo ats1e1_reginfo[] = { - { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - REGINFO_SENTINEL -}; - -static const ARMCPRegInfo ats1cp_reginfo[] = { - { .name = "ATS1CPRP", - .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write }, - { .name = "ATS1CPWP", - .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write }, - REGINFO_SENTINEL -}; -#endif - -/* - * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and - * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field - * is non-zero, which is never for ARMv7, optionally in ARMv8 - * and mandatorily for ARMv8.2 and up. - * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's - * implementation is RAZ/WI we can ignore this detail, as we - * do for ACTLR. - */ -static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { - { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, - .access = PL1_RW, .accessfn = access_tacr, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - REGINFO_SENTINEL -}; - -void register_cp_regs_for_features(ARMCPU *cpu) -{ - /* Register all the coprocessor registers based on feature bits */ - CPUARMState *env = &cpu->env; - if (arm_feature(env, ARM_FEATURE_M)) { - /* M profile has no coprocessor registers */ + switch (extract64(wcr, 3, 2)) { + case 0: + /* LSC 00 is reserved and must behave as if the wp is disabled */ return; + case 1: + flags |= BP_MEM_READ; + break; + case 2: + flags |= BP_MEM_WRITE; + break; + case 3: + flags |= BP_MEM_ACCESS; + break; } - define_arm_cp_regs(cpu, cp_reginfo); - if (!arm_feature(env, ARM_FEATURE_V8)) { - /* - * Must go early as it is full of wildcards that may be - * overridden by later definitions. - */ - define_arm_cp_regs(cpu, not_v8_cp_reginfo); - } - - if (arm_feature(env, ARM_FEATURE_V6)) { - /* The ID registers all have impdef reset values */ - ARMCPRegInfo v6_idregs[] = { - { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_pfr0 }, - /* - * ID_PFR1 is not a plain ARM_CP_CONST because we don't know - * the value of the GIC field until after we define these regs. - */ - { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_NO_RAW, - .accessfn = access_aa32_tid3, - .readfn = id_pfr1_read, - .writefn = arm_cp_write_ignore }, - { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_dfr0 }, - { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->id_afr0 }, - { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_mmfr0 }, - { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_mmfr1 }, - { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_mmfr2 }, - { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_mmfr3 }, - { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar0 }, - { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar1 }, - { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar2 }, - { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar3 }, - { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar4 }, - { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar5 }, - { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_mmfr4 }, - { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar6 }, - REGINFO_SENTINEL - }; - define_arm_cp_regs(cpu, v6_idregs); - define_arm_cp_regs(cpu, v6_cp_reginfo); - } else { - define_arm_cp_regs(cpu, not_v6_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_V6K)) { - define_arm_cp_regs(cpu, v6k_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_V7MP) && - !arm_feature(env, ARM_FEATURE_PMSA)) { - define_arm_cp_regs(cpu, v7mp_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_V7VE)) { - define_arm_cp_regs(cpu, pmovsset_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_V7)) { - ARMCPRegInfo clidr = { - .name = "CLIDR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid2, - .resetvalue = cpu->clidr - }; - define_one_arm_cp_reg(cpu, &clidr); - define_arm_cp_regs(cpu, v7_cp_reginfo); - define_debug_regs(cpu); - define_pmu_regs(cpu); - } else { - define_arm_cp_regs(cpu, not_v7_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_V8)) { - /* - * AArch64 ID registers, which all have impdef reset values. - * Note that within the ID register ranges the unused slots - * must all RAZ, not UNDEF; future architecture versions may - * define new registers here. + /* Attempts to use both MASK and BAS fields simultaneously are + * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, + * thus generating a watchpoint for every byte in the masked region. + */ + mask = extract64(wcr, 24, 4); + if (mask == 1 || mask == 2) { + /* Reserved values of MASK; we must act as if the mask value was + * some non-reserved value, or as if the watchpoint were disabled. + * We choose the latter. */ - ARMCPRegInfo v8_idregs[] = { - /* - * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system - * emulation because we don't know the right value for the - * GIC field until after we define these regs. - */ - { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, - .access = PL1_R, -#ifdef CONFIG_USER_ONLY - .type = ARM_CP_CONST, - .resetvalue = cpu->isar.id_aa64pfr0 -#else - .type = ARM_CP_NO_RAW, - .accessfn = access_aa64_tid3, - .readfn = id_aa64pfr0_read, - .writefn = arm_cp_write_ignore -#endif - }, - { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64pfr1}, - { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64zfr0 }, - { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64dfr0 }, - { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64dfr1 }, - { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->id_aa64afr0 }, - { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->id_aa64afr1 }, - { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64isar0 }, - { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64isar1 }, - { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64mmfr0 }, - { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64mmfr1 }, - { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64mmfr2 }, - { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.mvfr0 }, - { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.mvfr1 }, - { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.mvfr2 }, - { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_pfr2 }, - { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = extract64(cpu->pmceid0, 0, 32) }, - { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = cpu->pmceid0 }, - { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = extract64(cpu->pmceid1, 0, 32) }, - { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = cpu->pmceid1 }, - REGINFO_SENTINEL - }; -#ifdef CONFIG_USER_ONLY - ARMCPRegUserSpaceInfo v8_user_idregs[] = { - { .name = "ID_AA64PFR0_EL1", - .exported_bits = 0x000f000f00ff0000, - .fixed_bits = 0x0000000000000011 }, - { .name = "ID_AA64PFR1_EL1", - .exported_bits = 0x00000000000000f0 }, - { .name = "ID_AA64PFR*_EL1_RESERVED", - .is_glob = true }, - { .name = "ID_AA64ZFR0_EL1" }, - { .name = "ID_AA64MMFR0_EL1", - .fixed_bits = 0x00000000ff000000 }, - { .name = "ID_AA64MMFR1_EL1" }, - { .name = "ID_AA64MMFR*_EL1_RESERVED", - .is_glob = true }, - { .name = "ID_AA64DFR0_EL1", - .fixed_bits = 0x0000000000000006 }, - { .name = "ID_AA64DFR1_EL1" }, - { .name = "ID_AA64DFR*_EL1_RESERVED", - .is_glob = true }, - { .name = "ID_AA64AFR*", - .is_glob = true }, - { .name = "ID_AA64ISAR0_EL1", - .exported_bits = 0x00fffffff0fffff0 }, - { .name = "ID_AA64ISAR1_EL1", - .exported_bits = 0x000000f0ffffffff }, - { .name = "ID_AA64ISAR*_EL1_RESERVED", - .is_glob = true }, - REGUSERINFO_SENTINEL - }; - modify_arm_cp_regs(v8_idregs, v8_user_idregs); -#endif - /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ - if (!arm_feature(env, ARM_FEATURE_EL3) && - !arm_feature(env, ARM_FEATURE_EL2)) { - ARMCPRegInfo rvbar = { - .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, - .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar - }; - define_one_arm_cp_reg(cpu, &rvbar); - } - define_arm_cp_regs(cpu, v8_idregs); - define_arm_cp_regs(cpu, v8_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_EL2)) { - uint64_t vmpidr_def = mpidr_read_val(env); - ARMCPRegInfo vpidr_regs[] = { - { .name = "VPIDR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, - .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, - { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, - .access = PL2_RW, .resetvalue = cpu->midr, - .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, - { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, - .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, - { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, - .access = PL2_RW, - .resetvalue = vmpidr_def, - .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, - REGINFO_SENTINEL - }; - define_arm_cp_regs(cpu, vpidr_regs); - define_arm_cp_regs(cpu, el2_cp_reginfo); - if (arm_feature(env, ARM_FEATURE_V8)) { - define_arm_cp_regs(cpu, el2_v8_cp_reginfo); - } - if (cpu_isar_feature(aa64_sel2, cpu)) { - define_arm_cp_regs(cpu, el2_sec_cp_reginfo); - } - /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ - if (!arm_feature(env, ARM_FEATURE_EL3)) { - ARMCPRegInfo rvbar = { - .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, - .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar - }; - define_one_arm_cp_reg(cpu, &rvbar); - } - } else { - /* - * If EL2 is missing but higher ELs are enabled, we need to - * register the no_el2 reginfos. + return; + } else if (mask) { + /* Watchpoint covers an aligned area up to 2GB in size */ + len = 1ULL << mask; + /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE + * whether the watchpoint fires when the unmasked bits match; we opt + * to generate the exceptions. */ - if (arm_feature(env, ARM_FEATURE_EL3)) { - /* - * When EL3 exists but not EL2, VPIDR and VMPIDR take the value - * of MIDR_EL1 and MPIDR_EL1. - */ - ARMCPRegInfo vpidr_regs[] = { - { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .type = ARM_CP_CONST, .resetvalue = cpu->midr, - .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, - { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .type = ARM_CP_NO_RAW, - .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, - REGINFO_SENTINEL - }; - define_arm_cp_regs(cpu, vpidr_regs); - define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); - if (arm_feature(env, ARM_FEATURE_V8)) { - define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); - } - } - } - if (arm_feature(env, ARM_FEATURE_EL3)) { - define_arm_cp_regs(cpu, el3_cp_reginfo); - ARMCPRegInfo el3_regs[] = { - { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, - .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, - { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, - .access = PL3_RW, - .raw_writefn = raw_write, .writefn = sctlr_write, - .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), - .resetvalue = cpu->reset_sctlr }, - REGINFO_SENTINEL - }; - - define_arm_cp_regs(cpu, el3_regs); - } - /* - * The behaviour of NSACR is sufficiently various that we don't - * try to describe it in a single reginfo: - * if EL3 is 64 bit, then trap to EL3 from S EL1, - * reads as constant 0xc00 from NS EL1 and NS EL2 - * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 - * if v7 without EL3, register doesn't exist - * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 - */ - if (arm_feature(env, ARM_FEATURE_EL3)) { - if (arm_feature(env, ARM_FEATURE_AARCH64)) { - ARMCPRegInfo nsacr = { - .name = "NSACR", .type = ARM_CP_CONST, - .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, - .access = PL1_RW, .accessfn = nsacr_access, - .resetvalue = 0xc00 - }; - define_one_arm_cp_reg(cpu, &nsacr); - } else { - ARMCPRegInfo nsacr = { - .name = "NSACR", - .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, - .access = PL3_RW | PL1_R, - .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.nsacr) - }; - define_one_arm_cp_reg(cpu, &nsacr); - } + wvr &= ~(len - 1); } else { - if (arm_feature(env, ARM_FEATURE_V8)) { - ARMCPRegInfo nsacr = { - .name = "NSACR", .type = ARM_CP_CONST, - .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, - .access = PL1_R, - .resetvalue = 0xc00 - }; - define_one_arm_cp_reg(cpu, &nsacr); - } - } + /* Watchpoint covers bytes defined by the byte address select bits */ + int bas = extract64(wcr, 5, 8); + int basstart; - if (arm_feature(env, ARM_FEATURE_PMSA)) { - if (arm_feature(env, ARM_FEATURE_V6)) { - /* PMSAv6 not implemented */ - assert(arm_feature(env, ARM_FEATURE_V7)); - define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); - define_arm_cp_regs(cpu, pmsav7_cp_reginfo); - } else { - define_arm_cp_regs(cpu, pmsav5_cp_reginfo); - } - } else { - define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); - define_arm_cp_regs(cpu, vmsa_cp_reginfo); - /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ - if (cpu_isar_feature(aa32_hpd, cpu)) { - define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); - } - } - if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { - define_arm_cp_regs(cpu, t2ee_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { - define_arm_cp_regs(cpu, generic_timer_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_VAPA)) { - define_arm_cp_regs(cpu, vapa_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { - define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { - define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { - define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_OMAPCP)) { - define_arm_cp_regs(cpu, omap_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_STRONGARM)) { - define_arm_cp_regs(cpu, strongarm_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_XSCALE)) { - define_arm_cp_regs(cpu, xscale_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { - define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_LPAE)) { - define_arm_cp_regs(cpu, lpae_cp_reginfo); - } - if (cpu_isar_feature(aa32_jazelle, cpu)) { - define_arm_cp_regs(cpu, jazelle_regs); - } - /* - * Slightly awkwardly, the OMAP and StrongARM cores need all of - * cp15 crn=0 to be writes-ignored, whereas for other cores they should - * be read-only (ie write causes UNDEF exception). - */ - { - ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { - /* - * Pre-v8 MIDR space. - * Note that the MIDR isn't a simple constant register because - * of the TI925 behaviour where writes to another register can - * cause the MIDR value to change. - * - * Unimplemented registers in the c15 0 0 0 space default to - * MIDR. Define MIDR first as this entire space, then CTR, TCMTR - * and friends override accordingly. - */ - { .name = "MIDR", - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .resetvalue = cpu->midr, - .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, - .readfn = midr_read, - .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), - .type = ARM_CP_OVERRIDE }, - /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ - { .name = "DUMMY", - .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "DUMMY", - .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "DUMMY", - .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "DUMMY", - .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "DUMMY", - .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - REGINFO_SENTINEL - }; - ARMCPRegInfo id_v8_midr_cp_reginfo[] = { - { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, - .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), - .readfn = midr_read }, - /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ - { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, - .access = PL1_R, .resetvalue = cpu->midr }, - { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, - .access = PL1_R, .resetvalue = cpu->midr }, - { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, - .access = PL1_R, - .accessfn = access_aa64_tid1, - .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, - REGINFO_SENTINEL - }; - ARMCPRegInfo id_cp_reginfo[] = { - /* These are common to v8 and pre-v8 */ - { .name = "CTR", - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_R, .accessfn = ctr_el0_access, - .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, - { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, - .access = PL0_R, .accessfn = ctr_el0_access, - .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, - /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ - { .name = "TCMTR", - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL1_R, - .accessfn = access_aa32_tid1, - .type = ARM_CP_CONST, .resetvalue = 0 }, - REGINFO_SENTINEL - }; - /* TLBTR is specific to VMSA */ - ARMCPRegInfo id_tlbtr_reginfo = { - .name = "TLBTR", - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, - .access = PL1_R, - .accessfn = access_aa32_tid1, - .type = ARM_CP_CONST, .resetvalue = 0, - }; - /* MPUIR is specific to PMSA V6+ */ - ARMCPRegInfo id_mpuir_reginfo = { - .name = "MPUIR", - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .resetvalue = cpu->pmsav7_dregion << 8 - }; - ARMCPRegInfo crn0_wi_reginfo = { - .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, - .type = ARM_CP_NOP | ARM_CP_OVERRIDE - }; -#ifdef CONFIG_USER_ONLY - ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { - { .name = "MIDR_EL1", - .exported_bits = 0x00000000ffffffff }, - { .name = "REVIDR_EL1" }, - REGUSERINFO_SENTINEL - }; - modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); -#endif - if (arm_feature(env, ARM_FEATURE_OMAPCP) || - arm_feature(env, ARM_FEATURE_STRONGARM)) { - ARMCPRegInfo *r; - /* - * Register the blanket "writes ignored" value first to cover the - * whole space. Then update the specific ID registers to allow write - * access, so that they ignore writes rather than causing them to - * UNDEF. + if (extract64(wvr, 2, 1)) { + /* Deprecated case of an only 4-aligned address. BAS[7:4] are + * ignored, and BAS[3:0] define which bytes to watch. */ - define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); - for (r = id_pre_v8_midr_cp_reginfo; - r->type != ARM_CP_SENTINEL; r++) { - r->access = PL1_RW; - } - for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { - r->access = PL1_RW; - } - id_mpuir_reginfo.access = PL1_RW; - id_tlbtr_reginfo.access = PL1_RW; - } - if (arm_feature(env, ARM_FEATURE_V8)) { - define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); - } else { - define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); - } - define_arm_cp_regs(cpu, id_cp_reginfo); - if (!arm_feature(env, ARM_FEATURE_PMSA)) { - define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); - } else if (arm_feature(env, ARM_FEATURE_V7)) { - define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); + bas &= 0xf; } - } - if (arm_feature(env, ARM_FEATURE_MPIDR)) { - ARMCPRegInfo mpidr_cp_reginfo[] = { - { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, - .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, - REGINFO_SENTINEL - }; -#ifdef CONFIG_USER_ONLY - ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { - { .name = "MPIDR_EL1", - .fixed_bits = 0x0000000080000000 }, - REGUSERINFO_SENTINEL - }; - modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); -#endif - define_arm_cp_regs(cpu, mpidr_cp_reginfo); - } - - if (arm_feature(env, ARM_FEATURE_AUXCR)) { - ARMCPRegInfo auxcr_reginfo[] = { - { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tacr, - .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, - { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, - .access = PL3_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - REGINFO_SENTINEL - }; - define_arm_cp_regs(cpu, auxcr_reginfo); - if (cpu_isar_feature(aa32_ac2, cpu)) { - define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); + if (bas == 0) { + /* This must act as if the watchpoint is disabled */ + return; } - } - if (arm_feature(env, ARM_FEATURE_CBAR)) { - /* - * CBAR is IMPDEF, but common on Arm Cortex-A implementations. - * There are two flavours: - * (1) older 32-bit only cores have a simple 32-bit CBAR - * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a - * 32-bit register visible to AArch32 at a different encoding - * to the "flavour 1" register and with the bits rearranged to - * be able to squash a 64-bit address into the 32-bit view. - * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but - * in future if we support AArch32-only configs of some of the - * AArch64 cores we might need to add a specific feature flag - * to indicate cores with "flavour 2" CBAR. + /* The BAS bits are supposed to be programmed to indicate a contiguous + * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether + * we fire for each byte in the word/doubleword addressed by the WVR. + * We choose to ignore any non-zero bits after the first range of 1s. */ - if (arm_feature(env, ARM_FEATURE_AARCH64)) { - /* 32 bit view is [31:18] 0...0 [43:32]. */ - uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) - | extract64(cpu->reset_cbar, 32, 12); - ARMCPRegInfo cbar_reginfo[] = { - { .name = "CBAR", - .type = ARM_CP_CONST, - .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, - .access = PL1_R, .resetvalue = cbar32 }, - { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_CONST, - .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, - .access = PL1_R, .resetvalue = cpu->reset_cbar }, - REGINFO_SENTINEL - }; - /* We don't implement a r/w 64 bit CBAR currently */ - assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); - define_arm_cp_regs(cpu, cbar_reginfo); - } else { - ARMCPRegInfo cbar = { - .name = "CBAR", - .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, - .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, - .fieldoffset = offsetof(CPUARMState, - cp15.c15_config_base_address) - }; - if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { - cbar.access = PL1_R; - cbar.fieldoffset = 0; - cbar.type = ARM_CP_CONST; - } - define_one_arm_cp_reg(cpu, &cbar); - } + basstart = ctz32(bas); + len = cto32(bas >> basstart); + wvr += basstart; } - if (arm_feature(env, ARM_FEATURE_VBAR)) { - ARMCPRegInfo vbar_cp_reginfo[] = { - { .name = "VBAR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .writefn = vbar_write, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), - offsetof(CPUARMState, cp15.vbar_ns) }, - .resetvalue = 0 }, - REGINFO_SENTINEL - }; - define_arm_cp_regs(cpu, vbar_cp_reginfo); - } + cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, + &env->cpu_watchpoint[n]); +} - /* Generic registers whose values depend on the implementation */ - { - ARMCPRegInfo sctlr = { - .name = "SCTLR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), - offsetof(CPUARMState, cp15.sctlr_ns) }, - .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, - .raw_writefn = raw_write, - }; - if (arm_feature(env, ARM_FEATURE_XSCALE)) { - /* Normally we would always end the TB on an SCTLR write, but Linux - * arch/arm/mach-pxa/sleep.S expects two instructions following - * an MMU enable to execute from cache. Imitate this behaviour. - */ - sctlr.type |= ARM_CP_SUPPRESS_TB_END; - } - define_one_arm_cp_reg(cpu, &sctlr); - } +void hw_watchpoint_update_all(ARMCPU *cpu) +{ + int i; + CPUARMState *env = &cpu->env; - if (cpu_isar_feature(aa64_lor, cpu)) { - define_arm_cp_regs(cpu, lor_reginfo); - } - if (cpu_isar_feature(aa64_pan, cpu)) { - define_one_arm_cp_reg(cpu, &pan_reginfo); - } -#ifndef CONFIG_USER_ONLY - if (cpu_isar_feature(aa64_ats1e1, cpu)) { - define_arm_cp_regs(cpu, ats1e1_reginfo); - } - if (cpu_isar_feature(aa32_ats1e1, cpu)) { - define_arm_cp_regs(cpu, ats1cp_reginfo); - } -#endif - if (cpu_isar_feature(aa64_uao, cpu)) { - define_one_arm_cp_reg(cpu, &uao_reginfo); - } + /* Completely clear out existing QEMU watchpoints and our array, to + * avoid possible stale entries following migration load. + */ + cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); + memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); - if (cpu_isar_feature(aa64_dit, cpu)) { - define_one_arm_cp_reg(cpu, &dit_reginfo); - } - if (cpu_isar_feature(aa64_ssbs, cpu)) { - define_one_arm_cp_reg(cpu, &ssbs_reginfo); + for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { + hw_watchpoint_update(cpu, i); } +} - if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { - define_arm_cp_regs(cpu, vhe_reginfo); - } +void hw_breakpoint_update(ARMCPU *cpu, int n) +{ + CPUARMState *env = &cpu->env; + uint64_t bvr = env->cp15.dbgbvr[n]; + uint64_t bcr = env->cp15.dbgbcr[n]; + vaddr addr; + int bt; + int flags = BP_CPU; - if (cpu_isar_feature(aa64_sve, cpu)) { - define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); - if (arm_feature(env, ARM_FEATURE_EL2)) { - define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); - } else { - define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); - } - if (arm_feature(env, ARM_FEATURE_EL3)) { - define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); - } + if (env->cpu_breakpoint[n]) { + cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); + env->cpu_breakpoint[n] = NULL; } -#ifdef TARGET_AARCH64 - if (cpu_isar_feature(aa64_pauth, cpu)) { - define_arm_cp_regs(cpu, pauth_reginfo); - } - if (cpu_isar_feature(aa64_rndr, cpu)) { - define_arm_cp_regs(cpu, rndr_reginfo); - } - if (cpu_isar_feature(aa64_tlbirange, cpu)) { - define_arm_cp_regs(cpu, tlbirange_reginfo); - } - if (cpu_isar_feature(aa64_tlbios, cpu)) { - define_arm_cp_regs(cpu, tlbios_reginfo); + if (!extract64(bcr, 0, 1)) { + /* E bit clear : watchpoint disabled */ + return; } -#ifndef CONFIG_USER_ONLY - /* Data Cache clean instructions up to PoP */ - if (cpu_isar_feature(aa64_dcpop, cpu)) { - define_one_arm_cp_reg(cpu, dcpop_reg); - if (cpu_isar_feature(aa64_dcpodp, cpu)) { - define_one_arm_cp_reg(cpu, dcpodp_reg); + bt = extract64(bcr, 20, 4); + + switch (bt) { + case 4: /* unlinked address mismatch (reserved if AArch64) */ + case 5: /* linked address mismatch (reserved if AArch64) */ + qemu_log_mask(LOG_UNIMP, + "arm: address mismatch breakpoint types not implemented\n"); + return; + case 0: /* unlinked address match */ + case 1: /* linked address match */ + { + /* Bits [63:49] are hardwired to the value of bit [48]; that is, + * we behave as if the register was sign extended. Bits [1:0] are + * RES0. The BAS field is used to allow setting breakpoints on 16 + * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether + * a bp will fire if the addresses covered by the bp and the addresses + * covered by the insn overlap but the insn doesn't start at the + * start of the bp address range. We choose to require the insn and + * the bp to have the same address. The constraints on writing to + * BAS enforced in dbgbcr_write mean we have only four cases: + * 0b0000 => no breakpoint + * 0b0011 => breakpoint on addr + * 0b1100 => breakpoint on addr + 2 + * 0b1111 => breakpoint on addr + * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). + */ + int bas = extract64(bcr, 5, 4); + addr = sextract64(bvr, 0, 49) & ~3ULL; + if (bas == 0) { + return; + } + if (bas == 0xc) { + addr += 2; } + break; } -#endif /*CONFIG_USER_ONLY*/ - - /* - * If full MTE is enabled, add all of the system registers. - * If only "instructions available at EL0" are enabled, - * then define only a RAZ/WI version of PSTATE.TCO. - */ - if (cpu_isar_feature(aa64_mte, cpu)) { - define_arm_cp_regs(cpu, mte_reginfo); - define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); - } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { - define_arm_cp_regs(cpu, mte_tco_ro_reginfo); - define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); + case 2: /* unlinked context ID match */ + case 8: /* unlinked VMID match (reserved if no EL2) */ + case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ + qemu_log_mask(LOG_UNIMP, + "arm: unlinked context breakpoint types not implemented\n"); + return; + case 9: /* linked VMID match (reserved if no EL2) */ + case 11: /* linked context ID and VMID match (reserved if no EL2) */ + case 3: /* linked context ID match */ + default: + /* We must generate no events for Linked context matches (unless + * they are linked to by some other bp/wp, which is handled in + * updates for the linking bp/wp). We choose to also generate no events + * for reserved values. + */ + return; } -#endif - if (cpu_isar_feature(any_predinv, cpu)) { - define_arm_cp_regs(cpu, predinv_reginfo); - } + cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); +} - if (cpu_isar_feature(any_ccidx, cpu)) { - define_arm_cp_regs(cpu, ccsidr2_reginfo); - } +void hw_breakpoint_update_all(ARMCPU *cpu) +{ + int i; + CPUARMState *env = &cpu->env; -#ifndef CONFIG_USER_ONLY - /* - * Register redirections and aliases must be done last, - * after the registers from the other extensions have been defined. + /* Completely clear out existing QEMU breakpoints and our array, to + * avoid possible stale entries following migration load. */ - if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { - define_arm_vh_e2h_redirects_aliases(cpu); + cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); + memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); + + for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { + hw_breakpoint_update(cpu, i); } -#endif } void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) @@ -8835,397 +725,6 @@ CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) return cpu_list; } -static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, - void *opaque, int state, int secstate, - int crm, int opc1, int opc2, - const char *name) -{ - /* - * Private utility function for define_one_arm_cp_reg_with_opaque(): - * add a single reginfo struct to the hash table. - */ - uint32_t *key = g_new(uint32_t, 1); - ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); - int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; - int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; - - r2->name = g_strdup(name); - /* - * Reset the secure state to the specific incoming state. This is - * necessary as the register may have been defined with both states. - */ - r2->secure = secstate; - - if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { - /* - * Register is banked (using both entries in array). - * Overwriting fieldoffset as the array is only used to define - * banked registers but later only fieldoffset is used. - */ - r2->fieldoffset = r->bank_fieldoffsets[ns]; - } - - if (state == ARM_CP_STATE_AA32) { - if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { - /* - * If the register is banked then we don't need to migrate or - * reset the 32-bit instance in certain cases: - * - * 1) If the register has both 32-bit and 64-bit instances then we - * can count on the 64-bit instance taking care of the - * non-secure bank. - * 2) If ARMv8 is enabled then we can count on a 64-bit version - * taking care of the secure bank. This requires that separate - * 32 and 64-bit definitions are provided. - */ - if ((r->state == ARM_CP_STATE_BOTH && ns) || - (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { - r2->type |= ARM_CP_ALIAS; - } - } else if ((secstate != r->secure) && !ns) { - /* - * The register is not banked so we only want to allow migration of - * the non-secure instance. - */ - r2->type |= ARM_CP_ALIAS; - } - - if (r->state == ARM_CP_STATE_BOTH) { - /* We assume it is a cp15 register if the .cp field is left unset */ - if (r2->cp == 0) { - r2->cp = 15; - } - -#ifdef HOST_WORDS_BIGENDIAN - if (r2->fieldoffset) { - r2->fieldoffset += sizeof(uint32_t); - } -#endif - } - } - if (state == ARM_CP_STATE_AA64) { - /* - * To allow abbreviation of ARMCPRegInfo - * definitions, we treat cp == 0 as equivalent to - * the value for "standard guest-visible sysreg". - * STATE_BOTH definitions are also always "standard - * sysreg" in their AArch64 view (the .cp value may - * be non-zero for the benefit of the AArch32 view). - */ - if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { - r2->cp = CP_REG_ARM64_SYSREG_CP; - } - *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, - r2->opc0, opc1, opc2); - } else { - *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); - } - if (opaque) { - r2->opaque = opaque; - } - /* - * reginfo passed to helpers is correct for the actual access, - * and is never ARM_CP_STATE_BOTH: - */ - r2->state = state; - /* - * Make sure reginfo passed to helpers for wildcarded regs - * has the correct crm/opc1/opc2 for this reg, not CP_ANY: - */ - r2->crm = crm; - r2->opc1 = opc1; - r2->opc2 = opc2; - /* - * By convention, for wildcarded registers only the first - * entry is used for migration; the others are marked as - * ALIAS so we don't try to transfer the register - * multiple times. Special registers (ie NOP/WFI) are - * never migratable and not even raw-accessible. - */ - if ((r->type & ARM_CP_SPECIAL)) { - r2->type |= ARM_CP_NO_RAW; - } - if (((r->crm == CP_ANY) && crm != 0) || - ((r->opc1 == CP_ANY) && opc1 != 0) || - ((r->opc2 == CP_ANY) && opc2 != 0)) { - r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; - } - - /* - * Check that raw accesses are either forbidden or handled. Note that - * we can't assert this earlier because the setup of fieldoffset for - * banked registers has to be done first. - */ - if (!(r2->type & ARM_CP_NO_RAW)) { - assert(!raw_accessors_invalid(r2)); - } - - /* Overriding of an existing definition must be explicitly requested. */ - if (!(r->type & ARM_CP_OVERRIDE)) { - ARMCPRegInfo *oldreg; - oldreg = g_hash_table_lookup(cpu->cp_regs, key); - if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { - fprintf(stderr, "Register redefined: cp=%d %d bit " - "crn=%d crm=%d opc1=%d opc2=%d, " - "was %s, now %s\n", r2->cp, 32 + 32 * is64, - r2->crn, r2->crm, r2->opc1, r2->opc2, - oldreg->name, r2->name); - g_assert_not_reached(); - } - } - g_hash_table_insert(cpu->cp_regs, key, r2); -} - - -void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, - const ARMCPRegInfo *r, void *opaque) -{ - /* - * Define implementations of coprocessor registers. - * We store these in a hashtable because typically - * there are less than 150 registers in a space which - * is 16*16*16*8*8 = 262144 in size. - * Wildcarding is supported for the crm, opc1 and opc2 fields. - * If a register is defined twice then the second definition is - * used, so this can be used to define some generic registers and - * then override them with implementation specific variations. - * At least one of the original and the second definition should - * include ARM_CP_OVERRIDE in its type bits -- this is just a guard - * against accidental use. - * - * The state field defines whether the register is to be - * visible in the AArch32 or AArch64 execution state. If the - * state is set to ARM_CP_STATE_BOTH then we synthesise a - * reginfo structure for the AArch32 view, which sees the lower - * 32 bits of the 64 bit register. - * - * Only registers visible in AArch64 may set r->opc0; opc0 cannot - * be wildcarded. AArch64 registers are always considered to be 64 - * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of - * the register, if any. - */ - int crm, opc1, opc2, state; - int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; - int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; - int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; - int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; - int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; - int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; - /* 64 bit registers have only CRm and Opc1 fields */ - assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); - /* op0 only exists in the AArch64 encodings */ - assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); - /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ - assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); - /* - * This API is only for Arm's system coprocessors (14 and 15) or - * (M-profile or v7A-and-earlier only) for implementation defined - * coprocessors in the range 0..7. Our decode assumes this, since - * 8..13 can be used for other insns including VFP and Neon. See - * valid_cp() in translate.c. Assert here that we haven't tried - * to use an invalid coprocessor number. - */ - switch (r->state) { - case ARM_CP_STATE_BOTH: - /* 0 has a special meaning, but otherwise the same rules as AA32. */ - if (r->cp == 0) { - break; - } - /* fall through */ - case ARM_CP_STATE_AA32: - if (arm_feature(&cpu->env, ARM_FEATURE_V8) && - !arm_feature(&cpu->env, ARM_FEATURE_M)) { - assert(r->cp >= 14 && r->cp <= 15); - } else { - assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); - } - break; - case ARM_CP_STATE_AA64: - assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); - break; - default: - g_assert_not_reached(); - } - /* - * The AArch64 pseudocode CheckSystemAccess() specifies that op1 - * encodes a minimum access level for the register. We roll this - * runtime check into our general permission check code, so check - * here that the reginfo's specified permissions are strict enough - * to encompass the generic architectural permission check. - */ - if (r->state != ARM_CP_STATE_AA32) { - int mask = 0; - switch (r->opc1) { - case 0: - /* min_EL EL1, but some accessible to EL0 via kernel ABI */ - mask = PL0U_R | PL1_RW; - break; - case 1: case 2: - /* min_EL EL1 */ - mask = PL1_RW; - break; - case 3: - /* min_EL EL0 */ - mask = PL0_RW; - break; - case 4: - case 5: - /* min_EL EL2 */ - mask = PL2_RW; - break; - case 6: - /* min_EL EL3 */ - mask = PL3_RW; - break; - case 7: - /* min_EL EL1, secure mode only (we don't check the latter) */ - mask = PL1_RW; - break; - default: - /* broken reginfo with out-of-range opc1 */ - assert(false); - break; - } - /* assert our permissions are not too lax (stricter is fine) */ - assert((r->access & ~mask) == 0); - } - - /* - * Check that the register definition has enough info to handle - * reads and writes if they are permitted. - */ - if (!(r->type & (ARM_CP_SPECIAL | ARM_CP_CONST))) { - if (r->access & PL3_R) { - assert((r->fieldoffset || - (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || - r->readfn); - } - if (r->access & PL3_W) { - assert((r->fieldoffset || - (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || - r->writefn); - } - } - /* Bad type field probably means missing sentinel at end of reg list */ - assert(cptype_valid(r->type)); - for (crm = crmmin; crm <= crmmax; crm++) { - for (opc1 = opc1min; opc1 <= opc1max; opc1++) { - for (opc2 = opc2min; opc2 <= opc2max; opc2++) { - for (state = ARM_CP_STATE_AA32; - state <= ARM_CP_STATE_AA64; state++) { - if (r->state != state && r->state != ARM_CP_STATE_BOTH) { - continue; - } - if (state == ARM_CP_STATE_AA32) { - /* - * Under AArch32 CP registers can be common - * (same for secure and non-secure world) or banked. - */ - char *name; - - switch (r->secure) { - case ARM_CP_SECSTATE_S: - case ARM_CP_SECSTATE_NS: - add_cpreg_to_hashtable(cpu, r, opaque, state, - r->secure, crm, opc1, opc2, - r->name); - break; - default: - name = g_strdup_printf("%s_S", r->name); - add_cpreg_to_hashtable(cpu, r, opaque, state, - ARM_CP_SECSTATE_S, - crm, opc1, opc2, name); - g_free(name); - add_cpreg_to_hashtable(cpu, r, opaque, state, - ARM_CP_SECSTATE_NS, - crm, opc1, opc2, r->name); - break; - } - } else { - /* - * AArch64 registers get mapped to non-secure - * instance of AArch32 - */ - add_cpreg_to_hashtable(cpu, r, opaque, state, - ARM_CP_SECSTATE_NS, - crm, opc1, opc2, r->name); - } - } - } - } - } -} - -void define_arm_cp_regs_with_opaque(ARMCPU *cpu, - const ARMCPRegInfo *regs, void *opaque) -{ - /* Define a whole list of registers */ - const ARMCPRegInfo *r; - for (r = regs; r->type != ARM_CP_SENTINEL; r++) { - define_one_arm_cp_reg_with_opaque(cpu, r, opaque); - } -} - -/* - * Modify ARMCPRegInfo for access from userspace. - * - * This is a data driven modification directed by - * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as - * user-space cannot alter any values and dynamic values pertaining to - * execution state are hidden from user space view anyway. - */ -void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) -{ - const ARMCPRegUserSpaceInfo *m; - ARMCPRegInfo *r; - - for (m = mods; m->name; m++) { - GPatternSpec *pat = NULL; - if (m->is_glob) { - pat = g_pattern_spec_new(m->name); - } - for (r = regs; r->type != ARM_CP_SENTINEL; r++) { - if (pat && g_pattern_match_string(pat, r->name)) { - r->type = ARM_CP_CONST; - r->access = PL0U_R; - r->resetvalue = 0; - /* continue */ - } else if (strcmp(r->name, m->name) == 0) { - r->type = ARM_CP_CONST; - r->access = PL0U_R; - r->resetvalue &= m->exported_bits; - r->resetvalue |= m->fixed_bits; - break; - } - } - if (pat) { - g_pattern_spec_free(pat); - } - } -} - -const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) -{ - return g_hash_table_lookup(cpregs, &encoded_cp); -} - -void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Helper coprocessor write function for write-ignore registers */ -} - -uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* Helper coprocessor write function for read-as-zero registers */ - return 0; -} - -void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) -{ - /* Helper coprocessor reset function for do-nothing-on-reset registers */ -} - static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) { /* Return true if it is not valid for us to switch to diff --git a/target/arm/tcg/op_helper.c b/target/arm/tcg/op_helper.c index efcb600992..8c95d7773d 100644 --- a/target/arm/tcg/op_helper.c +++ b/target/arm/tcg/op_helper.c @@ -19,6 +19,7 @@ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "cpu.h" +#include "cpregs.h" #include "exec/helper-proto.h" #include "internals.h" #include "exec/exec-all.h" diff --git a/target/arm/tcg/translate-a64.c b/target/arm/tcg/translate-a64.c index ceac0ee2bd..26ed1f2e02 100644 --- a/target/arm/tcg/translate-a64.c +++ b/target/arm/tcg/translate-a64.c @@ -19,6 +19,7 @@ #include "qemu/osdep.h" #include "cpu.h" +#include "cpregs.h" #include "exec/exec-all.h" #include "tcg/tcg-op.h" #include "tcg/tcg-op-gvec.h" diff --git a/target/arm/tcg/translate.c b/target/arm/tcg/translate.c index 8e0e55c1e0..2e626a1a93 100644 --- a/target/arm/tcg/translate.c +++ b/target/arm/tcg/translate.c @@ -22,6 +22,7 @@ #include "cpu.h" #include "internals.h" +#include "cpregs.h" #include "disas/disas.h" #include "exec/exec-all.h" #include "tcg/tcg-op.h" diff --git a/target/arm/meson.build b/target/arm/meson.build index 3e7cea7604..5fb34c1af1 100644 --- a/target/arm/meson.build +++ b/target/arm/meson.build @@ -1,7 +1,9 @@ arm_ss = ss.source_set() arm_ss.add(files( + 'cpregs.c', 'cpu.c', 'cpu-mmu.c', + 'cpustate-list.c', 'gdbstub.c', 'cpu_tcg.c', )) diff --git a/target/arm/tcg/meson.build b/target/arm/tcg/meson.build index 3503ad96c8..3d34723eee 100644 --- a/target/arm/tcg/meson.build +++ b/target/arm/tcg/meson.build @@ -20,6 +20,7 @@ arm_ss.add(when: 'CONFIG_TCG', if_true: files( 'translate-neon.c', 'translate-vfp.c', 'helper.c', + 'cpregs.c', 'iwmmxt_helper.c', 'm_helper.c', 'neon_helper.c',