@@ -839,6 +839,16 @@ static int64_t parts128_float_to_sint(FloatParts128 *p, FloatRoundMode rmode,
#define parts_float_to_sint(P, R, Z, MN, MX, S) \
PARTS_GENERIC_64_128(float_to_sint, P)(P, R, Z, MN, MX, S)
+static uint64_t parts64_float_to_uint(FloatParts64 *p, FloatRoundMode rmode,
+ int scale, uint64_t max,
+ float_status *s);
+static uint64_t parts128_float_to_uint(FloatParts128 *p, FloatRoundMode rmode,
+ int scale, uint64_t max,
+ float_status *s);
+
+#define parts_float_to_uint(P, R, Z, M, S) \
+ PARTS_GENERIC_64_128(float_to_uint, P)(P, R, Z, M, S)
+
/*
* Helper functions for softfloat-parts.c.inc, per-size operations.
*/
@@ -2646,80 +2656,16 @@ int64_t bfloat16_to_int64_round_to_zero(bfloat16 a, float_status *s)
}
/*
- * Returns the result of converting the floating-point value `a' to
- * the unsigned integer format. The conversion is performed according
- * to the IEC/IEEE Standard for Binary Floating-Point
- * Arithmetic---which means in particular that the conversion is
- * rounded according to the current rounding mode. If `a' is a NaN,
- * the largest unsigned integer is returned. Otherwise, if the
- * conversion overflows, the largest unsigned integer is returned. If
- * the 'a' is negative, the result is rounded and zero is returned;
- * values that do not round to zero will raise the inexact exception
- * flag.
+ * Floating-point to unsigned integer conversions
*/
-static uint64_t round_to_uint_and_pack(FloatParts64 p, FloatRoundMode rmode,
- int scale, uint64_t max,
- float_status *s)
-{
- int flags = 0;
- uint64_t r;
-
- switch (p.cls) {
- case float_class_snan:
- case float_class_qnan:
- flags = float_flag_invalid;
- r = max;
- break;
-
- case float_class_inf:
- flags = float_flag_invalid;
- r = p.sign ? 0 : max;
- break;
-
- case float_class_zero:
- return 0;
-
- case float_class_normal:
- /* TODO: 62 = N - 2, frac_size for rounding */
- if (parts_round_to_int_normal(&p, rmode, scale, 62)) {
- flags = float_flag_inexact;
- if (p.cls == float_class_zero) {
- r = 0;
- break;
- }
- }
-
- if (p.sign) {
- flags = float_flag_invalid;
- r = 0;
- } else if (p.exp > DECOMPOSED_BINARY_POINT) {
- flags = float_flag_invalid;
- r = max;
- } else {
- r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
- if (r > max) {
- flags = float_flag_invalid;
- r = max;
- }
- }
- break;
-
- default:
- g_assert_not_reached();
- }
-
- float_raise(flags, s);
- return r;
-}
-
uint8_t float16_to_uint8_scalbn(float16 a, FloatRoundMode rmode, int scale,
float_status *s)
{
FloatParts64 p;
float16_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT8_MAX, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT8_MAX, s);
}
uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode rmode, int scale,
@@ -2728,7 +2674,7 @@ uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode rmode, int scale,
FloatParts64 p;
float16_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT16_MAX, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT16_MAX, s);
}
uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode rmode, int scale,
@@ -2737,7 +2683,7 @@ uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode rmode, int scale,
FloatParts64 p;
float16_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT32_MAX, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT32_MAX, s);
}
uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode rmode, int scale,
@@ -2746,7 +2692,7 @@ uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode rmode, int scale,
FloatParts64 p;
float16_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT64_MAX, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT64_MAX, s);
}
uint16_t float32_to_uint16_scalbn(float32 a, FloatRoundMode rmode, int scale,
@@ -2755,7 +2701,7 @@ uint16_t float32_to_uint16_scalbn(float32 a, FloatRoundMode rmode, int scale,
FloatParts64 p;
float32_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT16_MAX, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT16_MAX, s);
}
uint32_t float32_to_uint32_scalbn(float32 a, FloatRoundMode rmode, int scale,
@@ -2764,7 +2710,7 @@ uint32_t float32_to_uint32_scalbn(float32 a, FloatRoundMode rmode, int scale,
FloatParts64 p;
float32_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT32_MAX, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT32_MAX, s);
}
uint64_t float32_to_uint64_scalbn(float32 a, FloatRoundMode rmode, int scale,
@@ -2773,7 +2719,7 @@ uint64_t float32_to_uint64_scalbn(float32 a, FloatRoundMode rmode, int scale,
FloatParts64 p;
float32_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT64_MAX, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT64_MAX, s);
}
uint16_t float64_to_uint16_scalbn(float64 a, FloatRoundMode rmode, int scale,
@@ -2782,7 +2728,7 @@ uint16_t float64_to_uint16_scalbn(float64 a, FloatRoundMode rmode, int scale,
FloatParts64 p;
float64_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT16_MAX, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT16_MAX, s);
}
uint32_t float64_to_uint32_scalbn(float64 a, FloatRoundMode rmode, int scale,
@@ -2791,7 +2737,7 @@ uint32_t float64_to_uint32_scalbn(float64 a, FloatRoundMode rmode, int scale,
FloatParts64 p;
float64_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT32_MAX, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT32_MAX, s);
}
uint64_t float64_to_uint64_scalbn(float64 a, FloatRoundMode rmode, int scale,
@@ -2800,7 +2746,52 @@ uint64_t float64_to_uint64_scalbn(float64 a, FloatRoundMode rmode, int scale,
FloatParts64 p;
float64_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT64_MAX, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT64_MAX, s);
+}
+
+uint16_t bfloat16_to_uint16_scalbn(bfloat16 a, FloatRoundMode rmode,
+ int scale, float_status *s)
+{
+ FloatParts64 p;
+
+ bfloat16_unpack_canonical(&p, a, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT16_MAX, s);
+}
+
+uint32_t bfloat16_to_uint32_scalbn(bfloat16 a, FloatRoundMode rmode,
+ int scale, float_status *s)
+{
+ FloatParts64 p;
+
+ bfloat16_unpack_canonical(&p, a, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT32_MAX, s);
+}
+
+uint64_t bfloat16_to_uint64_scalbn(bfloat16 a, FloatRoundMode rmode,
+ int scale, float_status *s)
+{
+ FloatParts64 p;
+
+ bfloat16_unpack_canonical(&p, a, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT64_MAX, s);
+}
+
+static uint32_t float128_to_uint32_scalbn(float128 a, FloatRoundMode rmode,
+ int scale, float_status *s)
+{
+ FloatParts128 p;
+
+ float128_unpack_canonical(&p, a, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT32_MAX, s);
+}
+
+static uint64_t float128_to_uint64_scalbn(float128 a, FloatRoundMode rmode,
+ int scale, float_status *s)
+{
+ FloatParts128 p;
+
+ float128_unpack_canonical(&p, a, s);
+ return parts_float_to_uint(&p, rmode, scale, UINT64_MAX, s);
}
uint8_t float16_to_uint8(float16 a, float_status *s)
@@ -2853,6 +2844,16 @@ uint64_t float64_to_uint64(float64 a, float_status *s)
return float64_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}
+uint32_t float128_to_uint32(float128 a, float_status *s)
+{
+ return float128_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
+}
+
+uint64_t float128_to_uint64(float128 a, float_status *s)
+{
+ return float128_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
+}
+
uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *s)
{
return float16_to_uint16_scalbn(a, float_round_to_zero, 0, s);
@@ -2898,36 +2899,14 @@ uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *s)
return float64_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}
-/*
- * Returns the result of converting the bfloat16 value `a' to
- * the unsigned integer format.
- */
-
-uint16_t bfloat16_to_uint16_scalbn(bfloat16 a, FloatRoundMode rmode,
- int scale, float_status *s)
+uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *s)
{
- FloatParts64 p;
-
- bfloat16_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT16_MAX, s);
+ return float128_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}
-uint32_t bfloat16_to_uint32_scalbn(bfloat16 a, FloatRoundMode rmode,
- int scale, float_status *s)
+uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *s)
{
- FloatParts64 p;
-
- bfloat16_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT32_MAX, s);
-}
-
-uint64_t bfloat16_to_uint64_scalbn(bfloat16 a, FloatRoundMode rmode,
- int scale, float_status *s)
-{
- FloatParts64 p;
-
- bfloat16_unpack_canonical(&p, a, s);
- return round_to_uint_and_pack(p, rmode, scale, UINT64_MAX, s);
+ return float128_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}
uint16_t bfloat16_to_uint16(bfloat16 a, float_status *s)
@@ -4123,66 +4102,6 @@ static int64_t roundAndPackInt64(bool zSign, uint64_t absZ0, uint64_t absZ1,
}
-/*----------------------------------------------------------------------------
-| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
-| `absZ1', with binary point between bits 63 and 64 (between the input words),
-| and returns the properly rounded 64-bit unsigned integer corresponding to the
-| input. Ordinarily, the fixed-point input is simply rounded to an integer,
-| with the inexact exception raised if the input cannot be represented exactly
-| as an integer. However, if the fixed-point input is too large, the invalid
-| exception is raised and the largest unsigned integer is returned.
-*----------------------------------------------------------------------------*/
-
-static int64_t roundAndPackUint64(bool zSign, uint64_t absZ0,
- uint64_t absZ1, float_status *status)
-{
- int8_t roundingMode;
- bool roundNearestEven, increment;
-
- roundingMode = status->float_rounding_mode;
- roundNearestEven = (roundingMode == float_round_nearest_even);
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t)absZ1 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && absZ1;
- break;
- case float_round_down:
- increment = zSign && absZ1;
- break;
- case float_round_to_odd:
- increment = !(absZ0 & 1) && absZ1;
- break;
- default:
- abort();
- }
- if (increment) {
- ++absZ0;
- if (absZ0 == 0) {
- float_raise(float_flag_invalid, status);
- return UINT64_MAX;
- }
- if (!(absZ1 << 1) && roundNearestEven) {
- absZ0 &= ~1;
- }
- }
-
- if (zSign && absZ0) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
-
- if (absZ1) {
- float_raise(float_flag_inexact, status);
- }
- return absZ0;
-}
-
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'. The normalized exponent and
@@ -6536,122 +6455,6 @@ floatx80 floatx80_sqrt(floatx80 a, float_status *status)
0, zExp, zSig0, zSig1, status);
}
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point value
-| `a' to the 64-bit unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. If the conversion overflows, the
-| largest unsigned integer is returned. If 'a' is negative, the value is
-| rounded and zero is returned; negative values that do not round to zero
-| will raise the inexact exception.
-*----------------------------------------------------------------------------*/
-
-uint64_t float128_to_uint64(float128 a, float_status *status)
-{
- bool aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig0, aSig1;
-
- aSig0 = extractFloat128Frac0(a);
- aSig1 = extractFloat128Frac1(a);
- aExp = extractFloat128Exp(a);
- aSign = extractFloat128Sign(a);
- if (aSign && (aExp > 0x3FFE)) {
- float_raise(float_flag_invalid, status);
- if (float128_is_any_nan(a)) {
- return UINT64_MAX;
- } else {
- return 0;
- }
- }
- if (aExp) {
- aSig0 |= UINT64_C(0x0001000000000000);
- }
- shiftCount = 0x402F - aExp;
- if (shiftCount <= 0) {
- if (0x403E < aExp) {
- float_raise(float_flag_invalid, status);
- return UINT64_MAX;
- }
- shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
- } else {
- shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
- }
- return roundAndPackUint64(aSign, aSig0, aSig1, status);
-}
-
-uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
-{
- uint64_t v;
- signed char current_rounding_mode = status->float_rounding_mode;
-
- set_float_rounding_mode(float_round_to_zero, status);
- v = float128_to_uint64(a, status);
- set_float_rounding_mode(current_rounding_mode, status);
-
- return v;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 32-bit unsigned integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise,
-| if the conversion overflows, the largest unsigned integer is returned.
-| If 'a' is negative, the value is rounded and zero is returned; negative
-| values that do not round to zero will raise the inexact exception.
-*----------------------------------------------------------------------------*/
-
-uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
-{
- uint64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float128_to_uint64_round_to_zero(a, status);
- if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point value
-| `a' to the 32-bit unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. If the conversion overflows, the
-| largest unsigned integer is returned. If 'a' is negative, the value is
-| rounded and zero is returned; negative values that do not round to zero
-| will raise the inexact exception.
-*----------------------------------------------------------------------------*/
-
-uint32_t float128_to_uint32(float128 a, float_status *status)
-{
- uint64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float128_to_uint64(a, status);
- if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format. The
@@ -763,7 +763,7 @@ static void partsN(round_to_int)(FloatPartsN *a, FloatRoundMode rmode,
* the largest positive integer is returned. Otherwise, if the
* conversion overflows, the largest integer with the same sign as `a'
* is returned.
-*/
+ */
static int64_t partsN(float_to_sint)(FloatPartsN *p, FloatRoundMode rmode,
int scale, int64_t min, int64_t max,
float_status *s)
@@ -817,3 +817,69 @@ static int64_t partsN(float_to_sint)(FloatPartsN *p, FloatRoundMode rmode,
float_raise(flags, s);
return r;
}
+
+/*
+ * Returns the result of converting the floating-point value `a' to
+ * the unsigned integer format. The conversion is performed according
+ * to the IEC/IEEE Standard for Binary Floating-Point
+ * Arithmetic---which means in particular that the conversion is
+ * rounded according to the current rounding mode. If `a' is a NaN,
+ * the largest unsigned integer is returned. Otherwise, if the
+ * conversion overflows, the largest unsigned integer is returned. If
+ * the 'a' is negative, the result is rounded and zero is returned;
+ * values that do not round to zero will raise the inexact exception
+ * flag.
+ */
+static uint64_t partsN(float_to_uint)(FloatPartsN *p, FloatRoundMode rmode,
+ int scale, uint64_t max, float_status *s)
+{
+ int flags = 0;
+ uint64_t r;
+
+ switch (p->cls) {
+ case float_class_snan:
+ case float_class_qnan:
+ flags = float_flag_invalid;
+ r = max;
+ break;
+
+ case float_class_inf:
+ flags = float_flag_invalid;
+ r = p->sign ? 0 : max;
+ break;
+
+ case float_class_zero:
+ return 0;
+
+ case float_class_normal:
+ /* TODO: N - 2 is frac_size for rounding; could use input fmt. */
+ if (parts_round_to_int_normal(p, rmode, scale, N - 2)) {
+ flags = float_flag_inexact;
+ if (p->cls == float_class_zero) {
+ r = 0;
+ break;
+ }
+ }
+
+ if (p->sign) {
+ flags = float_flag_invalid;
+ r = 0;
+ } else if (p->exp > DECOMPOSED_BINARY_POINT) {
+ flags = float_flag_invalid;
+ r = max;
+ } else {
+ r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp);
+ if (r > max) {
+ flags = float_flag_invalid;
+ r = max;
+ }
+ }
+ break;
+
+ default:
+ g_assert_not_reached();
+ }
+
+ float_raise(flags, s);
+ return r;
+}