From patchwork Sun Jul 5 14:02:58 2020 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 8bit X-Patchwork-Submitter: Thomas Huth X-Patchwork-Id: 278522 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-9.8 required=3.0 tests=HEADER_FROM_DIFFERENT_DOMAINS, INCLUDES_PATCH, MAILING_LIST_MULTI, SIGNED_OFF_BY, SPF_HELO_NONE, SPF_PASS, USER_AGENT_GIT autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 9285DC433E0 for ; Sun, 5 Jul 2020 14:18:30 +0000 (UTC) Received: from lists.gnu.org (lists.gnu.org [209.51.188.17]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by mail.kernel.org (Postfix) with ESMTPS id 576702068F for ; Sun, 5 Jul 2020 14:18:30 +0000 (UTC) DMARC-Filter: OpenDMARC Filter v1.3.2 mail.kernel.org 576702068F Authentication-Results: mail.kernel.org; dmarc=none (p=none dis=none) header.from=tuxfamily.org Authentication-Results: mail.kernel.org; spf=pass smtp.mailfrom=qemu-devel-bounces+qemu-devel=archiver.kernel.org@nongnu.org Received: from localhost ([::1]:44234 helo=lists1p.gnu.org) by lists.gnu.org with esmtp (Exim 4.90_1) (envelope-from ) id 1js5TR-0008WS-LU for qemu-devel@archiver.kernel.org; Sun, 05 Jul 2020 10:18:29 -0400 Received: from eggs.gnu.org ([2001:470:142:3::10]:54192) by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1js5FA-0007VB-B9 for qemu-devel@nongnu.org; Sun, 05 Jul 2020 10:03:44 -0400 Received: from mail-ed1-f66.google.com ([209.85.208.66]:41192) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_128_GCM_SHA256:128) (Exim 4.90_1) (envelope-from ) id 1js5F6-0008Jb-1b for qemu-devel@nongnu.org; Sun, 05 Jul 2020 10:03:44 -0400 Received: by mail-ed1-f66.google.com with SMTP id e22so32237728edq.8 for ; Sun, 05 Jul 2020 07:03:39 -0700 (PDT) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:from:to:cc:subject:date:message-id:in-reply-to :references:mime-version:content-transfer-encoding; bh=UqHrQrH+DedKAbn/9AxcI6GIv9ScowcmIq9LG9vgFKA=; b=kVBJtcdQePVe1I+KdtiSQMTPsr+gIKejlWzqHIedIapdZAMoxpQZ2DHPHRSlEasbdi QScXVl+G1O50glzj3BkSQHHyjOJImOUCfi5LdmO6jpWpOeKbvh2GzM0J6eMO6XJ4G2zy 6+5t4PQel0xKTFxvNv6/gwNPEziJ+AmZEjmVtv2BuFZBrgCZNXeqBivmCw8FCi2JXo3V JpHUDQ7tFdnS9NBgYtn0nsdJE5q7Zp390XAFGya1dRh8PfeO4PWWEf3DYRU0RmaFaI9b NLocwAx3vLfqSzukZ6aPMh1H08AJhurZOvlq4T/4oA/VLRqlmQRgfUm+OO9kv272Vqj5 0m/w== X-Gm-Message-State: AOAM533ln1jTo6YJbeHK68kIIkr3NCmM3stZjgOXh2epE0+7CQxxMC4X MBaA0FHUXPaDnVxrzwfZnOeWnbZE X-Google-Smtp-Source: ABdhPJzUK/p0HJ7sUQDiDveufs70yCmYkRy5+VtY21bsBU2EZebs0qzkqm7K+Wn6m5ejH+LQZ012rA== X-Received: by 2002:a50:cd1e:: with SMTP id z30mr49293254edi.364.1593957817599; Sun, 05 Jul 2020 07:03:37 -0700 (PDT) Received: from thl530.multi.box (pd9e83654.dip0.t-ipconnect.de. [217.232.54.84]) by smtp.gmail.com with ESMTPSA id bq8sm10941776ejb.103.2020.07.05.07.03.37 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Sun, 05 Jul 2020 07:03:37 -0700 (PDT) From: Thomas Huth To: qemu-devel@nongnu.org, Michael Rolnik , =?utf-8?q?P?= =?utf-8?q?hilippe_Mathieu-Daud=C3=A9?= , Richard Henderson Subject: [PATCH rc6 13/30] target/avr: Add instruction translation - Data Transfer Instructions Date: Sun, 5 Jul 2020 16:02:58 +0200 Message-Id: <20200705140315.260514-14-huth@tuxfamily.org> X-Mailer: git-send-email 2.26.2 In-Reply-To: <20200705140315.260514-1-huth@tuxfamily.org> References: <20200705140315.260514-1-huth@tuxfamily.org> MIME-Version: 1.0 Received-SPF: pass client-ip=209.85.208.66; envelope-from=th.huth@gmail.com; helo=mail-ed1-f66.google.com X-detected-operating-system: by eggs.gnu.org: First seen = 2020/07/05 10:03:38 X-ACL-Warn: Detected OS = Linux 2.2.x-3.x [generic] [fuzzy] X-Spam_score_int: -8 X-Spam_score: -0.9 X-Spam_bar: / X-Spam_report: (-0.9 / 5.0 requ) BAYES_00=-1.9, FREEMAIL_FORGED_FROMDOMAIN=1, FREEMAIL_FROM=0.001, HEADER_FROM_DIFFERENT_DOMAINS=1, RCVD_IN_DNSWL_NONE=-0.0001, RCVD_IN_MSPIKE_H2=-1, SPF_HELO_NONE=0.001, SPF_PASS=-0.001 autolearn=_AUTOLEARN X-Spam_action: no action X-BeenThere: qemu-devel@nongnu.org X-Mailman-Version: 2.1.23 Precedence: list List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Cc: Sarah Harris Errors-To: qemu-devel-bounces+qemu-devel=archiver.kernel.org@nongnu.org Sender: "Qemu-devel" From: Michael Rolnik This includes: - MOV, MOVW - LDI, LDS LDX LDY LDZ - LDDY, LDDZ - STS, STX STY STZ - STDY, STDZ - LPM, LPMX - ELPM, ELPMX - SPM, SPMX - IN, OUT - PUSH, POP - XCH - LAS, LAC LAT Signed-off-by: Michael Rolnik Signed-off-by: Richard Henderson Signed-off-by: Aleksandar Markovic Tested-by: Philippe Mathieu-Daudé Reviewed-by: Aleksandar Markovic Signed-off-by: Thomas Huth --- target/avr/insn.decode | 56 +++ target/avr/translate.c | 992 +++++++++++++++++++++++++++++++++++++++++ 2 files changed, 1048 insertions(+) diff --git a/target/avr/insn.decode b/target/avr/insn.decode index 8b00d8807c..341b55210c 100644 --- a/target/avr/insn.decode +++ b/target/avr/insn.decode @@ -107,3 +107,59 @@ SBIC 1001 1001 reg:5 bit:3 SBIS 1001 1011 reg:5 bit:3 BRBS 1111 00 ....... ... @op_bit_imm BRBC 1111 01 ....... ... @op_bit_imm + +# +# Data Transfer Instructions +# + +%rd_d 4:4 !function=to_regs_00_30_by_two +%rr_d 0:4 !function=to_regs_00_30_by_two + +@io_rd_imm .... . .. ..... .... &rd_imm rd=%rd imm=%io_imm +@ldst_d .. . . .. . rd:5 . ... &rd_imm imm=%ldst_d_imm + +# The 16-bit immediate is completely in the next word. +# Fields cannot be defined with no bits, so we cannot play +# the same trick and append to a zero-bit value. +# Defer reading the immediate until trans_{LDS,STS}. +@ldst_s .... ... rd:5 .... imm=0 + +MOV 0010 11 . ..... .... @op_rd_rr +MOVW 0000 0001 .... .... &rd_rr rd=%rd_d rr=%rr_d +LDI 1110 .... .... .... @op_rd_imm8 +LDS 1001 000 ..... 0000 @ldst_s +LDX1 1001 000 rd:5 1100 +LDX2 1001 000 rd:5 1101 +LDX3 1001 000 rd:5 1110 +LDY2 1001 000 rd:5 1001 +LDY3 1001 000 rd:5 1010 +LDZ2 1001 000 rd:5 0001 +LDZ3 1001 000 rd:5 0010 +LDDY 10 . 0 .. 0 ..... 1 ... @ldst_d +LDDZ 10 . 0 .. 0 ..... 0 ... @ldst_d +STS 1001 001 ..... 0000 @ldst_s +STX1 1001 001 rr:5 1100 +STX2 1001 001 rr:5 1101 +STX3 1001 001 rr:5 1110 +STY2 1001 001 rd:5 1001 +STY3 1001 001 rd:5 1010 +STZ2 1001 001 rd:5 0001 +STZ3 1001 001 rd:5 0010 +STDY 10 . 0 .. 1 ..... 1 ... @ldst_d +STDZ 10 . 0 .. 1 ..... 0 ... @ldst_d +LPM1 1001 0101 1100 1000 +LPM2 1001 000 rd:5 0100 +LPMX 1001 000 rd:5 0101 +ELPM1 1001 0101 1101 1000 +ELPM2 1001 000 rd:5 0110 +ELPMX 1001 000 rd:5 0111 +SPM 1001 0101 1110 1000 +SPMX 1001 0101 1111 1000 +IN 1011 0 .. ..... .... @io_rd_imm +OUT 1011 1 .. ..... .... @io_rd_imm +PUSH 1001 001 rd:5 1111 +POP 1001 000 rd:5 1111 +XCH 1001 001 rd:5 0100 +LAC 1001 001 rd:5 0110 +LAS 1001 001 rd:5 0101 +LAT 1001 001 rd:5 0111 diff --git a/target/avr/translate.c b/target/avr/translate.c index 6db9f74a02..63b4e16169 100644 --- a/target/avr/translate.c +++ b/target/avr/translate.c @@ -144,6 +144,11 @@ static int to_regs_24_30_by_two(DisasContext *ctx, int indx) return 24 + (indx % 4) * 2; } +static int to_regs_00_30_by_two(DisasContext *ctx, int indx) +{ + return (indx % 16) * 2; +} + static uint16_t next_word(DisasContext *ctx) { @@ -1508,3 +1513,990 @@ static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a) ctx->bstate = DISAS_CHAIN; return true; } + +/* + * Data Transfer Instructions + */ + +/* + * in the gen_set_addr & gen_get_addr functions + * H assumed to be in 0x00ff0000 format + * M assumed to be in 0x000000ff format + * L assumed to be in 0x000000ff format + */ +static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L) +{ + + tcg_gen_andi_tl(L, addr, 0x000000ff); + + tcg_gen_andi_tl(M, addr, 0x0000ff00); + tcg_gen_shri_tl(M, M, 8); + + tcg_gen_andi_tl(H, addr, 0x00ff0000); +} + +static void gen_set_xaddr(TCGv addr) +{ + gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]); +} + +static void gen_set_yaddr(TCGv addr) +{ + gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]); +} + +static void gen_set_zaddr(TCGv addr) +{ + gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]); +} + +static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L) +{ + TCGv addr = tcg_temp_new_i32(); + + tcg_gen_deposit_tl(addr, M, H, 8, 8); + tcg_gen_deposit_tl(addr, L, addr, 8, 16); + + return addr; +} + +static TCGv gen_get_xaddr(void) +{ + return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]); +} + +static TCGv gen_get_yaddr(void) +{ + return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]); +} + +static TCGv gen_get_zaddr(void) +{ + return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]); +} + +/* + * Load one byte indirect from data space to register and stores an clear + * the bits in data space specified by the register. The instruction can only + * be used towards internal SRAM. The data location is pointed to by the Z (16 + * bits) Pointer Register in the Register File. Memory access is limited to the + * current data segment of 64KB. To access another data segment in devices with + * more than 64KB data space, the RAMPZ in register in the I/O area has to be + * changed. The Z-pointer Register is left unchanged by the operation. This + * instruction is especially suited for clearing status bits stored in SRAM. + */ +static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr) +{ + if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) { + gen_helper_fullwr(cpu_env, data, addr); + } else { + tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */ + } +} + +static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr) +{ + if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) { + gen_helper_fullrd(data, cpu_env, addr); + } else { + tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */ + } +} + +/* + * This instruction makes a copy of one register into another. The source + * register Rr is left unchanged, while the destination register Rd is loaded + * with a copy of Rr. + */ +static bool trans_MOV(DisasContext *ctx, arg_MOV *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + + tcg_gen_mov_tl(Rd, Rr); + + return true; +} + +/* + * This instruction makes a copy of one register pair into another register + * pair. The source register pair Rr+1:Rr is left unchanged, while the + * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This + * instruction is not available in all devices. Refer to the device specific + * instruction set summary. + */ +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) { + return true; + } + + TCGv RdL = cpu_r[a->rd]; + TCGv RdH = cpu_r[a->rd + 1]; + TCGv RrL = cpu_r[a->rr]; + TCGv RrH = cpu_r[a->rr + 1]; + + tcg_gen_mov_tl(RdH, RrH); + tcg_gen_mov_tl(RdL, RrL); + + return true; +} + +/* + * Loads an 8 bit constant directly to register 16 to 31. + */ +static bool trans_LDI(DisasContext *ctx, arg_LDI *a) +{ + TCGv Rd = cpu_r[a->rd]; + int imm = a->imm; + + tcg_gen_movi_tl(Rd, imm); + + return true; +} + +/* + * Loads one byte from the data space to a register. For parts with SRAM, + * the data space consists of the Register File, I/O memory and internal SRAM + * (and external SRAM if applicable). For parts without SRAM, the data space + * consists of the register file only. The EEPROM has a separate address space. + * A 16-bit address must be supplied. Memory access is limited to the current + * data segment of 64KB. The LDS instruction uses the RAMPD Register to access + * memory above 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPD in register in the I/O area has to be changed. + * This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_LDS(DisasContext *ctx, arg_LDS *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_rampD; + a->imm = next_word(ctx); + + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ + tcg_gen_shli_tl(addr, addr, 16); + tcg_gen_ori_tl(addr, addr, a->imm); + + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte indirect from the data space to a register. For parts + * with SRAM, the data space consists of the Register File, I/O memory and + * internal SRAM (and external SRAM if applicable). For parts without SRAM, the + * data space consists of the Register File only. In some parts the Flash + * Memory has been mapped to the data space and can be read using this command. + * The EEPROM has a separate address space. The data location is pointed to by + * the X (16 bits) Pointer Register in the Register File. Memory access is + * limited to the current data segment of 64KB. To access another data segment + * in devices with more than 64KB data space, the RAMPX in register in the I/O + * area has to be changed. The X-pointer Register can either be left unchanged + * by the operation, or it can be post-incremented or predecremented. These + * features are especially suited for accessing arrays, tables, and Stack + * Pointer usage of the X-pointer Register. Note that only the low byte of the + * X-pointer is updated in devices with no more than 256 bytes data space. For + * such devices, the high byte of the pointer is not used by this instruction + * and can be used for other purposes. The RAMPX Register in the I/O area is + * updated in parts with more than 64KB data space or more than 64KB Program + * memory, and the increment/decrement is added to the entire 24-bit address on + * such devices. Not all variants of this instruction is available in all + * devices. Refer to the device specific instruction set summary. In the + * Reduced Core tinyAVR the LD instruction can be used to achieve the same + * operation as LPM since the program memory is mapped to the data memory + * space. + */ +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_xaddr(); + + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_xaddr(); + + gen_data_load(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_xaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_load(ctx, Rd, addr); + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte indirect with or without displacement from the data space + * to a register. For parts with SRAM, the data space consists of the Register + * File, I/O memory and internal SRAM (and external SRAM if applicable). For + * parts without SRAM, the data space consists of the Register File only. In + * some parts the Flash Memory has been mapped to the data space and can be + * read using this command. The EEPROM has a separate address space. The data + * location is pointed to by the Y (16 bits) Pointer Register in the Register + * File. Memory access is limited to the current data segment of 64KB. To + * access another data segment in devices with more than 64KB data space, the + * RAMPY in register in the I/O area has to be changed. The Y-pointer Register + * can either be left unchanged by the operation, or it can be post-incremented + * or predecremented. These features are especially suited for accessing + * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that + * only the low byte of the Y-pointer is updated in devices with no more than + * 256 bytes data space. For such devices, the high byte of the pointer is not + * used by this instruction and can be used for other purposes. The RAMPY + * Register in the I/O area is updated in parts with more than 64KB data space + * or more than 64KB Program memory, and the increment/decrement/displacement + * is added to the entire 24-bit address on such devices. Not all variants of + * this instruction is available in all devices. Refer to the device specific + * instruction set summary. In the Reduced Core tinyAVR the LD instruction can + * be used to achieve the same operation as LPM since the program memory is + * mapped to the data memory space. + */ +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + gen_data_load(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_load(ctx, Rd, addr); + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte indirect with or without displacement from the data space + * to a register. For parts with SRAM, the data space consists of the Register + * File, I/O memory and internal SRAM (and external SRAM if applicable). For + * parts without SRAM, the data space consists of the Register File only. In + * some parts the Flash Memory has been mapped to the data space and can be + * read using this command. The EEPROM has a separate address space. The data + * location is pointed to by the Z (16 bits) Pointer Register in the Register + * File. Memory access is limited to the current data segment of 64KB. To + * access another data segment in devices with more than 64KB data space, the + * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register + * can either be left unchanged by the operation, or it can be post-incremented + * or predecremented. These features are especially suited for Stack Pointer + * usage of the Z-pointer Register, however because the Z-pointer Register can + * be used for indirect subroutine calls, indirect jumps and table lookup, it + * is often more convenient to use the X or Y-pointer as a dedicated Stack + * Pointer. Note that only the low byte of the Z-pointer is updated in devices + * with no more than 256 bytes data space. For such devices, the high byte of + * the pointer is not used by this instruction and can be used for other + * purposes. The RAMPZ Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the + * increment/decrement/displacement is added to the entire 24-bit address on + * such devices. Not all variants of this instruction is available in all + * devices. Refer to the device specific instruction set summary. In the + * Reduced Core tinyAVR the LD instruction can be used to achieve the same + * operation as LPM since the program memory is mapped to the data memory + * space. For using the Z-pointer for table lookup in Program memory see the + * LPM and ELPM instructions. + */ +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + gen_data_load(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_load(ctx, Rd, addr); + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte from a Register to the data space. For parts with SRAM, + * the data space consists of the Register File, I/O memory and internal SRAM + * (and external SRAM if applicable). For parts without SRAM, the data space + * consists of the Register File only. The EEPROM has a separate address space. + * A 16-bit address must be supplied. Memory access is limited to the current + * data segment of 64KB. The STS instruction uses the RAMPD Register to access + * memory above 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPD in register in the I/O area has to be changed. + * This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_STS(DisasContext *ctx, arg_STS *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_rampD; + a->imm = next_word(ctx); + + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ + tcg_gen_shli_tl(addr, addr, 16); + tcg_gen_ori_tl(addr, addr, a->imm); + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte indirect from a register to data space. For parts with SRAM, + * the data space consists of the Register File, I/O memory, and internal SRAM + * (and external SRAM if applicable). For parts without SRAM, the data space + * consists of the Register File only. The EEPROM has a separate address space. + * + * The data location is pointed to by the X (16 bits) Pointer Register in the + * Register File. Memory access is limited to the current data segment of 64KB. + * To access another data segment in devices with more than 64KB data space, the + * RAMPX in register in the I/O area has to be changed. + * + * The X-pointer Register can either be left unchanged by the operation, or it + * can be post-incremented or pre-decremented. These features are especially + * suited for accessing arrays, tables, and Stack Pointer usage of the + * X-pointer Register. Note that only the low byte of the X-pointer is updated + * in devices with no more than 256 bytes data space. For such devices, the high + * byte of the pointer is not used by this instruction and can be used for other + * purposes. The RAMPX Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the increment / + * decrement is added to the entire 24-bit address on such devices. + */ +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a) +{ + TCGv Rd = cpu_r[a->rr]; + TCGv addr = gen_get_xaddr(); + + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a) +{ + TCGv Rd = cpu_r[a->rr]; + TCGv addr = gen_get_xaddr(); + + gen_data_store(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a) +{ + TCGv Rd = cpu_r[a->rr]; + TCGv addr = gen_get_xaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_store(ctx, Rd, addr); + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte indirect with or without displacement from a register to data + * space. For parts with SRAM, the data space consists of the Register File, I/O + * memory, and internal SRAM (and external SRAM if applicable). For parts + * without SRAM, the data space consists of the Register File only. The EEPROM + * has a separate address space. + * + * The data location is pointed to by the Y (16 bits) Pointer Register in the + * Register File. Memory access is limited to the current data segment of 64KB. + * To access another data segment in devices with more than 64KB data space, the + * RAMPY in register in the I/O area has to be changed. + * + * The Y-pointer Register can either be left unchanged by the operation, or it + * can be post-incremented or pre-decremented. These features are especially + * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer + * Register. Note that only the low byte of the Y-pointer is updated in devices + * with no more than 256 bytes data space. For such devices, the high byte of + * the pointer is not used by this instruction and can be used for other + * purposes. The RAMPY Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the increment / + * decrement / displacement is added to the entire 24-bit address on such + * devices. + */ +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + gen_data_store(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_store(ctx, Rd, addr); + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STDY(DisasContext *ctx, arg_STDY *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte indirect with or without displacement from a register to data + * space. For parts with SRAM, the data space consists of the Register File, I/O + * memory, and internal SRAM (and external SRAM if applicable). For parts + * without SRAM, the data space consists of the Register File only. The EEPROM + * has a separate address space. + * + * The data location is pointed to by the Y (16 bits) Pointer Register in the + * Register File. Memory access is limited to the current data segment of 64KB. + * To access another data segment in devices with more than 64KB data space, the + * RAMPY in register in the I/O area has to be changed. + * + * The Y-pointer Register can either be left unchanged by the operation, or it + * can be post-incremented or pre-decremented. These features are especially + * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer + * Register. Note that only the low byte of the Y-pointer is updated in devices + * with no more than 256 bytes data space. For such devices, the high byte of + * the pointer is not used by this instruction and can be used for other + * purposes. The RAMPY Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the increment / + * decrement / displacement is added to the entire 24-bit address on such + * devices. + */ +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + gen_data_store(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_store(ctx, Rd, addr); + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte pointed to by the Z-register into the destination + * register Rd. This instruction features a 100% space effective constant + * initialization or constant data fetch. The Program memory is organized in + * 16-bit words while the Z-pointer is a byte address. Thus, the least + * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high + * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of + * Program memory. The Zpointer Register can either be left unchanged by the + * operation, or it can be incremented. The incrementation does not apply to + * the RAMPZ Register. + * + * Devices with Self-Programming capability can use the LPM instruction to read + * the Fuse and Lock bit values. + */ +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { + return true; + } + + TCGv Rd = cpu_r[0]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_r[31]; + TCGv L = cpu_r[30]; + + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ + tcg_gen_or_tl(addr, addr, L); + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_r[31]; + TCGv L = cpu_r[30]; + + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ + tcg_gen_or_tl(addr, addr, L); + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_r[31]; + TCGv L = cpu_r[30]; + + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ + tcg_gen_or_tl(addr, addr, L); + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + tcg_gen_andi_tl(L, addr, 0xff); + tcg_gen_shri_tl(addr, addr, 8); + tcg_gen_andi_tl(H, addr, 0xff); + + tcg_temp_free_i32(addr); + + return true; +} + + +/* + * Loads one byte pointed to by the Z-register and the RAMPZ Register in + * the I/O space, and places this byte in the destination register Rd. This + * instruction features a 100% space effective constant initialization or + * constant data fetch. The Program memory is organized in 16-bit words while + * the Z-pointer is a byte address. Thus, the least significant bit of the + * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This + * instruction can address the entire Program memory space. The Z-pointer + * Register can either be left unchanged by the operation, or it can be + * incremented. The incrementation applies to the entire 24-bit concatenation + * of the RAMPZ and Z-pointer Registers. + * + * Devices with Self-Programming capability can use the ELPM instruction to + * read the Fuse and Lock bit value. + */ +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { + return true; + } + + TCGv Rd = cpu_r[0]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * SPM can be used to erase a page in the Program memory, to write a page + * in the Program memory (that is already erased), and to set Boot Loader Lock + * bits. In some devices, the Program memory can be written one word at a time, + * in other devices an entire page can be programmed simultaneously after first + * filling a temporary page buffer. In all cases, the Program memory must be + * erased one page at a time. When erasing the Program memory, the RAMPZ and + * Z-register are used as page address. When writing the Program memory, the + * RAMPZ and Z-register are used as page or word address, and the R1:R0 + * register pair is used as data(1). When setting the Boot Loader Lock bits, + * the R1:R0 register pair is used as data. Refer to the device documentation + * for detailed description of SPM usage. This instruction can address the + * entire Program memory. + * + * The SPM instruction is not available in all devices. Refer to the device + * specific instruction set summary. + * + * Note: 1. R1 determines the instruction high byte, and R0 determines the + * instruction low byte. + */ +static bool trans_SPM(DisasContext *ctx, arg_SPM *a) +{ + /* TODO */ + if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) { + return true; + } + + return true; +} + +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a) +{ + /* TODO */ + if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) { + return true; + } + + return true; +} + +/* + * Loads data from the I/O Space (Ports, Timers, Configuration Registers, + * etc.) into register Rd in the Register File. + */ +static bool trans_IN(DisasContext *ctx, arg_IN *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv port = tcg_const_i32(a->imm); + + gen_helper_inb(Rd, cpu_env, port); + + tcg_temp_free_i32(port); + + return true; +} + +/* + * Stores data from register Rr in the Register File to I/O Space (Ports, + * Timers, Configuration Registers, etc.). + */ +static bool trans_OUT(DisasContext *ctx, arg_OUT *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv port = tcg_const_i32(a->imm); + + gen_helper_outb(cpu_env, port, Rd); + + tcg_temp_free_i32(port); + + return true; +} + +/* + * This instruction stores the contents of register Rr on the STACK. The + * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is + * not available in all devices. Refer to the device specific instruction set + * summary. + */ +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a) +{ + TCGv Rd = cpu_r[a->rd]; + + gen_data_store(ctx, Rd, cpu_sp); + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); + + return true; +} + +/* + * This instruction loads register Rd with a byte from the STACK. The Stack + * Pointer is pre-incremented by 1 before the POP. This instruction is not + * available in all devices. Refer to the device specific instruction set + * summary. + */ +static bool trans_POP(DisasContext *ctx, arg_POP *a) +{ + /* + * Using a temp to work around some strange behaviour: + * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); + * gen_data_load(ctx, Rd, cpu_sp); + * seems to cause the add to happen twice. + * This doesn't happen if either the add or the load is removed. + */ + TCGv t1 = tcg_temp_new_i32(); + TCGv Rd = cpu_r[a->rd]; + + tcg_gen_addi_tl(t1, cpu_sp, 1); + gen_data_load(ctx, Rd, t1); + tcg_gen_mov_tl(cpu_sp, t1); + + return true; +} + +/* + * Exchanges one byte indirect between register and data space. The data + * location is pointed to by the Z (16 bits) Pointer Register in the Register + * File. Memory access is limited to the current data segment of 64KB. To + * access another data segment in devices with more than 64KB data space, the + * RAMPZ in register in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for writing/reading status bits stored in SRAM. + */ +static bool trans_XCH(DisasContext *ctx, arg_XCH *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv t0 = tcg_temp_new_i32(); + TCGv addr = gen_get_zaddr(); + + gen_data_load(ctx, t0, addr); + gen_data_store(ctx, Rd, addr); + tcg_gen_mov_tl(Rd, t0); + + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Load one byte indirect from data space to register and set bits in data + * space specified by the register. The instruction can only be used towards + * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer + * Register in the Register File. Memory access is limited to the current data + * segment of 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPZ in register in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for setting status bits stored in SRAM. + */ +static bool trans_LAS(DisasContext *ctx, arg_LAS *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rr = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ + tcg_gen_or_tl(t1, t0, Rr); + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Load one byte indirect from data space to register and stores and clear + * the bits in data space specified by the register. The instruction can + * only be used towards internal SRAM. The data location is pointed to by + * the Z (16 bits) Pointer Register in the Register File. Memory access is + * limited to the current data segment of 64KB. To access another data + * segment in devices with more than 64KB data space, the RAMPZ in register + * in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for clearing status bits stored in SRAM. + */ +static bool trans_LAC(DisasContext *ctx, arg_LAC *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rr = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ + tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */ + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +} + + +/* + * Load one byte indirect from data space to register and toggles bits in + * the data space specified by the register. The instruction can only be used + * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer + * Register in the Register File. Memory access is limited to the current data + * segment of 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPZ in register in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for changing status bits stored in SRAM. + */ +static bool trans_LAT(DisasContext *ctx, arg_LAT *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ + tcg_gen_xor_tl(t1, t0, Rd); + tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */ + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +}