diff mbox series

[v4,2/8] target/arm: Split out vfp_helper.c

Message ID 20190215192302.27855-3-richard.henderson@linaro.org
State Superseded
Headers show
Series target/arm: Implement ARMv8.3-JSConv & ARMv8.2-FHM | expand

Commit Message

Richard Henderson Feb. 15, 2019, 7:22 p.m. UTC
Move all of the fp helpers out of helper.c into a new file.
This is code movement only.  Since helper.c has no copyright
header, take the one from cpu.h for the new file.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>

---
 target/arm/helper.c      | 1062 -------------------------------------
 target/arm/vfp_helper.c  | 1088 ++++++++++++++++++++++++++++++++++++++
 target/arm/Makefile.objs |    2 +-
 3 files changed, 1089 insertions(+), 1063 deletions(-)
 create mode 100644 target/arm/vfp_helper.c

-- 
2.17.2

Comments

Peter Maydell Feb. 19, 2019, 3:32 p.m. UTC | #1
On Fri, 15 Feb 2019 at 19:23, Richard Henderson
<richard.henderson@linaro.org> wrote:
>

> Move all of the fp helpers out of helper.c into a new file.

> This is code movement only.  Since helper.c has no copyright

> header, take the one from cpu.h for the new file.

>

> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>

> ---

>  target/arm/helper.c      | 1062 -------------------------------------

>  target/arm/vfp_helper.c  | 1088 ++++++++++++++++++++++++++++++++++++++

>  target/arm/Makefile.objs |    2 +-

>  3 files changed, 1089 insertions(+), 1063 deletions(-)

>  create mode 100644 target/arm/vfp_helper.c

>


Reviewed-by: Peter Maydell <peter.maydell@linaro.org>


(confirmed the code motion using git diff --color-moved)

thanks
-- PMM
diff mbox series

Patch

diff --git a/target/arm/helper.c b/target/arm/helper.c
index 55e9b77bb1..9fd97fbf31 100644
--- a/target/arm/helper.c
+++ b/target/arm/helper.c
@@ -12678,1068 +12678,6 @@  uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
     return (a & mask) | (b & ~mask);
 }
 
-/* VFP support.  We follow the convention used for VFP instructions:
-   Single precision routines have a "s" suffix, double precision a
-   "d" suffix.  */
-
-/* Convert host exception flags to vfp form.  */
-static inline int vfp_exceptbits_from_host(int host_bits)
-{
-    int target_bits = 0;
-
-    if (host_bits & float_flag_invalid)
-        target_bits |= 1;
-    if (host_bits & float_flag_divbyzero)
-        target_bits |= 2;
-    if (host_bits & float_flag_overflow)
-        target_bits |= 4;
-    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
-        target_bits |= 8;
-    if (host_bits & float_flag_inexact)
-        target_bits |= 0x10;
-    if (host_bits & float_flag_input_denormal)
-        target_bits |= 0x80;
-    return target_bits;
-}
-
-uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
-{
-    uint32_t i, fpscr;
-
-    fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
-            | (env->vfp.vec_len << 16)
-            | (env->vfp.vec_stride << 20);
-
-    i = get_float_exception_flags(&env->vfp.fp_status);
-    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
-    /* FZ16 does not generate an input denormal exception.  */
-    i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
-          & ~float_flag_input_denormal);
-    fpscr |= vfp_exceptbits_from_host(i);
-
-    i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
-    fpscr |= i ? FPCR_QC : 0;
-
-    return fpscr;
-}
-
-uint32_t vfp_get_fpscr(CPUARMState *env)
-{
-    return HELPER(vfp_get_fpscr)(env);
-}
-
-/* Convert vfp exception flags to target form.  */
-static inline int vfp_exceptbits_to_host(int target_bits)
-{
-    int host_bits = 0;
-
-    if (target_bits & 1)
-        host_bits |= float_flag_invalid;
-    if (target_bits & 2)
-        host_bits |= float_flag_divbyzero;
-    if (target_bits & 4)
-        host_bits |= float_flag_overflow;
-    if (target_bits & 8)
-        host_bits |= float_flag_underflow;
-    if (target_bits & 0x10)
-        host_bits |= float_flag_inexact;
-    if (target_bits & 0x80)
-        host_bits |= float_flag_input_denormal;
-    return host_bits;
-}
-
-void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
-{
-    int i;
-    uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
-
-    /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
-    if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
-        val &= ~FPCR_FZ16;
-    }
-
-    /*
-     * We don't implement trapped exception handling, so the
-     * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
-     *
-     * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
-     * (which are stored in fp_status), and the other RES0 bits
-     * in between, then we clear all of the low 16 bits.
-     */
-    env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
-    env->vfp.vec_len = (val >> 16) & 7;
-    env->vfp.vec_stride = (val >> 20) & 3;
-
-    /*
-     * The bit we set within fpscr_q is arbitrary; the register as a
-     * whole being zero/non-zero is what counts.
-     */
-    env->vfp.qc[0] = val & FPCR_QC;
-    env->vfp.qc[1] = 0;
-    env->vfp.qc[2] = 0;
-    env->vfp.qc[3] = 0;
-
-    changed ^= val;
-    if (changed & (3 << 22)) {
-        i = (val >> 22) & 3;
-        switch (i) {
-        case FPROUNDING_TIEEVEN:
-            i = float_round_nearest_even;
-            break;
-        case FPROUNDING_POSINF:
-            i = float_round_up;
-            break;
-        case FPROUNDING_NEGINF:
-            i = float_round_down;
-            break;
-        case FPROUNDING_ZERO:
-            i = float_round_to_zero;
-            break;
-        }
-        set_float_rounding_mode(i, &env->vfp.fp_status);
-        set_float_rounding_mode(i, &env->vfp.fp_status_f16);
-    }
-    if (changed & FPCR_FZ16) {
-        bool ftz_enabled = val & FPCR_FZ16;
-        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
-        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
-    }
-    if (changed & FPCR_FZ) {
-        bool ftz_enabled = val & FPCR_FZ;
-        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
-        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
-    }
-    if (changed & FPCR_DN) {
-        bool dnan_enabled = val & FPCR_DN;
-        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
-        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
-    }
-
-    /* The exception flags are ORed together when we read fpscr so we
-     * only need to preserve the current state in one of our
-     * float_status values.
-     */
-    i = vfp_exceptbits_to_host(val);
-    set_float_exception_flags(i, &env->vfp.fp_status);
-    set_float_exception_flags(0, &env->vfp.fp_status_f16);
-    set_float_exception_flags(0, &env->vfp.standard_fp_status);
-}
-
-void vfp_set_fpscr(CPUARMState *env, uint32_t val)
-{
-    HELPER(vfp_set_fpscr)(env, val);
-}
-
-#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
-
-#define VFP_BINOP(name) \
-float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
-{ \
-    float_status *fpst = fpstp; \
-    return float32_ ## name(a, b, fpst); \
-} \
-float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
-{ \
-    float_status *fpst = fpstp; \
-    return float64_ ## name(a, b, fpst); \
-}
-VFP_BINOP(add)
-VFP_BINOP(sub)
-VFP_BINOP(mul)
-VFP_BINOP(div)
-VFP_BINOP(min)
-VFP_BINOP(max)
-VFP_BINOP(minnum)
-VFP_BINOP(maxnum)
-#undef VFP_BINOP
-
-float32 VFP_HELPER(neg, s)(float32 a)
-{
-    return float32_chs(a);
-}
-
-float64 VFP_HELPER(neg, d)(float64 a)
-{
-    return float64_chs(a);
-}
-
-float32 VFP_HELPER(abs, s)(float32 a)
-{
-    return float32_abs(a);
-}
-
-float64 VFP_HELPER(abs, d)(float64 a)
-{
-    return float64_abs(a);
-}
-
-float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
-{
-    return float32_sqrt(a, &env->vfp.fp_status);
-}
-
-float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
-{
-    return float64_sqrt(a, &env->vfp.fp_status);
-}
-
-static void softfloat_to_vfp_compare(CPUARMState *env, int cmp)
-{
-    uint32_t flags;
-    switch (cmp) {
-    case float_relation_equal:
-        flags = 0x6;
-        break;
-    case float_relation_less:
-        flags = 0x8;
-        break;
-    case float_relation_greater:
-        flags = 0x2;
-        break;
-    case float_relation_unordered:
-        flags = 0x3;
-        break;
-    default:
-        g_assert_not_reached();
-    }
-    env->vfp.xregs[ARM_VFP_FPSCR] =
-        deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
-}
-
-/* XXX: check quiet/signaling case */
-#define DO_VFP_cmp(p, type) \
-void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
-{ \
-    softfloat_to_vfp_compare(env, \
-        type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
-} \
-void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
-{ \
-    softfloat_to_vfp_compare(env, \
-        type ## _compare(a, b, &env->vfp.fp_status)); \
-}
-DO_VFP_cmp(s, float32)
-DO_VFP_cmp(d, float64)
-#undef DO_VFP_cmp
-
-/* Integer to float and float to integer conversions */
-
-#define CONV_ITOF(name, ftype, fsz, sign)                           \
-ftype HELPER(name)(uint32_t x, void *fpstp)                         \
-{                                                                   \
-    float_status *fpst = fpstp;                                     \
-    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
-}
-
-#define CONV_FTOI(name, ftype, fsz, sign, round)                \
-sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
-{                                                               \
-    float_status *fpst = fpstp;                                 \
-    if (float##fsz##_is_any_nan(x)) {                           \
-        float_raise(float_flag_invalid, fpst);                  \
-        return 0;                                               \
-    }                                                           \
-    return float##fsz##_to_##sign##int32##round(x, fpst);       \
-}
-
-#define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
-    CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
-    CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
-    CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
-
-FLOAT_CONVS(si, h, uint32_t, 16, )
-FLOAT_CONVS(si, s, float32, 32, )
-FLOAT_CONVS(si, d, float64, 64, )
-FLOAT_CONVS(ui, h, uint32_t, 16, u)
-FLOAT_CONVS(ui, s, float32, 32, u)
-FLOAT_CONVS(ui, d, float64, 64, u)
-
-#undef CONV_ITOF
-#undef CONV_FTOI
-#undef FLOAT_CONVS
-
-/* floating point conversion */
-float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
-{
-    return float32_to_float64(x, &env->vfp.fp_status);
-}
-
-float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
-{
-    return float64_to_float32(x, &env->vfp.fp_status);
-}
-
-/* VFP3 fixed point conversion.  */
-#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
-float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
-                                     void *fpstp) \
-{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
-
-#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff)   \
-uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
-                                            void *fpst)                   \
-{                                                                         \
-    if (unlikely(float##fsz##_is_any_nan(x))) {                           \
-        float_raise(float_flag_invalid, fpst);                            \
-        return 0;                                                         \
-    }                                                                     \
-    return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
-}
-
-#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
-VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
-VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
-                         float_round_to_zero, _round_to_zero)    \
-VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
-                         get_float_rounding_mode(fpst), )
-
-#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
-VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
-VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
-                         get_float_rounding_mode(fpst), )
-
-VFP_CONV_FIX(sh, d, 64, 64, int16)
-VFP_CONV_FIX(sl, d, 64, 64, int32)
-VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
-VFP_CONV_FIX(uh, d, 64, 64, uint16)
-VFP_CONV_FIX(ul, d, 64, 64, uint32)
-VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
-VFP_CONV_FIX(sh, s, 32, 32, int16)
-VFP_CONV_FIX(sl, s, 32, 32, int32)
-VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
-VFP_CONV_FIX(uh, s, 32, 32, uint16)
-VFP_CONV_FIX(ul, s, 32, 32, uint32)
-VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
-
-#undef VFP_CONV_FIX
-#undef VFP_CONV_FIX_FLOAT
-#undef VFP_CONV_FLOAT_FIX_ROUND
-#undef VFP_CONV_FIX_A64
-
-uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
-{
-    return int32_to_float16_scalbn(x, -shift, fpst);
-}
-
-uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
-{
-    return uint32_to_float16_scalbn(x, -shift, fpst);
-}
-
-uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
-{
-    return int64_to_float16_scalbn(x, -shift, fpst);
-}
-
-uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
-{
-    return uint64_to_float16_scalbn(x, -shift, fpst);
-}
-
-uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
-{
-    if (unlikely(float16_is_any_nan(x))) {
-        float_raise(float_flag_invalid, fpst);
-        return 0;
-    }
-    return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
-                                   shift, fpst);
-}
-
-uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
-{
-    if (unlikely(float16_is_any_nan(x))) {
-        float_raise(float_flag_invalid, fpst);
-        return 0;
-    }
-    return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
-                                    shift, fpst);
-}
-
-uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
-{
-    if (unlikely(float16_is_any_nan(x))) {
-        float_raise(float_flag_invalid, fpst);
-        return 0;
-    }
-    return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
-                                   shift, fpst);
-}
-
-uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
-{
-    if (unlikely(float16_is_any_nan(x))) {
-        float_raise(float_flag_invalid, fpst);
-        return 0;
-    }
-    return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
-                                    shift, fpst);
-}
-
-uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
-{
-    if (unlikely(float16_is_any_nan(x))) {
-        float_raise(float_flag_invalid, fpst);
-        return 0;
-    }
-    return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
-                                   shift, fpst);
-}
-
-uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
-{
-    if (unlikely(float16_is_any_nan(x))) {
-        float_raise(float_flag_invalid, fpst);
-        return 0;
-    }
-    return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
-                                    shift, fpst);
-}
-
-/* Set the current fp rounding mode and return the old one.
- * The argument is a softfloat float_round_ value.
- */
-uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
-{
-    float_status *fp_status = fpstp;
-
-    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
-    set_float_rounding_mode(rmode, fp_status);
-
-    return prev_rmode;
-}
-
-/* Set the current fp rounding mode in the standard fp status and return
- * the old one. This is for NEON instructions that need to change the
- * rounding mode but wish to use the standard FPSCR values for everything
- * else. Always set the rounding mode back to the correct value after
- * modifying it.
- * The argument is a softfloat float_round_ value.
- */
-uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
-{
-    float_status *fp_status = &env->vfp.standard_fp_status;
-
-    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
-    set_float_rounding_mode(rmode, fp_status);
-
-    return prev_rmode;
-}
-
-/* Half precision conversions.  */
-float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
-{
-    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
-     * it would affect flushing input denormals.
-     */
-    float_status *fpst = fpstp;
-    flag save = get_flush_inputs_to_zero(fpst);
-    set_flush_inputs_to_zero(false, fpst);
-    float32 r = float16_to_float32(a, !ahp_mode, fpst);
-    set_flush_inputs_to_zero(save, fpst);
-    return r;
-}
-
-uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
-{
-    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
-     * it would affect flushing output denormals.
-     */
-    float_status *fpst = fpstp;
-    flag save = get_flush_to_zero(fpst);
-    set_flush_to_zero(false, fpst);
-    float16 r = float32_to_float16(a, !ahp_mode, fpst);
-    set_flush_to_zero(save, fpst);
-    return r;
-}
-
-float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
-{
-    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
-     * it would affect flushing input denormals.
-     */
-    float_status *fpst = fpstp;
-    flag save = get_flush_inputs_to_zero(fpst);
-    set_flush_inputs_to_zero(false, fpst);
-    float64 r = float16_to_float64(a, !ahp_mode, fpst);
-    set_flush_inputs_to_zero(save, fpst);
-    return r;
-}
-
-uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
-{
-    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
-     * it would affect flushing output denormals.
-     */
-    float_status *fpst = fpstp;
-    flag save = get_flush_to_zero(fpst);
-    set_flush_to_zero(false, fpst);
-    float16 r = float64_to_float16(a, !ahp_mode, fpst);
-    set_flush_to_zero(save, fpst);
-    return r;
-}
-
-#define float32_two make_float32(0x40000000)
-#define float32_three make_float32(0x40400000)
-#define float32_one_point_five make_float32(0x3fc00000)
-
-float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
-{
-    float_status *s = &env->vfp.standard_fp_status;
-    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
-        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
-        if (!(float32_is_zero(a) || float32_is_zero(b))) {
-            float_raise(float_flag_input_denormal, s);
-        }
-        return float32_two;
-    }
-    return float32_sub(float32_two, float32_mul(a, b, s), s);
-}
-
-float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
-{
-    float_status *s = &env->vfp.standard_fp_status;
-    float32 product;
-    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
-        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
-        if (!(float32_is_zero(a) || float32_is_zero(b))) {
-            float_raise(float_flag_input_denormal, s);
-        }
-        return float32_one_point_five;
-    }
-    product = float32_mul(a, b, s);
-    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
-}
-
-/* NEON helpers.  */
-
-/* Constants 256 and 512 are used in some helpers; we avoid relying on
- * int->float conversions at run-time.  */
-#define float64_256 make_float64(0x4070000000000000LL)
-#define float64_512 make_float64(0x4080000000000000LL)
-#define float16_maxnorm make_float16(0x7bff)
-#define float32_maxnorm make_float32(0x7f7fffff)
-#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
-
-/* Reciprocal functions
- *
- * The algorithm that must be used to calculate the estimate
- * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
- */
-
-/* See RecipEstimate()
- *
- * input is a 9 bit fixed point number
- * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
- * result range 256 .. 511 for a number from 1.0 to 511/256.
- */
-
-static int recip_estimate(int input)
-{
-    int a, b, r;
-    assert(256 <= input && input < 512);
-    a = (input * 2) + 1;
-    b = (1 << 19) / a;
-    r = (b + 1) >> 1;
-    assert(256 <= r && r < 512);
-    return r;
-}
-
-/*
- * Common wrapper to call recip_estimate
- *
- * The parameters are exponent and 64 bit fraction (without implicit
- * bit) where the binary point is nominally at bit 52. Returns a
- * float64 which can then be rounded to the appropriate size by the
- * callee.
- */
-
-static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
-{
-    uint32_t scaled, estimate;
-    uint64_t result_frac;
-    int result_exp;
-
-    /* Handle sub-normals */
-    if (*exp == 0) {
-        if (extract64(frac, 51, 1) == 0) {
-            *exp = -1;
-            frac <<= 2;
-        } else {
-            frac <<= 1;
-        }
-    }
-
-    /* scaled = UInt('1':fraction<51:44>) */
-    scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
-    estimate = recip_estimate(scaled);
-
-    result_exp = exp_off - *exp;
-    result_frac = deposit64(0, 44, 8, estimate);
-    if (result_exp == 0) {
-        result_frac = deposit64(result_frac >> 1, 51, 1, 1);
-    } else if (result_exp == -1) {
-        result_frac = deposit64(result_frac >> 2, 50, 2, 1);
-        result_exp = 0;
-    }
-
-    *exp = result_exp;
-
-    return result_frac;
-}
-
-static bool round_to_inf(float_status *fpst, bool sign_bit)
-{
-    switch (fpst->float_rounding_mode) {
-    case float_round_nearest_even: /* Round to Nearest */
-        return true;
-    case float_round_up: /* Round to +Inf */
-        return !sign_bit;
-    case float_round_down: /* Round to -Inf */
-        return sign_bit;
-    case float_round_to_zero: /* Round to Zero */
-        return false;
-    }
-
-    g_assert_not_reached();
-}
-
-uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
-{
-    float_status *fpst = fpstp;
-    float16 f16 = float16_squash_input_denormal(input, fpst);
-    uint32_t f16_val = float16_val(f16);
-    uint32_t f16_sign = float16_is_neg(f16);
-    int f16_exp = extract32(f16_val, 10, 5);
-    uint32_t f16_frac = extract32(f16_val, 0, 10);
-    uint64_t f64_frac;
-
-    if (float16_is_any_nan(f16)) {
-        float16 nan = f16;
-        if (float16_is_signaling_nan(f16, fpst)) {
-            float_raise(float_flag_invalid, fpst);
-            nan = float16_silence_nan(f16, fpst);
-        }
-        if (fpst->default_nan_mode) {
-            nan =  float16_default_nan(fpst);
-        }
-        return nan;
-    } else if (float16_is_infinity(f16)) {
-        return float16_set_sign(float16_zero, float16_is_neg(f16));
-    } else if (float16_is_zero(f16)) {
-        float_raise(float_flag_divbyzero, fpst);
-        return float16_set_sign(float16_infinity, float16_is_neg(f16));
-    } else if (float16_abs(f16) < (1 << 8)) {
-        /* Abs(value) < 2.0^-16 */
-        float_raise(float_flag_overflow | float_flag_inexact, fpst);
-        if (round_to_inf(fpst, f16_sign)) {
-            return float16_set_sign(float16_infinity, f16_sign);
-        } else {
-            return float16_set_sign(float16_maxnorm, f16_sign);
-        }
-    } else if (f16_exp >= 29 && fpst->flush_to_zero) {
-        float_raise(float_flag_underflow, fpst);
-        return float16_set_sign(float16_zero, float16_is_neg(f16));
-    }
-
-    f64_frac = call_recip_estimate(&f16_exp, 29,
-                                   ((uint64_t) f16_frac) << (52 - 10));
-
-    /* result = sign : result_exp<4:0> : fraction<51:42> */
-    f16_val = deposit32(0, 15, 1, f16_sign);
-    f16_val = deposit32(f16_val, 10, 5, f16_exp);
-    f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
-    return make_float16(f16_val);
-}
-
-float32 HELPER(recpe_f32)(float32 input, void *fpstp)
-{
-    float_status *fpst = fpstp;
-    float32 f32 = float32_squash_input_denormal(input, fpst);
-    uint32_t f32_val = float32_val(f32);
-    bool f32_sign = float32_is_neg(f32);
-    int f32_exp = extract32(f32_val, 23, 8);
-    uint32_t f32_frac = extract32(f32_val, 0, 23);
-    uint64_t f64_frac;
-
-    if (float32_is_any_nan(f32)) {
-        float32 nan = f32;
-        if (float32_is_signaling_nan(f32, fpst)) {
-            float_raise(float_flag_invalid, fpst);
-            nan = float32_silence_nan(f32, fpst);
-        }
-        if (fpst->default_nan_mode) {
-            nan =  float32_default_nan(fpst);
-        }
-        return nan;
-    } else if (float32_is_infinity(f32)) {
-        return float32_set_sign(float32_zero, float32_is_neg(f32));
-    } else if (float32_is_zero(f32)) {
-        float_raise(float_flag_divbyzero, fpst);
-        return float32_set_sign(float32_infinity, float32_is_neg(f32));
-    } else if (float32_abs(f32) < (1ULL << 21)) {
-        /* Abs(value) < 2.0^-128 */
-        float_raise(float_flag_overflow | float_flag_inexact, fpst);
-        if (round_to_inf(fpst, f32_sign)) {
-            return float32_set_sign(float32_infinity, f32_sign);
-        } else {
-            return float32_set_sign(float32_maxnorm, f32_sign);
-        }
-    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
-        float_raise(float_flag_underflow, fpst);
-        return float32_set_sign(float32_zero, float32_is_neg(f32));
-    }
-
-    f64_frac = call_recip_estimate(&f32_exp, 253,
-                                   ((uint64_t) f32_frac) << (52 - 23));
-
-    /* result = sign : result_exp<7:0> : fraction<51:29> */
-    f32_val = deposit32(0, 31, 1, f32_sign);
-    f32_val = deposit32(f32_val, 23, 8, f32_exp);
-    f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
-    return make_float32(f32_val);
-}
-
-float64 HELPER(recpe_f64)(float64 input, void *fpstp)
-{
-    float_status *fpst = fpstp;
-    float64 f64 = float64_squash_input_denormal(input, fpst);
-    uint64_t f64_val = float64_val(f64);
-    bool f64_sign = float64_is_neg(f64);
-    int f64_exp = extract64(f64_val, 52, 11);
-    uint64_t f64_frac = extract64(f64_val, 0, 52);
-
-    /* Deal with any special cases */
-    if (float64_is_any_nan(f64)) {
-        float64 nan = f64;
-        if (float64_is_signaling_nan(f64, fpst)) {
-            float_raise(float_flag_invalid, fpst);
-            nan = float64_silence_nan(f64, fpst);
-        }
-        if (fpst->default_nan_mode) {
-            nan =  float64_default_nan(fpst);
-        }
-        return nan;
-    } else if (float64_is_infinity(f64)) {
-        return float64_set_sign(float64_zero, float64_is_neg(f64));
-    } else if (float64_is_zero(f64)) {
-        float_raise(float_flag_divbyzero, fpst);
-        return float64_set_sign(float64_infinity, float64_is_neg(f64));
-    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
-        /* Abs(value) < 2.0^-1024 */
-        float_raise(float_flag_overflow | float_flag_inexact, fpst);
-        if (round_to_inf(fpst, f64_sign)) {
-            return float64_set_sign(float64_infinity, f64_sign);
-        } else {
-            return float64_set_sign(float64_maxnorm, f64_sign);
-        }
-    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
-        float_raise(float_flag_underflow, fpst);
-        return float64_set_sign(float64_zero, float64_is_neg(f64));
-    }
-
-    f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
-
-    /* result = sign : result_exp<10:0> : fraction<51:0>; */
-    f64_val = deposit64(0, 63, 1, f64_sign);
-    f64_val = deposit64(f64_val, 52, 11, f64_exp);
-    f64_val = deposit64(f64_val, 0, 52, f64_frac);
-    return make_float64(f64_val);
-}
-
-/* The algorithm that must be used to calculate the estimate
- * is specified by the ARM ARM.
- */
-
-static int do_recip_sqrt_estimate(int a)
-{
-    int b, estimate;
-
-    assert(128 <= a && a < 512);
-    if (a < 256) {
-        a = a * 2 + 1;
-    } else {
-        a = (a >> 1) << 1;
-        a = (a + 1) * 2;
-    }
-    b = 512;
-    while (a * (b + 1) * (b + 1) < (1 << 28)) {
-        b += 1;
-    }
-    estimate = (b + 1) / 2;
-    assert(256 <= estimate && estimate < 512);
-
-    return estimate;
-}
-
-
-static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
-{
-    int estimate;
-    uint32_t scaled;
-
-    if (*exp == 0) {
-        while (extract64(frac, 51, 1) == 0) {
-            frac = frac << 1;
-            *exp -= 1;
-        }
-        frac = extract64(frac, 0, 51) << 1;
-    }
-
-    if (*exp & 1) {
-        /* scaled = UInt('01':fraction<51:45>) */
-        scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
-    } else {
-        /* scaled = UInt('1':fraction<51:44>) */
-        scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
-    }
-    estimate = do_recip_sqrt_estimate(scaled);
-
-    *exp = (exp_off - *exp) / 2;
-    return extract64(estimate, 0, 8) << 44;
-}
-
-uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
-{
-    float_status *s = fpstp;
-    float16 f16 = float16_squash_input_denormal(input, s);
-    uint16_t val = float16_val(f16);
-    bool f16_sign = float16_is_neg(f16);
-    int f16_exp = extract32(val, 10, 5);
-    uint16_t f16_frac = extract32(val, 0, 10);
-    uint64_t f64_frac;
-
-    if (float16_is_any_nan(f16)) {
-        float16 nan = f16;
-        if (float16_is_signaling_nan(f16, s)) {
-            float_raise(float_flag_invalid, s);
-            nan = float16_silence_nan(f16, s);
-        }
-        if (s->default_nan_mode) {
-            nan =  float16_default_nan(s);
-        }
-        return nan;
-    } else if (float16_is_zero(f16)) {
-        float_raise(float_flag_divbyzero, s);
-        return float16_set_sign(float16_infinity, f16_sign);
-    } else if (f16_sign) {
-        float_raise(float_flag_invalid, s);
-        return float16_default_nan(s);
-    } else if (float16_is_infinity(f16)) {
-        return float16_zero;
-    }
-
-    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
-     * preserving the parity of the exponent.  */
-
-    f64_frac = ((uint64_t) f16_frac) << (52 - 10);
-
-    f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
-
-    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
-    val = deposit32(0, 15, 1, f16_sign);
-    val = deposit32(val, 10, 5, f16_exp);
-    val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
-    return make_float16(val);
-}
-
-float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
-{
-    float_status *s = fpstp;
-    float32 f32 = float32_squash_input_denormal(input, s);
-    uint32_t val = float32_val(f32);
-    uint32_t f32_sign = float32_is_neg(f32);
-    int f32_exp = extract32(val, 23, 8);
-    uint32_t f32_frac = extract32(val, 0, 23);
-    uint64_t f64_frac;
-
-    if (float32_is_any_nan(f32)) {
-        float32 nan = f32;
-        if (float32_is_signaling_nan(f32, s)) {
-            float_raise(float_flag_invalid, s);
-            nan = float32_silence_nan(f32, s);
-        }
-        if (s->default_nan_mode) {
-            nan =  float32_default_nan(s);
-        }
-        return nan;
-    } else if (float32_is_zero(f32)) {
-        float_raise(float_flag_divbyzero, s);
-        return float32_set_sign(float32_infinity, float32_is_neg(f32));
-    } else if (float32_is_neg(f32)) {
-        float_raise(float_flag_invalid, s);
-        return float32_default_nan(s);
-    } else if (float32_is_infinity(f32)) {
-        return float32_zero;
-    }
-
-    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
-     * preserving the parity of the exponent.  */
-
-    f64_frac = ((uint64_t) f32_frac) << 29;
-
-    f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
-
-    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
-    val = deposit32(0, 31, 1, f32_sign);
-    val = deposit32(val, 23, 8, f32_exp);
-    val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
-    return make_float32(val);
-}
-
-float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
-{
-    float_status *s = fpstp;
-    float64 f64 = float64_squash_input_denormal(input, s);
-    uint64_t val = float64_val(f64);
-    bool f64_sign = float64_is_neg(f64);
-    int f64_exp = extract64(val, 52, 11);
-    uint64_t f64_frac = extract64(val, 0, 52);
-
-    if (float64_is_any_nan(f64)) {
-        float64 nan = f64;
-        if (float64_is_signaling_nan(f64, s)) {
-            float_raise(float_flag_invalid, s);
-            nan = float64_silence_nan(f64, s);
-        }
-        if (s->default_nan_mode) {
-            nan =  float64_default_nan(s);
-        }
-        return nan;
-    } else if (float64_is_zero(f64)) {
-        float_raise(float_flag_divbyzero, s);
-        return float64_set_sign(float64_infinity, float64_is_neg(f64));
-    } else if (float64_is_neg(f64)) {
-        float_raise(float_flag_invalid, s);
-        return float64_default_nan(s);
-    } else if (float64_is_infinity(f64)) {
-        return float64_zero;
-    }
-
-    f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
-
-    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
-    val = deposit64(0, 61, 1, f64_sign);
-    val = deposit64(val, 52, 11, f64_exp);
-    val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
-    return make_float64(val);
-}
-
-uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
-{
-    /* float_status *s = fpstp; */
-    int input, estimate;
-
-    if ((a & 0x80000000) == 0) {
-        return 0xffffffff;
-    }
-
-    input = extract32(a, 23, 9);
-    estimate = recip_estimate(input);
-
-    return deposit32(0, (32 - 9), 9, estimate);
-}
-
-uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
-{
-    int estimate;
-
-    if ((a & 0xc0000000) == 0) {
-        return 0xffffffff;
-    }
-
-    estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
-
-    return deposit32(0, 23, 9, estimate);
-}
-
-/* VFPv4 fused multiply-accumulate */
-float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
-{
-    float_status *fpst = fpstp;
-    return float32_muladd(a, b, c, 0, fpst);
-}
-
-float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
-{
-    float_status *fpst = fpstp;
-    return float64_muladd(a, b, c, 0, fpst);
-}
-
-/* ARMv8 round to integral */
-float32 HELPER(rints_exact)(float32 x, void *fp_status)
-{
-    return float32_round_to_int(x, fp_status);
-}
-
-float64 HELPER(rintd_exact)(float64 x, void *fp_status)
-{
-    return float64_round_to_int(x, fp_status);
-}
-
-float32 HELPER(rints)(float32 x, void *fp_status)
-{
-    int old_flags = get_float_exception_flags(fp_status), new_flags;
-    float32 ret;
-
-    ret = float32_round_to_int(x, fp_status);
-
-    /* Suppress any inexact exceptions the conversion produced */
-    if (!(old_flags & float_flag_inexact)) {
-        new_flags = get_float_exception_flags(fp_status);
-        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
-    }
-
-    return ret;
-}
-
-float64 HELPER(rintd)(float64 x, void *fp_status)
-{
-    int old_flags = get_float_exception_flags(fp_status), new_flags;
-    float64 ret;
-
-    ret = float64_round_to_int(x, fp_status);
-
-    new_flags = get_float_exception_flags(fp_status);
-
-    /* Suppress any inexact exceptions the conversion produced */
-    if (!(old_flags & float_flag_inexact)) {
-        new_flags = get_float_exception_flags(fp_status);
-        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
-    }
-
-    return ret;
-}
-
-/* Convert ARM rounding mode to softfloat */
-int arm_rmode_to_sf(int rmode)
-{
-    switch (rmode) {
-    case FPROUNDING_TIEAWAY:
-        rmode = float_round_ties_away;
-        break;
-    case FPROUNDING_ODD:
-        /* FIXME: add support for TIEAWAY and ODD */
-        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
-                      rmode);
-        /* fall through for now */
-    case FPROUNDING_TIEEVEN:
-    default:
-        rmode = float_round_nearest_even;
-        break;
-    case FPROUNDING_POSINF:
-        rmode = float_round_up;
-        break;
-    case FPROUNDING_NEGINF:
-        rmode = float_round_down;
-        break;
-    case FPROUNDING_ZERO:
-        rmode = float_round_to_zero;
-        break;
-    }
-    return rmode;
-}
-
 /* CRC helpers.
  * The upper bytes of val (above the number specified by 'bytes') must have
  * been zeroed out by the caller.
diff --git a/target/arm/vfp_helper.c b/target/arm/vfp_helper.c
new file mode 100644
index 0000000000..74d3030c47
--- /dev/null
+++ b/target/arm/vfp_helper.c
@@ -0,0 +1,1088 @@ 
+/*
+ * ARM VFP floating-point operations
+ *
+ *  Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "cpu.h"
+#include "exec/helper-proto.h"
+#include "fpu/softfloat.h"
+#include "internals.h"
+
+
+/* VFP support.  We follow the convention used for VFP instructions:
+   Single precision routines have a "s" suffix, double precision a
+   "d" suffix.  */
+
+/* Convert host exception flags to vfp form.  */
+static inline int vfp_exceptbits_from_host(int host_bits)
+{
+    int target_bits = 0;
+
+    if (host_bits & float_flag_invalid)
+        target_bits |= 1;
+    if (host_bits & float_flag_divbyzero)
+        target_bits |= 2;
+    if (host_bits & float_flag_overflow)
+        target_bits |= 4;
+    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
+        target_bits |= 8;
+    if (host_bits & float_flag_inexact)
+        target_bits |= 0x10;
+    if (host_bits & float_flag_input_denormal)
+        target_bits |= 0x80;
+    return target_bits;
+}
+
+uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
+{
+    uint32_t i, fpscr;
+
+    fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
+            | (env->vfp.vec_len << 16)
+            | (env->vfp.vec_stride << 20);
+
+    i = get_float_exception_flags(&env->vfp.fp_status);
+    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
+    /* FZ16 does not generate an input denormal exception.  */
+    i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
+          & ~float_flag_input_denormal);
+    fpscr |= vfp_exceptbits_from_host(i);
+
+    i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
+    fpscr |= i ? FPCR_QC : 0;
+
+    return fpscr;
+}
+
+uint32_t vfp_get_fpscr(CPUARMState *env)
+{
+    return HELPER(vfp_get_fpscr)(env);
+}
+
+/* Convert vfp exception flags to target form.  */
+static inline int vfp_exceptbits_to_host(int target_bits)
+{
+    int host_bits = 0;
+
+    if (target_bits & 1)
+        host_bits |= float_flag_invalid;
+    if (target_bits & 2)
+        host_bits |= float_flag_divbyzero;
+    if (target_bits & 4)
+        host_bits |= float_flag_overflow;
+    if (target_bits & 8)
+        host_bits |= float_flag_underflow;
+    if (target_bits & 0x10)
+        host_bits |= float_flag_inexact;
+    if (target_bits & 0x80)
+        host_bits |= float_flag_input_denormal;
+    return host_bits;
+}
+
+void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
+{
+    int i;
+    uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
+
+    /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
+    if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
+        val &= ~FPCR_FZ16;
+    }
+
+    /*
+     * We don't implement trapped exception handling, so the
+     * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
+     *
+     * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
+     * (which are stored in fp_status), and the other RES0 bits
+     * in between, then we clear all of the low 16 bits.
+     */
+    env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
+    env->vfp.vec_len = (val >> 16) & 7;
+    env->vfp.vec_stride = (val >> 20) & 3;
+
+    /*
+     * The bit we set within fpscr_q is arbitrary; the register as a
+     * whole being zero/non-zero is what counts.
+     */
+    env->vfp.qc[0] = val & FPCR_QC;
+    env->vfp.qc[1] = 0;
+    env->vfp.qc[2] = 0;
+    env->vfp.qc[3] = 0;
+
+    changed ^= val;
+    if (changed & (3 << 22)) {
+        i = (val >> 22) & 3;
+        switch (i) {
+        case FPROUNDING_TIEEVEN:
+            i = float_round_nearest_even;
+            break;
+        case FPROUNDING_POSINF:
+            i = float_round_up;
+            break;
+        case FPROUNDING_NEGINF:
+            i = float_round_down;
+            break;
+        case FPROUNDING_ZERO:
+            i = float_round_to_zero;
+            break;
+        }
+        set_float_rounding_mode(i, &env->vfp.fp_status);
+        set_float_rounding_mode(i, &env->vfp.fp_status_f16);
+    }
+    if (changed & FPCR_FZ16) {
+        bool ftz_enabled = val & FPCR_FZ16;
+        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
+        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
+    }
+    if (changed & FPCR_FZ) {
+        bool ftz_enabled = val & FPCR_FZ;
+        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
+        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
+    }
+    if (changed & FPCR_DN) {
+        bool dnan_enabled = val & FPCR_DN;
+        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
+        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
+    }
+
+    /* The exception flags are ORed together when we read fpscr so we
+     * only need to preserve the current state in one of our
+     * float_status values.
+     */
+    i = vfp_exceptbits_to_host(val);
+    set_float_exception_flags(i, &env->vfp.fp_status);
+    set_float_exception_flags(0, &env->vfp.fp_status_f16);
+    set_float_exception_flags(0, &env->vfp.standard_fp_status);
+}
+
+void vfp_set_fpscr(CPUARMState *env, uint32_t val)
+{
+    HELPER(vfp_set_fpscr)(env, val);
+}
+
+#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
+
+#define VFP_BINOP(name) \
+float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
+{ \
+    float_status *fpst = fpstp; \
+    return float32_ ## name(a, b, fpst); \
+} \
+float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
+{ \
+    float_status *fpst = fpstp; \
+    return float64_ ## name(a, b, fpst); \
+}
+VFP_BINOP(add)
+VFP_BINOP(sub)
+VFP_BINOP(mul)
+VFP_BINOP(div)
+VFP_BINOP(min)
+VFP_BINOP(max)
+VFP_BINOP(minnum)
+VFP_BINOP(maxnum)
+#undef VFP_BINOP
+
+float32 VFP_HELPER(neg, s)(float32 a)
+{
+    return float32_chs(a);
+}
+
+float64 VFP_HELPER(neg, d)(float64 a)
+{
+    return float64_chs(a);
+}
+
+float32 VFP_HELPER(abs, s)(float32 a)
+{
+    return float32_abs(a);
+}
+
+float64 VFP_HELPER(abs, d)(float64 a)
+{
+    return float64_abs(a);
+}
+
+float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
+{
+    return float32_sqrt(a, &env->vfp.fp_status);
+}
+
+float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
+{
+    return float64_sqrt(a, &env->vfp.fp_status);
+}
+
+static void softfloat_to_vfp_compare(CPUARMState *env, int cmp)
+{
+    uint32_t flags;
+    switch (cmp) {
+    case float_relation_equal:
+        flags = 0x6;
+        break;
+    case float_relation_less:
+        flags = 0x8;
+        break;
+    case float_relation_greater:
+        flags = 0x2;
+        break;
+    case float_relation_unordered:
+        flags = 0x3;
+        break;
+    default:
+        g_assert_not_reached();
+    }
+    env->vfp.xregs[ARM_VFP_FPSCR] =
+        deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
+}
+
+/* XXX: check quiet/signaling case */
+#define DO_VFP_cmp(p, type) \
+void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
+{ \
+    softfloat_to_vfp_compare(env, \
+        type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
+} \
+void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
+{ \
+    softfloat_to_vfp_compare(env, \
+        type ## _compare(a, b, &env->vfp.fp_status)); \
+}
+DO_VFP_cmp(s, float32)
+DO_VFP_cmp(d, float64)
+#undef DO_VFP_cmp
+
+/* Integer to float and float to integer conversions */
+
+#define CONV_ITOF(name, ftype, fsz, sign)                           \
+ftype HELPER(name)(uint32_t x, void *fpstp)                         \
+{                                                                   \
+    float_status *fpst = fpstp;                                     \
+    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
+}
+
+#define CONV_FTOI(name, ftype, fsz, sign, round)                \
+sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
+{                                                               \
+    float_status *fpst = fpstp;                                 \
+    if (float##fsz##_is_any_nan(x)) {                           \
+        float_raise(float_flag_invalid, fpst);                  \
+        return 0;                                               \
+    }                                                           \
+    return float##fsz##_to_##sign##int32##round(x, fpst);       \
+}
+
+#define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
+    CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
+    CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
+    CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
+
+FLOAT_CONVS(si, h, uint32_t, 16, )
+FLOAT_CONVS(si, s, float32, 32, )
+FLOAT_CONVS(si, d, float64, 64, )
+FLOAT_CONVS(ui, h, uint32_t, 16, u)
+FLOAT_CONVS(ui, s, float32, 32, u)
+FLOAT_CONVS(ui, d, float64, 64, u)
+
+#undef CONV_ITOF
+#undef CONV_FTOI
+#undef FLOAT_CONVS
+
+/* floating point conversion */
+float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
+{
+    return float32_to_float64(x, &env->vfp.fp_status);
+}
+
+float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
+{
+    return float64_to_float32(x, &env->vfp.fp_status);
+}
+
+/* VFP3 fixed point conversion.  */
+#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
+float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
+                                     void *fpstp) \
+{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
+
+#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff)   \
+uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
+                                            void *fpst)                   \
+{                                                                         \
+    if (unlikely(float##fsz##_is_any_nan(x))) {                           \
+        float_raise(float_flag_invalid, fpst);                            \
+        return 0;                                                         \
+    }                                                                     \
+    return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
+}
+
+#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
+VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
+                         float_round_to_zero, _round_to_zero)    \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
+                         get_float_rounding_mode(fpst), )
+
+#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
+VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
+                         get_float_rounding_mode(fpst), )
+
+VFP_CONV_FIX(sh, d, 64, 64, int16)
+VFP_CONV_FIX(sl, d, 64, 64, int32)
+VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
+VFP_CONV_FIX(uh, d, 64, 64, uint16)
+VFP_CONV_FIX(ul, d, 64, 64, uint32)
+VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
+VFP_CONV_FIX(sh, s, 32, 32, int16)
+VFP_CONV_FIX(sl, s, 32, 32, int32)
+VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
+VFP_CONV_FIX(uh, s, 32, 32, uint16)
+VFP_CONV_FIX(ul, s, 32, 32, uint32)
+VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
+
+#undef VFP_CONV_FIX
+#undef VFP_CONV_FIX_FLOAT
+#undef VFP_CONV_FLOAT_FIX_ROUND
+#undef VFP_CONV_FIX_A64
+
+uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
+{
+    return int32_to_float16_scalbn(x, -shift, fpst);
+}
+
+uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
+{
+    return uint32_to_float16_scalbn(x, -shift, fpst);
+}
+
+uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
+{
+    return int64_to_float16_scalbn(x, -shift, fpst);
+}
+
+uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
+{
+    return uint64_to_float16_scalbn(x, -shift, fpst);
+}
+
+uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
+{
+    if (unlikely(float16_is_any_nan(x))) {
+        float_raise(float_flag_invalid, fpst);
+        return 0;
+    }
+    return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
+                                   shift, fpst);
+}
+
+uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
+{
+    if (unlikely(float16_is_any_nan(x))) {
+        float_raise(float_flag_invalid, fpst);
+        return 0;
+    }
+    return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
+                                    shift, fpst);
+}
+
+uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
+{
+    if (unlikely(float16_is_any_nan(x))) {
+        float_raise(float_flag_invalid, fpst);
+        return 0;
+    }
+    return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
+                                   shift, fpst);
+}
+
+uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
+{
+    if (unlikely(float16_is_any_nan(x))) {
+        float_raise(float_flag_invalid, fpst);
+        return 0;
+    }
+    return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
+                                    shift, fpst);
+}
+
+uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
+{
+    if (unlikely(float16_is_any_nan(x))) {
+        float_raise(float_flag_invalid, fpst);
+        return 0;
+    }
+    return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
+                                   shift, fpst);
+}
+
+uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
+{
+    if (unlikely(float16_is_any_nan(x))) {
+        float_raise(float_flag_invalid, fpst);
+        return 0;
+    }
+    return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
+                                    shift, fpst);
+}
+
+/* Set the current fp rounding mode and return the old one.
+ * The argument is a softfloat float_round_ value.
+ */
+uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
+{
+    float_status *fp_status = fpstp;
+
+    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
+    set_float_rounding_mode(rmode, fp_status);
+
+    return prev_rmode;
+}
+
+/* Set the current fp rounding mode in the standard fp status and return
+ * the old one. This is for NEON instructions that need to change the
+ * rounding mode but wish to use the standard FPSCR values for everything
+ * else. Always set the rounding mode back to the correct value after
+ * modifying it.
+ * The argument is a softfloat float_round_ value.
+ */
+uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
+{
+    float_status *fp_status = &env->vfp.standard_fp_status;
+
+    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
+    set_float_rounding_mode(rmode, fp_status);
+
+    return prev_rmode;
+}
+
+/* Half precision conversions.  */
+float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
+{
+    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
+     * it would affect flushing input denormals.
+     */
+    float_status *fpst = fpstp;
+    flag save = get_flush_inputs_to_zero(fpst);
+    set_flush_inputs_to_zero(false, fpst);
+    float32 r = float16_to_float32(a, !ahp_mode, fpst);
+    set_flush_inputs_to_zero(save, fpst);
+    return r;
+}
+
+uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
+{
+    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
+     * it would affect flushing output denormals.
+     */
+    float_status *fpst = fpstp;
+    flag save = get_flush_to_zero(fpst);
+    set_flush_to_zero(false, fpst);
+    float16 r = float32_to_float16(a, !ahp_mode, fpst);
+    set_flush_to_zero(save, fpst);
+    return r;
+}
+
+float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
+{
+    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
+     * it would affect flushing input denormals.
+     */
+    float_status *fpst = fpstp;
+    flag save = get_flush_inputs_to_zero(fpst);
+    set_flush_inputs_to_zero(false, fpst);
+    float64 r = float16_to_float64(a, !ahp_mode, fpst);
+    set_flush_inputs_to_zero(save, fpst);
+    return r;
+}
+
+uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
+{
+    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
+     * it would affect flushing output denormals.
+     */
+    float_status *fpst = fpstp;
+    flag save = get_flush_to_zero(fpst);
+    set_flush_to_zero(false, fpst);
+    float16 r = float64_to_float16(a, !ahp_mode, fpst);
+    set_flush_to_zero(save, fpst);
+    return r;
+}
+
+#define float32_two make_float32(0x40000000)
+#define float32_three make_float32(0x40400000)
+#define float32_one_point_five make_float32(0x3fc00000)
+
+float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
+{
+    float_status *s = &env->vfp.standard_fp_status;
+    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
+        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
+        if (!(float32_is_zero(a) || float32_is_zero(b))) {
+            float_raise(float_flag_input_denormal, s);
+        }
+        return float32_two;
+    }
+    return float32_sub(float32_two, float32_mul(a, b, s), s);
+}
+
+float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
+{
+    float_status *s = &env->vfp.standard_fp_status;
+    float32 product;
+    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
+        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
+        if (!(float32_is_zero(a) || float32_is_zero(b))) {
+            float_raise(float_flag_input_denormal, s);
+        }
+        return float32_one_point_five;
+    }
+    product = float32_mul(a, b, s);
+    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
+}
+
+/* NEON helpers.  */
+
+/* Constants 256 and 512 are used in some helpers; we avoid relying on
+ * int->float conversions at run-time.  */
+#define float64_256 make_float64(0x4070000000000000LL)
+#define float64_512 make_float64(0x4080000000000000LL)
+#define float16_maxnorm make_float16(0x7bff)
+#define float32_maxnorm make_float32(0x7f7fffff)
+#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
+
+/* Reciprocal functions
+ *
+ * The algorithm that must be used to calculate the estimate
+ * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
+ */
+
+/* See RecipEstimate()
+ *
+ * input is a 9 bit fixed point number
+ * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
+ * result range 256 .. 511 for a number from 1.0 to 511/256.
+ */
+
+static int recip_estimate(int input)
+{
+    int a, b, r;
+    assert(256 <= input && input < 512);
+    a = (input * 2) + 1;
+    b = (1 << 19) / a;
+    r = (b + 1) >> 1;
+    assert(256 <= r && r < 512);
+    return r;
+}
+
+/*
+ * Common wrapper to call recip_estimate
+ *
+ * The parameters are exponent and 64 bit fraction (without implicit
+ * bit) where the binary point is nominally at bit 52. Returns a
+ * float64 which can then be rounded to the appropriate size by the
+ * callee.
+ */
+
+static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
+{
+    uint32_t scaled, estimate;
+    uint64_t result_frac;
+    int result_exp;
+
+    /* Handle sub-normals */
+    if (*exp == 0) {
+        if (extract64(frac, 51, 1) == 0) {
+            *exp = -1;
+            frac <<= 2;
+        } else {
+            frac <<= 1;
+        }
+    }
+
+    /* scaled = UInt('1':fraction<51:44>) */
+    scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
+    estimate = recip_estimate(scaled);
+
+    result_exp = exp_off - *exp;
+    result_frac = deposit64(0, 44, 8, estimate);
+    if (result_exp == 0) {
+        result_frac = deposit64(result_frac >> 1, 51, 1, 1);
+    } else if (result_exp == -1) {
+        result_frac = deposit64(result_frac >> 2, 50, 2, 1);
+        result_exp = 0;
+    }
+
+    *exp = result_exp;
+
+    return result_frac;
+}
+
+static bool round_to_inf(float_status *fpst, bool sign_bit)
+{
+    switch (fpst->float_rounding_mode) {
+    case float_round_nearest_even: /* Round to Nearest */
+        return true;
+    case float_round_up: /* Round to +Inf */
+        return !sign_bit;
+    case float_round_down: /* Round to -Inf */
+        return sign_bit;
+    case float_round_to_zero: /* Round to Zero */
+        return false;
+    }
+
+    g_assert_not_reached();
+}
+
+uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float16 f16 = float16_squash_input_denormal(input, fpst);
+    uint32_t f16_val = float16_val(f16);
+    uint32_t f16_sign = float16_is_neg(f16);
+    int f16_exp = extract32(f16_val, 10, 5);
+    uint32_t f16_frac = extract32(f16_val, 0, 10);
+    uint64_t f64_frac;
+
+    if (float16_is_any_nan(f16)) {
+        float16 nan = f16;
+        if (float16_is_signaling_nan(f16, fpst)) {
+            float_raise(float_flag_invalid, fpst);
+            nan = float16_silence_nan(f16, fpst);
+        }
+        if (fpst->default_nan_mode) {
+            nan =  float16_default_nan(fpst);
+        }
+        return nan;
+    } else if (float16_is_infinity(f16)) {
+        return float16_set_sign(float16_zero, float16_is_neg(f16));
+    } else if (float16_is_zero(f16)) {
+        float_raise(float_flag_divbyzero, fpst);
+        return float16_set_sign(float16_infinity, float16_is_neg(f16));
+    } else if (float16_abs(f16) < (1 << 8)) {
+        /* Abs(value) < 2.0^-16 */
+        float_raise(float_flag_overflow | float_flag_inexact, fpst);
+        if (round_to_inf(fpst, f16_sign)) {
+            return float16_set_sign(float16_infinity, f16_sign);
+        } else {
+            return float16_set_sign(float16_maxnorm, f16_sign);
+        }
+    } else if (f16_exp >= 29 && fpst->flush_to_zero) {
+        float_raise(float_flag_underflow, fpst);
+        return float16_set_sign(float16_zero, float16_is_neg(f16));
+    }
+
+    f64_frac = call_recip_estimate(&f16_exp, 29,
+                                   ((uint64_t) f16_frac) << (52 - 10));
+
+    /* result = sign : result_exp<4:0> : fraction<51:42> */
+    f16_val = deposit32(0, 15, 1, f16_sign);
+    f16_val = deposit32(f16_val, 10, 5, f16_exp);
+    f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
+    return make_float16(f16_val);
+}
+
+float32 HELPER(recpe_f32)(float32 input, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float32 f32 = float32_squash_input_denormal(input, fpst);
+    uint32_t f32_val = float32_val(f32);
+    bool f32_sign = float32_is_neg(f32);
+    int f32_exp = extract32(f32_val, 23, 8);
+    uint32_t f32_frac = extract32(f32_val, 0, 23);
+    uint64_t f64_frac;
+
+    if (float32_is_any_nan(f32)) {
+        float32 nan = f32;
+        if (float32_is_signaling_nan(f32, fpst)) {
+            float_raise(float_flag_invalid, fpst);
+            nan = float32_silence_nan(f32, fpst);
+        }
+        if (fpst->default_nan_mode) {
+            nan =  float32_default_nan(fpst);
+        }
+        return nan;
+    } else if (float32_is_infinity(f32)) {
+        return float32_set_sign(float32_zero, float32_is_neg(f32));
+    } else if (float32_is_zero(f32)) {
+        float_raise(float_flag_divbyzero, fpst);
+        return float32_set_sign(float32_infinity, float32_is_neg(f32));
+    } else if (float32_abs(f32) < (1ULL << 21)) {
+        /* Abs(value) < 2.0^-128 */
+        float_raise(float_flag_overflow | float_flag_inexact, fpst);
+        if (round_to_inf(fpst, f32_sign)) {
+            return float32_set_sign(float32_infinity, f32_sign);
+        } else {
+            return float32_set_sign(float32_maxnorm, f32_sign);
+        }
+    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
+        float_raise(float_flag_underflow, fpst);
+        return float32_set_sign(float32_zero, float32_is_neg(f32));
+    }
+
+    f64_frac = call_recip_estimate(&f32_exp, 253,
+                                   ((uint64_t) f32_frac) << (52 - 23));
+
+    /* result = sign : result_exp<7:0> : fraction<51:29> */
+    f32_val = deposit32(0, 31, 1, f32_sign);
+    f32_val = deposit32(f32_val, 23, 8, f32_exp);
+    f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
+    return make_float32(f32_val);
+}
+
+float64 HELPER(recpe_f64)(float64 input, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float64 f64 = float64_squash_input_denormal(input, fpst);
+    uint64_t f64_val = float64_val(f64);
+    bool f64_sign = float64_is_neg(f64);
+    int f64_exp = extract64(f64_val, 52, 11);
+    uint64_t f64_frac = extract64(f64_val, 0, 52);
+
+    /* Deal with any special cases */
+    if (float64_is_any_nan(f64)) {
+        float64 nan = f64;
+        if (float64_is_signaling_nan(f64, fpst)) {
+            float_raise(float_flag_invalid, fpst);
+            nan = float64_silence_nan(f64, fpst);
+        }
+        if (fpst->default_nan_mode) {
+            nan =  float64_default_nan(fpst);
+        }
+        return nan;
+    } else if (float64_is_infinity(f64)) {
+        return float64_set_sign(float64_zero, float64_is_neg(f64));
+    } else if (float64_is_zero(f64)) {
+        float_raise(float_flag_divbyzero, fpst);
+        return float64_set_sign(float64_infinity, float64_is_neg(f64));
+    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
+        /* Abs(value) < 2.0^-1024 */
+        float_raise(float_flag_overflow | float_flag_inexact, fpst);
+        if (round_to_inf(fpst, f64_sign)) {
+            return float64_set_sign(float64_infinity, f64_sign);
+        } else {
+            return float64_set_sign(float64_maxnorm, f64_sign);
+        }
+    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
+        float_raise(float_flag_underflow, fpst);
+        return float64_set_sign(float64_zero, float64_is_neg(f64));
+    }
+
+    f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
+
+    /* result = sign : result_exp<10:0> : fraction<51:0>; */
+    f64_val = deposit64(0, 63, 1, f64_sign);
+    f64_val = deposit64(f64_val, 52, 11, f64_exp);
+    f64_val = deposit64(f64_val, 0, 52, f64_frac);
+    return make_float64(f64_val);
+}
+
+/* The algorithm that must be used to calculate the estimate
+ * is specified by the ARM ARM.
+ */
+
+static int do_recip_sqrt_estimate(int a)
+{
+    int b, estimate;
+
+    assert(128 <= a && a < 512);
+    if (a < 256) {
+        a = a * 2 + 1;
+    } else {
+        a = (a >> 1) << 1;
+        a = (a + 1) * 2;
+    }
+    b = 512;
+    while (a * (b + 1) * (b + 1) < (1 << 28)) {
+        b += 1;
+    }
+    estimate = (b + 1) / 2;
+    assert(256 <= estimate && estimate < 512);
+
+    return estimate;
+}
+
+
+static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
+{
+    int estimate;
+    uint32_t scaled;
+
+    if (*exp == 0) {
+        while (extract64(frac, 51, 1) == 0) {
+            frac = frac << 1;
+            *exp -= 1;
+        }
+        frac = extract64(frac, 0, 51) << 1;
+    }
+
+    if (*exp & 1) {
+        /* scaled = UInt('01':fraction<51:45>) */
+        scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
+    } else {
+        /* scaled = UInt('1':fraction<51:44>) */
+        scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
+    }
+    estimate = do_recip_sqrt_estimate(scaled);
+
+    *exp = (exp_off - *exp) / 2;
+    return extract64(estimate, 0, 8) << 44;
+}
+
+uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
+{
+    float_status *s = fpstp;
+    float16 f16 = float16_squash_input_denormal(input, s);
+    uint16_t val = float16_val(f16);
+    bool f16_sign = float16_is_neg(f16);
+    int f16_exp = extract32(val, 10, 5);
+    uint16_t f16_frac = extract32(val, 0, 10);
+    uint64_t f64_frac;
+
+    if (float16_is_any_nan(f16)) {
+        float16 nan = f16;
+        if (float16_is_signaling_nan(f16, s)) {
+            float_raise(float_flag_invalid, s);
+            nan = float16_silence_nan(f16, s);
+        }
+        if (s->default_nan_mode) {
+            nan =  float16_default_nan(s);
+        }
+        return nan;
+    } else if (float16_is_zero(f16)) {
+        float_raise(float_flag_divbyzero, s);
+        return float16_set_sign(float16_infinity, f16_sign);
+    } else if (f16_sign) {
+        float_raise(float_flag_invalid, s);
+        return float16_default_nan(s);
+    } else if (float16_is_infinity(f16)) {
+        return float16_zero;
+    }
+
+    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
+     * preserving the parity of the exponent.  */
+
+    f64_frac = ((uint64_t) f16_frac) << (52 - 10);
+
+    f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
+
+    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
+    val = deposit32(0, 15, 1, f16_sign);
+    val = deposit32(val, 10, 5, f16_exp);
+    val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
+    return make_float16(val);
+}
+
+float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
+{
+    float_status *s = fpstp;
+    float32 f32 = float32_squash_input_denormal(input, s);
+    uint32_t val = float32_val(f32);
+    uint32_t f32_sign = float32_is_neg(f32);
+    int f32_exp = extract32(val, 23, 8);
+    uint32_t f32_frac = extract32(val, 0, 23);
+    uint64_t f64_frac;
+
+    if (float32_is_any_nan(f32)) {
+        float32 nan = f32;
+        if (float32_is_signaling_nan(f32, s)) {
+            float_raise(float_flag_invalid, s);
+            nan = float32_silence_nan(f32, s);
+        }
+        if (s->default_nan_mode) {
+            nan =  float32_default_nan(s);
+        }
+        return nan;
+    } else if (float32_is_zero(f32)) {
+        float_raise(float_flag_divbyzero, s);
+        return float32_set_sign(float32_infinity, float32_is_neg(f32));
+    } else if (float32_is_neg(f32)) {
+        float_raise(float_flag_invalid, s);
+        return float32_default_nan(s);
+    } else if (float32_is_infinity(f32)) {
+        return float32_zero;
+    }
+
+    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
+     * preserving the parity of the exponent.  */
+
+    f64_frac = ((uint64_t) f32_frac) << 29;
+
+    f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
+
+    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
+    val = deposit32(0, 31, 1, f32_sign);
+    val = deposit32(val, 23, 8, f32_exp);
+    val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
+    return make_float32(val);
+}
+
+float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
+{
+    float_status *s = fpstp;
+    float64 f64 = float64_squash_input_denormal(input, s);
+    uint64_t val = float64_val(f64);
+    bool f64_sign = float64_is_neg(f64);
+    int f64_exp = extract64(val, 52, 11);
+    uint64_t f64_frac = extract64(val, 0, 52);
+
+    if (float64_is_any_nan(f64)) {
+        float64 nan = f64;
+        if (float64_is_signaling_nan(f64, s)) {
+            float_raise(float_flag_invalid, s);
+            nan = float64_silence_nan(f64, s);
+        }
+        if (s->default_nan_mode) {
+            nan =  float64_default_nan(s);
+        }
+        return nan;
+    } else if (float64_is_zero(f64)) {
+        float_raise(float_flag_divbyzero, s);
+        return float64_set_sign(float64_infinity, float64_is_neg(f64));
+    } else if (float64_is_neg(f64)) {
+        float_raise(float_flag_invalid, s);
+        return float64_default_nan(s);
+    } else if (float64_is_infinity(f64)) {
+        return float64_zero;
+    }
+
+    f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
+
+    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
+    val = deposit64(0, 61, 1, f64_sign);
+    val = deposit64(val, 52, 11, f64_exp);
+    val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
+    return make_float64(val);
+}
+
+uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
+{
+    /* float_status *s = fpstp; */
+    int input, estimate;
+
+    if ((a & 0x80000000) == 0) {
+        return 0xffffffff;
+    }
+
+    input = extract32(a, 23, 9);
+    estimate = recip_estimate(input);
+
+    return deposit32(0, (32 - 9), 9, estimate);
+}
+
+uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
+{
+    int estimate;
+
+    if ((a & 0xc0000000) == 0) {
+        return 0xffffffff;
+    }
+
+    estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
+
+    return deposit32(0, 23, 9, estimate);
+}
+
+/* VFPv4 fused multiply-accumulate */
+float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return float32_muladd(a, b, c, 0, fpst);
+}
+
+float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return float64_muladd(a, b, c, 0, fpst);
+}
+
+/* ARMv8 round to integral */
+float32 HELPER(rints_exact)(float32 x, void *fp_status)
+{
+    return float32_round_to_int(x, fp_status);
+}
+
+float64 HELPER(rintd_exact)(float64 x, void *fp_status)
+{
+    return float64_round_to_int(x, fp_status);
+}
+
+float32 HELPER(rints)(float32 x, void *fp_status)
+{
+    int old_flags = get_float_exception_flags(fp_status), new_flags;
+    float32 ret;
+
+    ret = float32_round_to_int(x, fp_status);
+
+    /* Suppress any inexact exceptions the conversion produced */
+    if (!(old_flags & float_flag_inexact)) {
+        new_flags = get_float_exception_flags(fp_status);
+        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
+    }
+
+    return ret;
+}
+
+float64 HELPER(rintd)(float64 x, void *fp_status)
+{
+    int old_flags = get_float_exception_flags(fp_status), new_flags;
+    float64 ret;
+
+    ret = float64_round_to_int(x, fp_status);
+
+    new_flags = get_float_exception_flags(fp_status);
+
+    /* Suppress any inexact exceptions the conversion produced */
+    if (!(old_flags & float_flag_inexact)) {
+        new_flags = get_float_exception_flags(fp_status);
+        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
+    }
+
+    return ret;
+}
+
+/* Convert ARM rounding mode to softfloat */
+int arm_rmode_to_sf(int rmode)
+{
+    switch (rmode) {
+    case FPROUNDING_TIEAWAY:
+        rmode = float_round_ties_away;
+        break;
+    case FPROUNDING_ODD:
+        /* FIXME: add support for TIEAWAY and ODD */
+        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
+                      rmode);
+        /* fall through for now */
+    case FPROUNDING_TIEEVEN:
+    default:
+        rmode = float_round_nearest_even;
+        break;
+    case FPROUNDING_POSINF:
+        rmode = float_round_up;
+        break;
+    case FPROUNDING_NEGINF:
+        rmode = float_round_down;
+        break;
+    case FPROUNDING_ZERO:
+        rmode = float_round_to_zero;
+        break;
+    }
+    return rmode;
+}
diff --git a/target/arm/Makefile.objs b/target/arm/Makefile.objs
index 1a4fc06448..6bdcc65c2c 100644
--- a/target/arm/Makefile.objs
+++ b/target/arm/Makefile.objs
@@ -5,7 +5,7 @@  obj-$(call land,$(CONFIG_KVM),$(call lnot,$(TARGET_AARCH64))) += kvm32.o
 obj-$(call land,$(CONFIG_KVM),$(TARGET_AARCH64)) += kvm64.o
 obj-$(call lnot,$(CONFIG_KVM)) += kvm-stub.o
 obj-y += translate.o op_helper.o helper.o cpu.o
-obj-y += neon_helper.o iwmmxt_helper.o vec_helper.o
+obj-y += neon_helper.o iwmmxt_helper.o vec_helper.o vfp_helper.o
 obj-y += gdbstub.o
 obj-$(TARGET_AARCH64) += cpu64.o translate-a64.o helper-a64.o gdbstub64.o
 obj-$(TARGET_AARCH64) += pauth_helper.o