From patchwork Thu Oct 27 15:10:02 2016 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 8bit X-Patchwork-Submitter: =?utf-8?q?Alex_Benn=C3=A9e?= X-Patchwork-Id: 79714 Delivered-To: patch@linaro.org Received: by 10.80.142.83 with SMTP id 19csp705015edx; Thu, 27 Oct 2016 08:23:04 -0700 (PDT) X-Received: by 10.37.171.204 with SMTP id v70mr6852048ybi.80.1477581783925; Thu, 27 Oct 2016 08:23:03 -0700 (PDT) Return-Path: Received: from lists.gnu.org (lists.gnu.org. [2001:4830:134:3::11]) by mx.google.com with ESMTPS id c82si2869632yba.295.2016.10.27.08.23.03 for (version=TLS1 cipher=AES128-SHA bits=128/128); Thu, 27 Oct 2016 08:23:03 -0700 (PDT) Received-SPF: pass (google.com: domain of qemu-devel-bounces+patch=linaro.org@nongnu.org designates 2001:4830:134:3::11 as permitted sender) client-ip=2001:4830:134:3::11; Authentication-Results: mx.google.com; dkim=fail header.i=@linaro.org; spf=pass (google.com: domain of qemu-devel-bounces+patch=linaro.org@nongnu.org designates 2001:4830:134:3::11 as permitted sender) smtp.mailfrom=qemu-devel-bounces+patch=linaro.org@nongnu.org; dmarc=fail (p=NONE dis=NONE) header.from=linaro.org Received: from localhost ([::1]:42259 helo=lists.gnu.org) by lists.gnu.org with esmtp (Exim 4.71) (envelope-from ) id 1bzmWE-0005Fg-Fm for patch@linaro.org; Thu, 27 Oct 2016 11:23:02 -0400 Received: from eggs.gnu.org ([2001:4830:134:3::10]:42501) by lists.gnu.org with esmtp (Exim 4.71) (envelope-from ) id 1bzmKj-0004be-QG for qemu-devel@nongnu.org; Thu, 27 Oct 2016 11:11:13 -0400 Received: from Debian-exim by eggs.gnu.org with spam-scanned (Exim 4.71) (envelope-from ) id 1bzmKf-0007d4-PX for qemu-devel@nongnu.org; Thu, 27 Oct 2016 11:11:09 -0400 Received: from mail-wm0-x229.google.com ([2a00:1450:400c:c09::229]:35170) by eggs.gnu.org with esmtps (TLS1.0:RSA_AES_128_CBC_SHA1:16) (Exim 4.71) (envelope-from ) id 1bzmKf-0007c7-E0 for qemu-devel@nongnu.org; Thu, 27 Oct 2016 11:11:05 -0400 Received: by mail-wm0-x229.google.com with SMTP id e69so40991219wmg.0 for ; Thu, 27 Oct 2016 08:11:05 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=linaro.org; s=google; h=from:to:cc:subject:date:message-id:in-reply-to:references :mime-version:content-transfer-encoding; bh=HoTawxLHcy5hkdIU0SFx/IpZ5TG7PzEoow6YO42Ayrg=; b=VCPO0Ih0xE2GpmtDzWrhROdpI8Rzs1L7vBMh4HWrDvPld5YK4okt6W0vO7l8zqgVCV 1KqEsQEcq4wtOdWKTWcF04mtDa2rwxWmE0pBH2rBlmqDDCw+QS2/Kqs2PTPjk+aZZCet PBHY4dSN5ex+rqCRhcDxvElI8YLmxi/dd6FkM= X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20130820; h=x-gm-message-state:from:to:cc:subject:date:message-id:in-reply-to :references:mime-version:content-transfer-encoding; bh=HoTawxLHcy5hkdIU0SFx/IpZ5TG7PzEoow6YO42Ayrg=; b=HUI12taMFQV4UFnnaZwTZ37uJTbhTgv3NrUGtZeBNZsyuLMjD7TlO4U16/gllWVqFE lqIY75EoGCrHFdaQC+1m/jcxMnJaTagWMdGdYE2qJaGakplztlqoQf3te1ydSg4+51ID T0rZdnhBxCbFJ73IEGdN+evqw9VBJE9fBUFO8L8pQPik1uYXtV23XdZV+90gqzTQGUxq dt24WTJIO50IlV1pVX9uJ9YePTvWPUTVioPaTtaBRwFiD3bMJMvdYEEVESeqed3ghbVj W/mvT5gXeZ7O+KS9cKSJF6ocoUP7I9Dm+1l51ou4drrLeTm/10HlLj1hLkofP54BQVfh hW/w== X-Gm-Message-State: ABUngvcuLbvKUQmInLTOE0zpHiT84ABR71/rXYdiWsSMmLvM3o/Y0bAHRMUP1EJ2kvhy4N0c X-Received: by 10.194.150.132 with SMTP id ui4mr8405745wjb.92.1477581063969; Thu, 27 Oct 2016 08:11:03 -0700 (PDT) Received: from zen.linaro.local ([81.128.185.34]) by smtp.gmail.com with ESMTPSA id hy10sm1242926wjb.10.2016.10.27.08.11.00 (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256 bits=128/128); Thu, 27 Oct 2016 08:11:01 -0700 (PDT) Received: from zen.linaroharston (localhost [127.0.0.1]) by zen.linaro.local (Postfix) with ESMTP id 723EE3E02AD; Thu, 27 Oct 2016 16:10:59 +0100 (BST) From: =?UTF-8?q?Alex=20Benn=C3=A9e?= To: pbonzini@redhat.com Date: Thu, 27 Oct 2016 16:10:02 +0100 Message-Id: <20161027151030.20863-6-alex.bennee@linaro.org> X-Mailer: git-send-email 2.10.1 In-Reply-To: <20161027151030.20863-1-alex.bennee@linaro.org> References: <20161027151030.20863-1-alex.bennee@linaro.org> MIME-Version: 1.0 X-detected-operating-system: by eggs.gnu.org: GNU/Linux 2.2.x-3.x [generic] X-Received-From: 2a00:1450:400c:c09::229 Subject: [Qemu-devel] [PATCH v5 05/33] docs: new design document multi-thread-tcg.txt (DRAFTING) X-BeenThere: qemu-devel@nongnu.org X-Mailman-Version: 2.1.21 Precedence: list List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Cc: mttcg@listserver.greensocs.com, peter.maydell@linaro.org, claudio.fontana@huawei.com, nikunj@linux.vnet.ibm.com, jan.kiszka@siemens.com, mark.burton@greensocs.com, a.rigo@virtualopensystems.com, qemu-devel@nongnu.org, cota@braap.org, serge.fdrv@gmail.com, bobby.prani@gmail.com, rth@twiddle.net, =?UTF-8?q?Alex=20Benn=C3=A9e?= , fred.konrad@greensocs.com Errors-To: qemu-devel-bounces+patch=linaro.org@nongnu.org Sender: "Qemu-devel" This is a current DRAFT of a design proposal for upgrading TCG emulation to take advantage of modern CPUs by running a thread-per-CPU. The document goes through the various areas of the code affected by such a change and proposes design requirements for each part of the solution. Where solutions have been merged upstream the approach is described underneath the design requirements. Where the solutions are still under discussion they are marked with (Current solution[s]) to document what the current approaches being used are. Currently there are several proposed solutions for modelling atomic operations. Signed-off-by: Alex Bennée --- v1 - initial version v2 - update discussion on locks - bit more detail on vCPU scheduling - explicitly mention Translation Blocks - emulated hardware state already covered by iomutex - a few minor rewords v3 - mention this covers system-mode - describe main main-loop and lookup hot-path - mention multi-concurrent-reader lookups - enumerate reasons for invalidation - add more details on lookup structures - describe the softmmu hot-path better - mention store-after-load barrier problem v4 - mention some cross-over between linux-user/system emulation - various minor grammar and scanning fixes - fix reference to tb_ctx.htbale - describe the solution for hot-path - more detail on TB flushing and invalidation - add (Current solution) following design requirements - more detail on iothread/BQL mutex - mention implicit memory barriers - add links to current LL/SC and cmpxchg patch sets - add TLB flag setting as an additional requirement --- docs/multi-thread-tcg.txt | 310 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 310 insertions(+) create mode 100644 docs/multi-thread-tcg.txt -- 2.10.1 diff --git a/docs/multi-thread-tcg.txt b/docs/multi-thread-tcg.txt new file mode 100644 index 0000000..9f676c0 --- /dev/null +++ b/docs/multi-thread-tcg.txt @@ -0,0 +1,310 @@ +Copyright (c) 2015 Linaro Ltd. + +This work is licensed under the terms of the GNU GPL, version 2 or later. See +the COPYING file in the top-level directory. + +STATUS: DRAFTING + +Introduction +============ + +This document outlines the design for multi-threaded TCG system-mode +emulation. The current user-mode emulation mirrors the thread +structure of the translated executable. Some of the work will be +applicable to both system and linux-user emulation. + +The original system-mode TCG implementation was single threaded and +dealt with multiple CPUs with simple round-robin scheduling. This +simplified a lot of things but became increasingly limited as systems +being emulated gained additional cores and per-core performance gains +for host systems started to level off. + +vCPU Scheduling +=============== + +We introduce a new running mode where each vCPU will run on its own +user-space thread. This will be enabled by default for all FE/BE +combinations that have had the required work done to support this +safely. + +In the general case of running translated code there should be no +inter-vCPU dependencies and all vCPUs should be able to run at full +speed. Synchronisation will only be required while accessing internal +shared data structures or when the emulated architecture requires a +coherent representation of the emulated machine state. + +Shared Data Structures +====================== + +Main Run Loop +------------- + +Even when there is no code being generated there are a number of +structures associated with the hot-path through the main run-loop. +These are associated with looking up the next translation block to +execute. These include: + + tb_jmp_cache (per-vCPU, cache of recent jumps) + tb_ctx.htable (global hash table, phys address->tb lookup) + +As TB linking only occurs when blocks are in the same page this code +is critical to performance as looking up the next TB to execute is the +most common reason to exit the generated code. + +DESIGN REQUIREMENT: Make access to lookup structures safe with +multiple reader/writer threads. Minimise any lock contention to do it. + +The hot-path avoids using locks where possible. The tb_jmp_cache is +updated with atomic accesses to ensure consistent results. The fall +back QHT based hash table is also designed for lockless lookups. Locks +are only taken when code generation is required or TranslationBlocks +have their block-to-block jumps patched. + +Global TCG State +---------------- + +We need to protect the entire code generation cycle including any post +generation patching of the translated code. This also implies a shared +translation buffer which contains code running on all cores. Any +execution path that comes to the main run loop will need to hold a +mutex for code generation. This also includes times when we need flush +code or entries from any shared lookups/caches. Structures held on a +per-vCPU basis won't need locking unless other vCPUs will need to +modify them. + +DESIGN REQUIREMENT: Add locking around all code generation and TB +patching. + +Translation Blocks +------------------ + +Currently the whole system shares a single code generation buffer +which when full will force a flush of all translations and start from +scratch again. Some operations also force a full flush of translations +including: + + - debugging operations (breakpoint insertion/removal) + - some CPU helper functions + +This is done with the async_safe_run_on_cpu() mechanism to ensure all +vCPUs are quiescent when changes are being made to shared global +structures. + +More granular translation invalidation events are typically due +to a change of the state of a physical page: + + - code modification (self modify code, patching code) + - page changes (new page mapping in linux-user mode) + +While setting the invalid flag in a TranslationBlock will stop it +being used when looked up in the hot-path there are a number of other +book-keeping structures that need to be safely cleared. + +Any TranslationBlocks which have been patched to jump directly to the +now invalid blocks need the jump patches reversing so they will return +to the C code. + +There are a number of look-up caches that need to be properly updated +including the: + + - jump lookup cache + - the physical-to-tb lookup hash table + - the global page table + +The global page table (l1_map) which provides a multi-level look-up +for PageDesc structures which contain pointers to the start of a +linked list of all Translation Blocks in that page (see page_next). + +Both the jump patching and the page cache involve linked lists that +the invalidated TranslationBlock needs to be removed from. + +DESIGN REQUIREMENT: Safely handle invalidation of TBs + - safely patch/revert direct jumps + - remove central PageDesc lookup entries + - ensure lookup caches/hashes are safely updated + +(Current solution) + +The direct jump themselves are updated atomically by the TCG +tb_set_jmp_target() code. Modification to the linked lists that allow +searching for linked pages are done under the protect of the +tb_lock(). + +The global page table is protected by the tb_lock() in system-mode and +mmap_lock() in linux-user mode. + +The lookup caches are updated atomically and the lookup hash uses QHT +which is designed for concurrent safe lookup. + + +Memory maps and TLBs +-------------------- + +The memory handling code is fairly critical to the speed of memory +access in the emulated system. The SoftMMU code is designed so the +hot-path can be handled entirely within translated code. This is +handled with a per-vCPU TLB structure which once populated will allow +a series of accesses to the page to occur without exiting the +translated code. It is possible to set flags in the TLB address which +will ensure the slow-path is taken for each access. This can be done +to support: + + - Memory regions (dividing up access to PIO, MMIO and RAM) + - Dirty page tracking (for code gen, SMC detection, migration and display) + - Virtual TLB (for translating guest address->real address) + +When the TLB tables are updated by a vCPU thread other than their own +we need to ensure it is done in a safe way so no inconsistent state is +seen by the vCPU thread. + +Some operations require updating a number of vCPUs TLBs at the same +time in a synchronised manner. + +DESIGN REQUIREMENTS: + + - TLB Flush All/Page + - can be across-vCPUs + - cross vCPU TLB flush may need other vCPU brought to halt + - change may need to be visible to the calling vCPU immediately + - TLB Flag Update + - usually cross-vCPU + - want change to be visible as soon as possible + - TLB Update (update a CPUTLBEntry, via tlb_set_page_with_attrs) + - This is a per-vCPU table - by definition can't race + - updated by its own thread when the slow-path is forced + +(Current solution) + +When we detect a cross-vCPU operation we use the +async_safe_run_on_cpu() to defer running the operations until all +vCPUs are quiescent. We can jump to the top of the run loop if we want +the change to be visible to that vCPU straight away. + +Emulated hardware state +----------------------- + +Currently thanks to KVM work any access to IO memory is automatically +protected by the global iothread mutex, also known as the BQL (Big +Qemu Lock). Any IO region that doesn't use global mutex is expected to +do its own locking. + +As the global iothread mutex is shared across the system we push the +use of the lock as far down into the TCG code as possible to minimise +contention. + +Memory Consistency +================== + +Between emulated guests and host systems there are a range of memory +consistency models. Even emulating weakly ordered systems on strongly +ordered hosts needs to ensure things like store-after-load re-ordering +can be prevented when the guest wants to. + +Memory Barriers +--------------- + +Barriers (sometimes known as fences) provide a mechanism for software +to enforce a particular ordering of memory operations from the point +of view of external observers (e.g. another processor core). They can +apply to any memory operations as well as just loads or stores. + +The Linux kernel has an excellent write-up on the various forms of +memory barrier and the guarantees they can provide [1]. + +Barriers are often wrapped around synchronisation primitives to +provide explicit memory ordering semantics. However they can be used +by themselves to provide safe lockless access by ensuring for example +a change to a signal flag will only be visible once the changes to +payload are. + +DESIGN REQUIREMENT: Add a new tcg_memory_barrier op + +This would enforce a strong load/store ordering so all loads/stores +complete at the memory barrier. On single-core non-SMP strongly +ordered backends this could become a NOP. + +Aside from explicit standalone memory barrier instructions there are +also implicit memory ordering semantics which comes with each guest +memory access instruction. For example all x86 load/stores come with +fairly strong guarantees of sequential consistency where as ARM has +special variants of load/store instructions that imply acquire/release +semantics. + +In the case of a strongly ordered guest architecture being emulated on +a weakly ordered host the scope for a heavy performance impact is +quite high. + +DESIGN REQUIREMENTS: Be efficient with use of memory barriers + - host systems with stronger implied guarantees can skip some barriers + - merge consecutive barriers to the strongest one + +(Current solution) + +As the emulation of barriers is also a problem for linux-user +emulation the current patch set is being developed separately from the +MTTCG effort and will hopefully be merged before the rest of MTTCG. +The latest iterations can be found at: + + http://lists.nongnu.org/archive/html/qemu-devel/2016-07/msg03283.html + http://lists.nongnu.org/archive/html/qemu-devel/2016-07/msg03283.html + +Memory Control and Maintenance +------------------------------ + +This includes a class of instructions for controlling system cache +behaviour. While QEMU doesn't model cache behaviour these instructions +are often seen when code modification has taken place to ensure the +changes take effect. + +Synchronisation Primitives +-------------------------- + +There are two broad types of synchronisation primitives found in +modern ISAs: atomic instructions and exclusive regions. + +The first type offer a simple atomic instruction which will guarantee +some sort of test and conditional store will be truly atomic w.r.t. +other cores sharing access to the memory. The classic example is the +x86 cmpxchg instruction. + +The second type offer a pair of load/store instructions which offer a +guarantee that an region of memory has not been touched between the +load and store instructions. An example of this is ARM's ldrex/strex +pair where the strex instruction will return a flag indicating a +successful store only if no other CPU has accessed the memory region +since the ldrex. + +Traditionally TCG has generated a series of operations that work +because they are within the context of a single translation block so +will have completed before another CPU is scheduled. However with +the ability to have multiple threads running to emulate multiple CPUs +we will need to explicitly expose these semantics. + +DESIGN REQUIREMENTS: + - Support classic atomic instructions + - Support load/store exclusive (or load link/store conditional) pairs + - Generic enough infrastructure to support all guest architectures +CURRENT OPEN QUESTIONS: + - How problematic is the ABA problem in general + - How do we solve atomic problems where the host's largest atomic + operation is smaller than the guests (64bit on 32bit). + +(Current solutions) + +There a number of solutions currently being proposed. The eventual +solution will likely involve a trade off between performance and +completeness. For example in practice most guest synchronisation +sequences are unlikely to trigger the ABA problem. + +The current patch series are: + + - Alvise Rigo's Slow-path for atomic instruction translation + http://lists.nongnu.org/archive/html/qemu-devel/2016-04/msg02913.html + http://lists.nongnu.org/archive/html/qemu-devel/2016-05/msg04789.html + + - Emilio G. Cota's cmpxchg-based emulation of atomics + http://lists.nongnu.org/archive/html/qemu-devel/2016-07/msg00152.html + +========== + +[1] https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/memory-barriers.txt