diff mbox series

[03/37] docs: networking: convert vrf.txt to ReST

Message ID af2ba2c29e8dfa9fb66dda16311a28a9f7c8cf43.1588344146.git.mchehab+huawei@kernel.org
State New
Headers show
Series [01/37] docs: networking: convert tuntap.txt to ReST | expand

Commit Message

Mauro Carvalho Chehab May 1, 2020, 2:44 p.m. UTC
- add SPDX header;
- adjust title markup;
- Add a subtitle for the first section;
- mark code blocks and literals as such;
- adjust identation, whitespaces and blank lines;
- add to networking/index.rst.

Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
---
 Documentation/networking/index.rst |   1 +
 Documentation/networking/vrf.rst   | 451 +++++++++++++++++++++++++++++
 Documentation/networking/vrf.txt   | 418 --------------------------
 MAINTAINERS                        |   2 +-
 4 files changed, 453 insertions(+), 419 deletions(-)
 create mode 100644 Documentation/networking/vrf.rst
 delete mode 100644 Documentation/networking/vrf.txt
diff mbox series

Patch

diff --git a/Documentation/networking/index.rst b/Documentation/networking/index.rst
index ca0b0dbfd9ad..2227b9f4509d 100644
--- a/Documentation/networking/index.rst
+++ b/Documentation/networking/index.rst
@@ -113,6 +113,7 @@  Contents:
    tproxy
    tuntap
    udplite
+   vrf
 
 .. only::  subproject and html
 
diff --git a/Documentation/networking/vrf.rst b/Documentation/networking/vrf.rst
new file mode 100644
index 000000000000..0dde145043bc
--- /dev/null
+++ b/Documentation/networking/vrf.rst
@@ -0,0 +1,451 @@ 
+.. SPDX-License-Identifier: GPL-2.0
+
+====================================
+Virtual Routing and Forwarding (VRF)
+====================================
+
+The VRF Device
+==============
+
+The VRF device combined with ip rules provides the ability to create virtual
+routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
+Linux network stack. One use case is the multi-tenancy problem where each
+tenant has their own unique routing tables and in the very least need
+different default gateways.
+
+Processes can be "VRF aware" by binding a socket to the VRF device. Packets
+through the socket then use the routing table associated with the VRF
+device. An important feature of the VRF device implementation is that it
+impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
+(ie., they do not need to be run in each VRF). The design also allows
+the use of higher priority ip rules (Policy Based Routing, PBR) to take
+precedence over the VRF device rules directing specific traffic as desired.
+
+In addition, VRF devices allow VRFs to be nested within namespaces. For
+example network namespaces provide separation of network interfaces at the
+device layer, VLANs on the interfaces within a namespace provide L2 separation
+and then VRF devices provide L3 separation.
+
+Design
+------
+A VRF device is created with an associated route table. Network interfaces
+are then enslaved to a VRF device::
+
+	 +-----------------------------+
+	 |           vrf-blue          |  ===> route table 10
+	 +-----------------------------+
+	    |        |            |
+	 +------+ +------+     +-------------+
+	 | eth1 | | eth2 | ... |    bond1    |
+	 +------+ +------+     +-------------+
+				  |       |
+			      +------+ +------+
+			      | eth8 | | eth9 |
+			      +------+ +------+
+
+Packets received on an enslaved device and are switched to the VRF device
+in the IPv4 and IPv6 processing stacks giving the impression that packets
+flow through the VRF device. Similarly on egress routing rules are used to
+send packets to the VRF device driver before getting sent out the actual
+interface. This allows tcpdump on a VRF device to capture all packets into
+and out of the VRF as a whole\ [1]_. Similarly, netfilter\ [2]_ and tc rules
+can be applied using the VRF device to specify rules that apply to the VRF
+domain as a whole.
+
+.. [1] Packets in the forwarded state do not flow through the device, so those
+       packets are not seen by tcpdump. Will revisit this limitation in a
+       future release.
+
+.. [2] Iptables on ingress supports PREROUTING with skb->dev set to the real
+       ingress device and both INPUT and PREROUTING rules with skb->dev set to
+       the VRF device. For egress POSTROUTING and OUTPUT rules can be written
+       using either the VRF device or real egress device.
+
+Setup
+-----
+1. VRF device is created with an association to a FIB table.
+   e.g,::
+
+	ip link add vrf-blue type vrf table 10
+	ip link set dev vrf-blue up
+
+2. An l3mdev FIB rule directs lookups to the table associated with the device.
+   A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
+   l3mdev rule for IPv4 and IPv6 when the first device is created with a
+   default preference of 1000. Users may delete the rule if desired and add
+   with a different priority or install per-VRF rules.
+
+   Prior to the v4.8 kernel iif and oif rules are needed for each VRF device::
+
+       ip ru add oif vrf-blue table 10
+       ip ru add iif vrf-blue table 10
+
+3. Set the default route for the table (and hence default route for the VRF)::
+
+       ip route add table 10 unreachable default metric 4278198272
+
+   This high metric value ensures that the default unreachable route can
+   be overridden by a routing protocol suite.  FRRouting interprets
+   kernel metrics as a combined admin distance (upper byte) and priority
+   (lower 3 bytes).  Thus the above metric translates to [255/8192].
+
+4. Enslave L3 interfaces to a VRF device::
+
+       ip link set dev eth1 master vrf-blue
+
+   Local and connected routes for enslaved devices are automatically moved to
+   the table associated with VRF device. Any additional routes depending on
+   the enslaved device are dropped and will need to be reinserted to the VRF
+   FIB table following the enslavement.
+
+   The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
+   addresses as VRF enslavement changes::
+
+       sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
+
+5. Additional VRF routes are added to associated table::
+
+       ip route add table 10 ...
+
+
+Applications
+------------
+Applications that are to work within a VRF need to bind their socket to the
+VRF device::
+
+    setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
+
+or to specify the output device using cmsg and IP_PKTINFO.
+
+By default the scope of the port bindings for unbound sockets is
+limited to the default VRF. That is, it will not be matched by packets
+arriving on interfaces enslaved to an l3mdev and processes may bind to
+the same port if they bind to an l3mdev.
+
+TCP & UDP services running in the default VRF context (ie., not bound
+to any VRF device) can work across all VRF domains by enabling the
+tcp_l3mdev_accept and udp_l3mdev_accept sysctl options::
+
+    sysctl -w net.ipv4.tcp_l3mdev_accept=1
+    sysctl -w net.ipv4.udp_l3mdev_accept=1
+
+These options are disabled by default so that a socket in a VRF is only
+selected for packets in that VRF. There is a similar option for RAW
+sockets, which is enabled by default for reasons of backwards compatibility.
+This is so as to specify the output device with cmsg and IP_PKTINFO, but
+using a socket not bound to the corresponding VRF. This allows e.g. older ping
+implementations to be run with specifying the device but without executing it
+in the VRF. This option can be disabled so that packets received in a VRF
+context are only handled by a raw socket bound to the VRF, and packets in the
+default VRF are only handled by a socket not bound to any VRF::
+
+    sysctl -w net.ipv4.raw_l3mdev_accept=0
+
+netfilter rules on the VRF device can be used to limit access to services
+running in the default VRF context as well.
+
+--------------------------------------------------------------------------------
+
+Using iproute2 for VRFs
+=======================
+iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
+section lists both commands where appropriate -- with the vrf keyword and the
+older form without it.
+
+1. Create a VRF
+
+   To instantiate a VRF device and associate it with a table::
+
+       $ ip link add dev NAME type vrf table ID
+
+   As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
+   covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
+   device create.
+
+2. List VRFs
+
+   To list VRFs that have been created::
+
+       $ ip [-d] link show type vrf
+	 NOTE: The -d option is needed to show the table id
+
+   For example::
+
+       $ ip -d link show type vrf
+       11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
+	   link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
+	   vrf table 1 addrgenmode eui64
+       12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
+	   link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
+	   vrf table 10 addrgenmode eui64
+       13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
+	   link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
+	   vrf table 66 addrgenmode eui64
+       14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
+	   link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
+	   vrf table 81 addrgenmode eui64
+
+
+   Or in brief output::
+
+       $ ip -br link show type vrf
+       mgmt         UP             72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
+       red          UP             b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
+       blue         UP             36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
+       green        UP             e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
+
+
+3. Assign a Network Interface to a VRF
+
+   Network interfaces are assigned to a VRF by enslaving the netdevice to a
+   VRF device::
+
+       $ ip link set dev NAME master NAME
+
+   On enslavement connected and local routes are automatically moved to the
+   table associated with the VRF device.
+
+   For example::
+
+       $ ip link set dev eth0 master mgmt
+
+
+4. Show Devices Assigned to a VRF
+
+   To show devices that have been assigned to a specific VRF add the master
+   option to the ip command::
+
+       $ ip link show vrf NAME
+       $ ip link show master NAME
+
+   For example::
+
+       $ ip link show vrf red
+       3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
+	   link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
+       4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
+	   link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
+       7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
+	   link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
+
+
+   Or using the brief output::
+
+       $ ip -br link show vrf red
+       eth1             UP             02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
+       eth2             UP             02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
+       eth5             DOWN           02:00:00:00:02:06 <BROADCAST,MULTICAST>
+
+
+5. Show Neighbor Entries for a VRF
+
+   To list neighbor entries associated with devices enslaved to a VRF device
+   add the master option to the ip command::
+
+       $ ip [-6] neigh show vrf NAME
+       $ ip [-6] neigh show master NAME
+
+   For example::
+
+       $  ip neigh show vrf red
+       10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
+       10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
+
+       $ ip -6 neigh show vrf red
+       2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
+
+
+6. Show Addresses for a VRF
+
+   To show addresses for interfaces associated with a VRF add the master
+   option to the ip command::
+
+       $ ip addr show vrf NAME
+       $ ip addr show master NAME
+
+   For example::
+
+	$ ip addr show vrf red
+	3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
+	    link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
+	    inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
+	       valid_lft forever preferred_lft forever
+	    inet6 2002:1::2/120 scope global
+	       valid_lft forever preferred_lft forever
+	    inet6 fe80::ff:fe00:202/64 scope link
+	       valid_lft forever preferred_lft forever
+	4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
+	    link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
+	    inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
+	       valid_lft forever preferred_lft forever
+	    inet6 2002:2::2/120 scope global
+	       valid_lft forever preferred_lft forever
+	    inet6 fe80::ff:fe00:203/64 scope link
+	       valid_lft forever preferred_lft forever
+	7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
+	    link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
+
+   Or in brief format::
+
+	$ ip -br addr show vrf red
+	eth1             UP             10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
+	eth2             UP             10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
+	eth5             DOWN
+
+
+7. Show Routes for a VRF
+
+   To show routes for a VRF use the ip command to display the table associated
+   with the VRF device::
+
+       $ ip [-6] route show vrf NAME
+       $ ip [-6] route show table ID
+
+   For example::
+
+	$ ip route show vrf red
+	unreachable default  metric 4278198272
+	broadcast 10.2.1.0 dev eth1  proto kernel  scope link  src 10.2.1.2
+	10.2.1.0/24 dev eth1  proto kernel  scope link  src 10.2.1.2
+	local 10.2.1.2 dev eth1  proto kernel  scope host  src 10.2.1.2
+	broadcast 10.2.1.255 dev eth1  proto kernel  scope link  src 10.2.1.2
+	broadcast 10.2.2.0 dev eth2  proto kernel  scope link  src 10.2.2.2
+	10.2.2.0/24 dev eth2  proto kernel  scope link  src 10.2.2.2
+	local 10.2.2.2 dev eth2  proto kernel  scope host  src 10.2.2.2
+	broadcast 10.2.2.255 dev eth2  proto kernel  scope link  src 10.2.2.2
+
+	$ ip -6 route show vrf red
+	local 2002:1:: dev lo  proto none  metric 0  pref medium
+	local 2002:1::2 dev lo  proto none  metric 0  pref medium
+	2002:1::/120 dev eth1  proto kernel  metric 256  pref medium
+	local 2002:2:: dev lo  proto none  metric 0  pref medium
+	local 2002:2::2 dev lo  proto none  metric 0  pref medium
+	2002:2::/120 dev eth2  proto kernel  metric 256  pref medium
+	local fe80:: dev lo  proto none  metric 0  pref medium
+	local fe80:: dev lo  proto none  metric 0  pref medium
+	local fe80::ff:fe00:202 dev lo  proto none  metric 0  pref medium
+	local fe80::ff:fe00:203 dev lo  proto none  metric 0  pref medium
+	fe80::/64 dev eth1  proto kernel  metric 256  pref medium
+	fe80::/64 dev eth2  proto kernel  metric 256  pref medium
+	ff00::/8 dev red  metric 256  pref medium
+	ff00::/8 dev eth1  metric 256  pref medium
+	ff00::/8 dev eth2  metric 256  pref medium
+	unreachable default dev lo  metric 4278198272  error -101 pref medium
+
+8. Route Lookup for a VRF
+
+   A test route lookup can be done for a VRF::
+
+       $ ip [-6] route get vrf NAME ADDRESS
+       $ ip [-6] route get oif NAME ADDRESS
+
+   For example::
+
+	$ ip route get 10.2.1.40 vrf red
+	10.2.1.40 dev eth1  table red  src 10.2.1.2
+	    cache
+
+	$ ip -6 route get 2002:1::32 vrf red
+	2002:1::32 from :: dev eth1  table red  proto kernel  src 2002:1::2  metric 256  pref medium
+
+
+9. Removing Network Interface from a VRF
+
+   Network interfaces are removed from a VRF by breaking the enslavement to
+   the VRF device::
+
+       $ ip link set dev NAME nomaster
+
+   Connected routes are moved back to the default table and local entries are
+   moved to the local table.
+
+   For example::
+
+    $ ip link set dev eth0 nomaster
+
+--------------------------------------------------------------------------------
+
+Commands used in this example::
+
+     cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
+     1  mgmt
+     10 red
+     66 blue
+     81 green
+     EOF
+
+     function vrf_create
+     {
+	 VRF=$1
+	 TBID=$2
+
+	 # create VRF device
+	 ip link add ${VRF} type vrf table ${TBID}
+
+	 if [ "${VRF}" != "mgmt" ]; then
+	     ip route add table ${TBID} unreachable default metric 4278198272
+	 fi
+	 ip link set dev ${VRF} up
+     }
+
+     vrf_create mgmt 1
+     ip link set dev eth0 master mgmt
+
+     vrf_create red 10
+     ip link set dev eth1 master red
+     ip link set dev eth2 master red
+     ip link set dev eth5 master red
+
+     vrf_create blue 66
+     ip link set dev eth3 master blue
+
+     vrf_create green 81
+     ip link set dev eth4 master green
+
+
+     Interface addresses from /etc/network/interfaces:
+     auto eth0
+     iface eth0 inet static
+	   address 10.0.0.2
+	   netmask 255.255.255.0
+	   gateway 10.0.0.254
+
+     iface eth0 inet6 static
+	   address 2000:1::2
+	   netmask 120
+
+     auto eth1
+     iface eth1 inet static
+	   address 10.2.1.2
+	   netmask 255.255.255.0
+
+     iface eth1 inet6 static
+	   address 2002:1::2
+	   netmask 120
+
+     auto eth2
+     iface eth2 inet static
+	   address 10.2.2.2
+	   netmask 255.255.255.0
+
+     iface eth2 inet6 static
+	   address 2002:2::2
+	   netmask 120
+
+     auto eth3
+     iface eth3 inet static
+	   address 10.2.3.2
+	   netmask 255.255.255.0
+
+     iface eth3 inet6 static
+	   address 2002:3::2
+	   netmask 120
+
+     auto eth4
+     iface eth4 inet static
+	   address 10.2.4.2
+	   netmask 255.255.255.0
+
+     iface eth4 inet6 static
+	   address 2002:4::2
+	   netmask 120
diff --git a/Documentation/networking/vrf.txt b/Documentation/networking/vrf.txt
deleted file mode 100644
index a5f103b083a0..000000000000
--- a/Documentation/networking/vrf.txt
+++ /dev/null
@@ -1,418 +0,0 @@ 
-Virtual Routing and Forwarding (VRF)
-====================================
-The VRF device combined with ip rules provides the ability to create virtual
-routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
-Linux network stack. One use case is the multi-tenancy problem where each
-tenant has their own unique routing tables and in the very least need
-different default gateways.
-
-Processes can be "VRF aware" by binding a socket to the VRF device. Packets
-through the socket then use the routing table associated with the VRF
-device. An important feature of the VRF device implementation is that it
-impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
-(ie., they do not need to be run in each VRF). The design also allows
-the use of higher priority ip rules (Policy Based Routing, PBR) to take
-precedence over the VRF device rules directing specific traffic as desired.
-
-In addition, VRF devices allow VRFs to be nested within namespaces. For
-example network namespaces provide separation of network interfaces at the
-device layer, VLANs on the interfaces within a namespace provide L2 separation
-and then VRF devices provide L3 separation.
-
-Design
-------
-A VRF device is created with an associated route table. Network interfaces
-are then enslaved to a VRF device:
-
-         +-----------------------------+
-         |           vrf-blue          |  ===> route table 10
-         +-----------------------------+
-            |        |            |
-         +------+ +------+     +-------------+
-         | eth1 | | eth2 | ... |    bond1    |
-         +------+ +------+     +-------------+
-                                  |       |
-                              +------+ +------+
-                              | eth8 | | eth9 |
-                              +------+ +------+
-
-Packets received on an enslaved device and are switched to the VRF device
-in the IPv4 and IPv6 processing stacks giving the impression that packets
-flow through the VRF device. Similarly on egress routing rules are used to
-send packets to the VRF device driver before getting sent out the actual
-interface. This allows tcpdump on a VRF device to capture all packets into
-and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be
-applied using the VRF device to specify rules that apply to the VRF domain
-as a whole.
-
-[1] Packets in the forwarded state do not flow through the device, so those
-    packets are not seen by tcpdump. Will revisit this limitation in a
-    future release.
-
-[2] Iptables on ingress supports PREROUTING with skb->dev set to the real
-    ingress device and both INPUT and PREROUTING rules with skb->dev set to
-    the VRF device. For egress POSTROUTING and OUTPUT rules can be written
-    using either the VRF device or real egress device.
-
-Setup
------
-1. VRF device is created with an association to a FIB table.
-   e.g, ip link add vrf-blue type vrf table 10
-        ip link set dev vrf-blue up
-
-2. An l3mdev FIB rule directs lookups to the table associated with the device.
-   A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
-   l3mdev rule for IPv4 and IPv6 when the first device is created with a
-   default preference of 1000. Users may delete the rule if desired and add
-   with a different priority or install per-VRF rules.
-
-   Prior to the v4.8 kernel iif and oif rules are needed for each VRF device:
-       ip ru add oif vrf-blue table 10
-       ip ru add iif vrf-blue table 10
-
-3. Set the default route for the table (and hence default route for the VRF).
-       ip route add table 10 unreachable default metric 4278198272
-
-   This high metric value ensures that the default unreachable route can
-   be overridden by a routing protocol suite.  FRRouting interprets
-   kernel metrics as a combined admin distance (upper byte) and priority
-   (lower 3 bytes).  Thus the above metric translates to [255/8192].
-
-4. Enslave L3 interfaces to a VRF device.
-       ip link set dev eth1 master vrf-blue
-
-   Local and connected routes for enslaved devices are automatically moved to
-   the table associated with VRF device. Any additional routes depending on
-   the enslaved device are dropped and will need to be reinserted to the VRF
-   FIB table following the enslavement.
-
-   The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
-   addresses as VRF enslavement changes.
-       sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
-
-5. Additional VRF routes are added to associated table.
-       ip route add table 10 ...
-
-
-Applications
-------------
-Applications that are to work within a VRF need to bind their socket to the
-VRF device:
-
-    setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
-
-or to specify the output device using cmsg and IP_PKTINFO.
-
-By default the scope of the port bindings for unbound sockets is
-limited to the default VRF. That is, it will not be matched by packets
-arriving on interfaces enslaved to an l3mdev and processes may bind to
-the same port if they bind to an l3mdev.
-
-TCP & UDP services running in the default VRF context (ie., not bound
-to any VRF device) can work across all VRF domains by enabling the
-tcp_l3mdev_accept and udp_l3mdev_accept sysctl options:
-
-    sysctl -w net.ipv4.tcp_l3mdev_accept=1
-    sysctl -w net.ipv4.udp_l3mdev_accept=1
-
-These options are disabled by default so that a socket in a VRF is only
-selected for packets in that VRF. There is a similar option for RAW
-sockets, which is enabled by default for reasons of backwards compatibility.
-This is so as to specify the output device with cmsg and IP_PKTINFO, but
-using a socket not bound to the corresponding VRF. This allows e.g. older ping
-implementations to be run with specifying the device but without executing it
-in the VRF. This option can be disabled so that packets received in a VRF
-context are only handled by a raw socket bound to the VRF, and packets in the
-default VRF are only handled by a socket not bound to any VRF:
-
-    sysctl -w net.ipv4.raw_l3mdev_accept=0
-
-netfilter rules on the VRF device can be used to limit access to services
-running in the default VRF context as well.
-
-################################################################################
-
-Using iproute2 for VRFs
-=======================
-iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
-section lists both commands where appropriate -- with the vrf keyword and the
-older form without it.
-
-1. Create a VRF
-
-   To instantiate a VRF device and associate it with a table:
-       $ ip link add dev NAME type vrf table ID
-
-   As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
-   covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
-   device create.
-
-2. List VRFs
-
-   To list VRFs that have been created:
-       $ ip [-d] link show type vrf
-         NOTE: The -d option is needed to show the table id
-
-   For example:
-   $ ip -d link show type vrf
-   11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
-       link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
-       vrf table 1 addrgenmode eui64
-   12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
-       link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
-       vrf table 10 addrgenmode eui64
-   13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
-       link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
-       vrf table 66 addrgenmode eui64
-   14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
-       link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
-       vrf table 81 addrgenmode eui64
-
-
-   Or in brief output:
-
-   $ ip -br link show type vrf
-   mgmt         UP             72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
-   red          UP             b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
-   blue         UP             36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
-   green        UP             e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
-
-
-3. Assign a Network Interface to a VRF
-
-   Network interfaces are assigned to a VRF by enslaving the netdevice to a
-   VRF device:
-       $ ip link set dev NAME master NAME
-
-   On enslavement connected and local routes are automatically moved to the
-   table associated with the VRF device.
-
-   For example:
-   $ ip link set dev eth0 master mgmt
-
-
-4. Show Devices Assigned to a VRF
-
-   To show devices that have been assigned to a specific VRF add the master
-   option to the ip command:
-       $ ip link show vrf NAME
-       $ ip link show master NAME
-
-   For example:
-   $ ip link show vrf red
-   3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
-       link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
-   4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
-       link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
-   7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
-       link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
-
-
-   Or using the brief output:
-   $ ip -br link show vrf red
-   eth1             UP             02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
-   eth2             UP             02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
-   eth5             DOWN           02:00:00:00:02:06 <BROADCAST,MULTICAST>
-
-
-5. Show Neighbor Entries for a VRF
-
-   To list neighbor entries associated with devices enslaved to a VRF device
-   add the master option to the ip command:
-       $ ip [-6] neigh show vrf NAME
-       $ ip [-6] neigh show master NAME
-
-   For example:
-   $  ip neigh show vrf red
-   10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
-   10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
-
-   $ ip -6 neigh show vrf red
-   2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
-
-
-6. Show Addresses for a VRF
-
-   To show addresses for interfaces associated with a VRF add the master
-   option to the ip command:
-       $ ip addr show vrf NAME
-       $ ip addr show master NAME
-
-   For example:
-   $ ip addr show vrf red
-   3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
-       link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
-       inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
-          valid_lft forever preferred_lft forever
-       inet6 2002:1::2/120 scope global
-          valid_lft forever preferred_lft forever
-       inet6 fe80::ff:fe00:202/64 scope link
-          valid_lft forever preferred_lft forever
-   4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
-       link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
-       inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
-          valid_lft forever preferred_lft forever
-       inet6 2002:2::2/120 scope global
-          valid_lft forever preferred_lft forever
-       inet6 fe80::ff:fe00:203/64 scope link
-          valid_lft forever preferred_lft forever
-   7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
-       link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
-
-   Or in brief format:
-   $ ip -br addr show vrf red
-   eth1             UP             10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
-   eth2             UP             10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
-   eth5             DOWN
-
-
-7. Show Routes for a VRF
-
-   To show routes for a VRF use the ip command to display the table associated
-   with the VRF device:
-       $ ip [-6] route show vrf NAME
-       $ ip [-6] route show table ID
-
-   For example:
-   $ ip route show vrf red
-   unreachable default  metric 4278198272
-   broadcast 10.2.1.0 dev eth1  proto kernel  scope link  src 10.2.1.2
-   10.2.1.0/24 dev eth1  proto kernel  scope link  src 10.2.1.2
-   local 10.2.1.2 dev eth1  proto kernel  scope host  src 10.2.1.2
-   broadcast 10.2.1.255 dev eth1  proto kernel  scope link  src 10.2.1.2
-   broadcast 10.2.2.0 dev eth2  proto kernel  scope link  src 10.2.2.2
-   10.2.2.0/24 dev eth2  proto kernel  scope link  src 10.2.2.2
-   local 10.2.2.2 dev eth2  proto kernel  scope host  src 10.2.2.2
-   broadcast 10.2.2.255 dev eth2  proto kernel  scope link  src 10.2.2.2
-
-   $ ip -6 route show vrf red
-   local 2002:1:: dev lo  proto none  metric 0  pref medium
-   local 2002:1::2 dev lo  proto none  metric 0  pref medium
-   2002:1::/120 dev eth1  proto kernel  metric 256  pref medium
-   local 2002:2:: dev lo  proto none  metric 0  pref medium
-   local 2002:2::2 dev lo  proto none  metric 0  pref medium
-   2002:2::/120 dev eth2  proto kernel  metric 256  pref medium
-   local fe80:: dev lo  proto none  metric 0  pref medium
-   local fe80:: dev lo  proto none  metric 0  pref medium
-   local fe80::ff:fe00:202 dev lo  proto none  metric 0  pref medium
-   local fe80::ff:fe00:203 dev lo  proto none  metric 0  pref medium
-   fe80::/64 dev eth1  proto kernel  metric 256  pref medium
-   fe80::/64 dev eth2  proto kernel  metric 256  pref medium
-   ff00::/8 dev red  metric 256  pref medium
-   ff00::/8 dev eth1  metric 256  pref medium
-   ff00::/8 dev eth2  metric 256  pref medium
-   unreachable default dev lo  metric 4278198272  error -101 pref medium
-
-8. Route Lookup for a VRF
-
-   A test route lookup can be done for a VRF:
-       $ ip [-6] route get vrf NAME ADDRESS
-       $ ip [-6] route get oif NAME ADDRESS
-
-   For example:
-   $ ip route get 10.2.1.40 vrf red
-   10.2.1.40 dev eth1  table red  src 10.2.1.2
-       cache
-
-   $ ip -6 route get 2002:1::32 vrf red
-   2002:1::32 from :: dev eth1  table red  proto kernel  src 2002:1::2  metric 256  pref medium
-
-
-9. Removing Network Interface from a VRF
-
-   Network interfaces are removed from a VRF by breaking the enslavement to
-   the VRF device:
-       $ ip link set dev NAME nomaster
-
-   Connected routes are moved back to the default table and local entries are
-   moved to the local table.
-
-   For example:
-   $ ip link set dev eth0 nomaster
-
---------------------------------------------------------------------------------
-
-Commands used in this example:
-
-cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
-1  mgmt
-10 red
-66 blue
-81 green
-EOF
-
-function vrf_create
-{
-    VRF=$1
-    TBID=$2
-
-    # create VRF device
-    ip link add ${VRF} type vrf table ${TBID}
-
-    if [ "${VRF}" != "mgmt" ]; then
-        ip route add table ${TBID} unreachable default metric 4278198272
-    fi
-    ip link set dev ${VRF} up
-}
-
-vrf_create mgmt 1
-ip link set dev eth0 master mgmt
-
-vrf_create red 10
-ip link set dev eth1 master red
-ip link set dev eth2 master red
-ip link set dev eth5 master red
-
-vrf_create blue 66
-ip link set dev eth3 master blue
-
-vrf_create green 81
-ip link set dev eth4 master green
-
-
-Interface addresses from /etc/network/interfaces:
-auto eth0
-iface eth0 inet static
-      address 10.0.0.2
-      netmask 255.255.255.0
-      gateway 10.0.0.254
-
-iface eth0 inet6 static
-      address 2000:1::2
-      netmask 120
-
-auto eth1
-iface eth1 inet static
-      address 10.2.1.2
-      netmask 255.255.255.0
-
-iface eth1 inet6 static
-      address 2002:1::2
-      netmask 120
-
-auto eth2
-iface eth2 inet static
-      address 10.2.2.2
-      netmask 255.255.255.0
-
-iface eth2 inet6 static
-      address 2002:2::2
-      netmask 120
-
-auto eth3
-iface eth3 inet static
-      address 10.2.3.2
-      netmask 255.255.255.0
-
-iface eth3 inet6 static
-      address 2002:3::2
-      netmask 120
-
-auto eth4
-iface eth4 inet static
-      address 10.2.4.2
-      netmask 255.255.255.0
-
-iface eth4 inet6 static
-      address 2002:4::2
-      netmask 120
diff --git a/MAINTAINERS b/MAINTAINERS
index 35bd81b436e1..469e6c3149fe 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -18152,7 +18152,7 @@  M:	David Ahern <dsahern@kernel.org>
 M:	Shrijeet Mukherjee <shrijeet@gmail.com>
 L:	netdev@vger.kernel.org
 S:	Maintained
-F:	Documentation/networking/vrf.txt
+F:	Documentation/networking/vrf.rst
 F:	drivers/net/vrf.c
 
 VSPRINTF