mbox series

[v3,00/12] Introduce runtime modifiable Energy Model

Message ID 20230721155022.2339982-1-lukasz.luba@arm.com
Headers show
Series Introduce runtime modifiable Energy Model | expand

Message

Lukasz Luba July 21, 2023, 3:50 p.m. UTC
Hi all,

This patch set adds a new feature which allows to modify Energy Model (EM)
power values at runtime. It will allow to better reflect power model of
a recent SoCs and silicon. Different characteristics of the power usage
can be leveraged and thus better decisions made during task placement in EAS.

It's part of feature set know as Dynamic Energy Model. It has been presented
and discussed recently at OSPM2023 [3]. This patch set implements the 1st
improvement for the EM.

The concepts:
1. The CPU power usage can vary due to the workload that it's running or due
to the temperature of the SoC. The same workload can use more power when the
temperature of the silicon has increased (e.g. due to hot GPU or ISP).
In such situation or EM can be adjusted and reflect the fact of increased
power usage. That power increase is due to a factor called static power
(sometimes called simply: leakage). The CPUs in recent SoCs are different.
We have heterogeneous SoCs with 3 (or even 4) different microarchitectures.
They are also built differently with High Performance (HP) cells or
Low Power (LP) cells. They are affected by the temperature increase
differently: HP cells have bigger leakage. The SW model can leverage that
knowledge.
2. It is also possible to change the EM to better reflect the currently
running workload. Usually the EM is derived from some average power values
taken from experiments with benchmark (e.g. Dhrystone). The model derived
from such scenario might not represent properly the workloads usually running
on the device. Therefore, runtime modification of the EM allows to switch to
a different model, when there is a need.
3. The EM can be adjusted after boot, when all the modules are loaded and
more information about the SoC is available e.g. chip binning. This would help
to better reflect the silicon characteristics. Thus, this EM modification
API allows it now. It wasn't possible in the past and the EM had to be
'set in stone'.

Some design details:
The internal mechanisms for the memory allocation are handled internally in the 
EM. Kernel modules can just call the new API to update the EM data and the 
new memory would be provided and owned by the EM. The EM memory is used by
EAS, which impacts those design decisions. The EM writers are protected by
a mutex. This new runtime modified EM table is protected using RCU mechanism,
which fits the current EAS hot path (which already uses RCU read lock).
The unregister API handles only non-CPU (e.g. GPU, ISP) devices and uses the
same mutex as EM modifiers to make sure the memory is safely freed.

More detailed explanation and background can be found in presentations
during LPC2022 [1][2] or in the documentation patches.

The time cost to update EM for 11 OPPs can be found here [6]. It's roughly
1.5us per 1 OPP while doing this on Little CPU at max frequency (1.8GHz).

Changelog:
v3
- adjusted inline comments for structure doc (Dietmar)
- extended patch header with infromation that only EAS will use the feature
  and it was driving the design (Dietmar)
- changed patch header and put shorter comment (Dietmar)
- moved the 'refactoring' patch that adds 'default_table' before the
  introduction of runtime modifiable feature as sugested by Dietmar in 
  numerous patches v2
- merged documentation patches into one
- added more explenation about the 2 tables design into the Doc (Dietmar)
- removed the CPPC+EM patch for runtime modification
- removed the trace patch, since the trace point would be added after a while
- renamed 'tmp' to 'runtime_table' variable in the unregister function,
  to better highlight the memory pointer checks (it is possible after
  moving the 'default_table' earlier)
- and added '__rcu' in the unregister function which should calm down
  the test bot warning
- renamed 'create' to 'refactor' in the patch header (Dietmar)
v2 [5]:
- solved build warning of unused variable in patch 13/17 when EM is
  not compiled in, e.g. on Intel platform for this cpufreq_cooling
- re-based on top of v6.4-rc1
v1:
- implementation can be found here [4]

Regards,
Lukasz Luba

[1] https://lpc.events/event/16/contributions/1341/attachments/955/1873/Dynamic_Energy_Model_to_handle_leakage_power.pdf
[2] https://lpc.events/event/16/contributions/1194/attachments/1114/2139/LPC2022_Energy_model_accuracy.pdf
[3] https://www.youtube.com/watch?v=2C-5uikSbtM&list=PL0fKordpLTjKsBOUcZqnzlHShri4YBL1H
[4] https://lore.kernel.org/lkml/20230314103357.26010-1-lukasz.luba@arm.com/
[5] https://lore.kernel.org/lkml/20230512095743.3393563-1-lukasz.luba@arm.com/
[6] https://lore.kernel.org/lkml/57a5dc82-f2c9-5190-e3fa-702b2eb2de5e@arm.com/


Lukasz Luba (12):
  PM: EM: Refactor em_cpufreq_update_efficiencies() arguments
  PM: EM: Find first CPU online while updating OPP efficiency
  PM: EM: Refactor em_pd_get_efficient_state() to be more flexible
  PM: EM: Refactor a new function em_compute_costs()
  PM: EM: Check if the get_cost() callback is present in
    em_compute_costs()
  PM: EM: Refactor struct em_perf_domain and add default_table
  PM: EM: Add update_power() callback for runtime modifications
  PM: EM: Introduce runtime modifiable table
  PM: EM: Add RCU mechanism which safely cleans the old data
  PM: EM: Add runtime update interface to modify EM power
  PM: EM: Use runtime modified EM for CPUs energy estimation in EAS
  Documentation: EM: Update with runtime modification design

 Documentation/power/energy-model.rst | 150 +++++++++++++-
 drivers/powercap/dtpm_cpu.c          |  27 ++-
 drivers/powercap/dtpm_devfreq.c      |  23 ++-
 drivers/thermal/cpufreq_cooling.c    |  23 ++-
 drivers/thermal/devfreq_cooling.c    |  23 ++-
 include/linux/energy_model.h         |  85 ++++++--
 kernel/power/energy_model.c          | 288 +++++++++++++++++++++++----
 7 files changed, 525 insertions(+), 94 deletions(-)