@@ -881,4 +881,6 @@ config CRYPTO_DEV_SA2UL
used for crypto offload. Select this if you want to use hardware
acceleration for cryptographic algorithms on these devices.
+source "drivers/crypto/keembay/Kconfig"
+
endif # CRYPTO_HW
@@ -51,3 +51,4 @@ obj-$(CONFIG_CRYPTO_DEV_ARTPEC6) += axis/
obj-$(CONFIG_CRYPTO_DEV_ZYNQMP_AES) += xilinx/
obj-y += hisilicon/
obj-$(CONFIG_CRYPTO_DEV_AMLOGIC_GXL) += amlogic/
+obj-y += keembay/
new file mode 100644
@@ -0,0 +1,20 @@
+config CRYPTO_DEV_KEEMBAY_OCS_HCU
+ tristate "Support for Intel Keem Bay OCS HCU HW acceleration"
+ select CRYPTO_ENGINE
+ depends on OF || COMPILE_TEST
+ help
+ Support for Intel Keem Bay Offload and Crypto Subsystem (OCS) Hash
+ Control Unit (HCU) hardware acceleration for use with Crypto API.
+
+ Provides OCS HCU hardware acceleration of sha256, sha384, sha512, and
+ sm3, as well as the HMAC variant of these algorithms.
+
+config CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
+ bool "Enable sha224 and hmac(sha224) support in Intel Keem Bay OCS HCU"
+ depends on CRYPTO_DEV_KEEMBAY_OCS_HCU
+ help
+ Enables support for sha224 and hmac(sha224) algorithms in the Intel
+ Keem Bay OCS HCU driver. Intel recommends not to use these
+ algorithms.
+
+ Provides OCS HCU hardware acceleration of sha224 and hmac(224).
new file mode 100644
@@ -0,0 +1,5 @@
+#
+# Makefile for Keem Bay OCS Crypto API Linux drivers
+#
+obj-$(CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU) += keembay-ocs-hcu.o
+keembay-ocs-hcu-objs := keembay-ocs-hcu-core.o ocs-hcu.o
new file mode 100644
@@ -0,0 +1,1484 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel Keem Bay OCS HCU Crypto Driver.
+ *
+ * Copyright (C) 2018-2020 Intel Corporation
+ */
+
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+
+#include <crypto/engine.h>
+#include <crypto/scatterwalk.h>
+#include <crypto/sha.h>
+#include <crypto/sm3.h>
+#include <crypto/hmac.h>
+#include <crypto/internal/hash.h>
+
+#include "ocs-hcu.h"
+
+#define DRV_NAME "keembay-ocs-hcu"
+
+/* Flag marking a final request. */
+#define REQ_FINAL BIT(0)
+/* Flag set when there is data to be processed by the HW. */
+#define REQ_FLAGS_DO_DATA BIT(1)
+/* Flag set when there is intermediate data from a previous request. */
+#define REQ_FLAGS_INTERMEDIATE_DATA BIT(2)
+/* Flag marking a HMAC request. */
+#define REQ_FLAGS_HMAC BIT(3)
+/* Flag set when HW HMAC is being used. */
+#define REQ_FLAGS_HMAC_HW BIT(4)
+/* Flag set when SW HMAC is being used. */
+#define REQ_FLAGS_HMAC_SW BIT(5)
+/* Flag set when HW HMAC key has been already set (only used in HW HMAC). */
+#define REQ_FLAGS_HMAC_HW_KEY_SET BIT(6)
+/* Flag set when OPAD computing is pending (only used in SW HMAC). */
+#define REQ_FLAGS_HMAC_SW_DO_OPAD BIT(7)
+
+#define KMB_OCS_HCU_ALIGNMENT 8
+#define KMB_OCS_HCU_ALIGN_MASK (KMB_OCS_HCU_ALIGNMENT - 1)
+
+/**
+ * struct ocs_hcu_ctx: OCS HCU Transform context.
+ * @engine_ctx: Crypto Engine context.
+ * @hcu_dev: The OCS HCU device used by the transformation.
+ * @key: The key (used only for HMAC transformations).
+ * @key_len: The length of the key.
+ * @is_sm3_tfm: Whether or not this is an SM3 transformation.
+ * @is_hmac_tfm: Whether or not this is a HMAC transformation.
+ */
+struct ocs_hcu_ctx {
+ struct crypto_engine_ctx engine_ctx;
+ struct ocs_hcu_dev *hcu_dev;
+ u8 key[SHA512_BLOCK_SIZE];
+ size_t key_len;
+ bool is_sm3_tfm;
+ bool is_hmac_tfm;
+};
+
+/**
+ * struct dma_buf - DMA-able buffer.
+ * @dma_addr: The DMA address of the buffer.
+ * @vaddr: The Kernel virtual address of the buffer.
+ * @size: The size of the buffer.
+ */
+struct dma_buf {
+ dma_addr_t dma_addr;
+ u8 *vaddr;
+ size_t size;
+};
+
+/**
+ * struct ocs_dma_list - OCS-specific DMA linked list.
+ * @head: The head of the list (points to the array backing the list).
+ * @tail: The current tail of the list; NULL if the list is empty.
+ * @dma_addr: The DMA address of @head (i.e., the DMA address of the backing
+ * array).
+ * @nents: Maximum number of entries in the list (i.e., number of elements
+ * in the backing array).
+ *
+ * The OCS DMA list is an array-backed list of OCS DMA descriptors. The array
+ * backing the list is allocated with dma_alloc_coherent() and pointed by
+ * @head.
+ */
+struct ocs_dma_list {
+ struct ocs_dma_desc *head;
+ struct ocs_dma_desc *tail;
+ dma_addr_t dma_addr;
+ size_t nents;
+};
+
+/**
+ * struct ocs_hcu_rctx - Context for the request.
+ * @flags: Flags tracking request status.
+ * @algo: Algorithm to use for the request.
+ * @blk_sz: Block size of the transformation / request.
+ * @dig_sz: Digest size of the transformation / request.
+ * @dma_list: OCS DMA linked list.
+ * @hcu_dev: OCS HCU device to be used to service the request.
+ * @idata: Intermediate data (used to store intermediate results).
+ * @buffer: Buffer to store: partial block of data and SW HMAC
+ * artifacts (ipad, opad, etc.).
+ * @buf_cnt: Number of bytes currently stored in the buffer.
+ * @dma_buf: DMA-able copy of buffer.
+ * @sg: Head of the scatterlist entries containing data.
+ * @sg_data_total: Total data in the SG list at any time.
+ * @sg_data_offset: Offset into the data of the current individual SG node.
+ * @sg_dma_nents: Number of sg entries mapped in dma_list.
+ */
+struct ocs_hcu_rctx {
+ u32 flags;
+ u32 algo;
+ size_t blk_sz;
+ size_t dig_sz;
+ struct ocs_dma_list dma_list;
+ struct ocs_hcu_dev *hcu_dev;
+ struct ocs_hcu_idata idata;
+ /*
+ * Buffer is double the block size because we need space for SW HMAC
+ * artifacts, i.e:
+ * - ipad (1 block) + a possible partial block of data.
+ * - opad (1 block) + digest of H(k ^ ipad || m)
+ */
+ u8 buffer[2 * SHA512_BLOCK_SIZE];
+ size_t buf_cnt;
+ struct dma_buf dma_buf;
+ struct scatterlist *sg;
+ unsigned int sg_data_total;
+ unsigned int sg_data_offset;
+ unsigned int sg_dma_nents;
+};
+
+/**
+ * struct ocs_hcu_drv - Driver data
+ * @dev_list: The list of HCU devices.
+ * @lock: The lock protecting dev_list.
+ */
+struct ocs_hcu_drv {
+ struct list_head dev_list;
+ spinlock_t lock; /* Protects dev_list. */
+};
+
+static struct ocs_hcu_drv ocs_hcu = {
+ .dev_list = LIST_HEAD_INIT(ocs_hcu.dev_list),
+ .lock = __SPIN_LOCK_UNLOCKED(ocs_hcu.lock),
+};
+
+/*
+ * Return the total amount of data in the request; that is: the data in the
+ * request buffer + the data in the sg list.
+ */
+static inline unsigned int kmb_get_total_data(struct ocs_hcu_rctx *rctx)
+{
+ return rctx->sg_data_total + rctx->buf_cnt;
+}
+
+/* Move remaining content of scatter-gather list to context buffer. */
+static int flush_sg_to_ocs_buffer(struct ocs_hcu_rctx *rctx)
+{
+ size_t count;
+
+ if (rctx->sg_data_total > (sizeof(rctx->buffer) - rctx->buf_cnt)) {
+ WARN(1, "sg data does not fit in buffer\n");
+ return -EINVAL;
+ }
+
+ while (rctx->sg_data_total) {
+ if (!rctx->sg) {
+ WARN(1, "sg == NULL, but sg_data_total != 0\n");
+ return -EINVAL;
+ }
+ /*
+ * If current sg has been fully processed, skip to the next
+ * one.
+ */
+ if (rctx->sg_data_offset == rctx->sg->length) {
+ rctx->sg = sg_next(rctx->sg);
+ rctx->sg_data_offset = 0;
+ continue;
+ }
+ /*
+ * Determine the maximum data available to copy from the node.
+ * Minimum of the length left in the sg node, or the total data
+ * in the request.
+ */
+ count = min(rctx->sg->length - rctx->sg_data_offset,
+ rctx->sg_data_total);
+ /* Copy from scatter-list entry to context buffer. */
+ scatterwalk_map_and_copy(&rctx->buffer[rctx->buf_cnt],
+ rctx->sg, rctx->sg_data_offset,
+ count, 0);
+
+ rctx->sg_data_offset += count;
+ rctx->sg_data_total -= count;
+ rctx->buf_cnt += count;
+ }
+
+ return 0;
+}
+
+static struct ocs_hcu_dev *kmb_ocs_hcu_find_dev(struct ahash_request *req)
+{
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm);
+
+ /* If the HCU device for the request was previously set, return it. */
+ if (tctx->hcu_dev)
+ return tctx->hcu_dev;
+
+ /*
+ * Otherwise, get the first HCU device available (there should be one
+ * and only one device).
+ */
+ spin_lock_bh(&ocs_hcu.lock);
+ tctx->hcu_dev = list_first_entry_or_null(&ocs_hcu.dev_list,
+ struct ocs_hcu_dev,
+ list);
+ spin_unlock_bh(&ocs_hcu.lock);
+
+ WARN(!tctx->hcu_dev, "No HCU device available\n");
+
+ return tctx->hcu_dev;
+}
+
+/* Free OCS DMA linked list and DMA-able context buffer. */
+static void kmb_ocs_free_dma_list(struct ocs_hcu_rctx *rctx)
+{
+ struct ocs_hcu_dev *hcu_dev = rctx->hcu_dev;
+ struct device *dev = hcu_dev->dev;
+
+ /* Free DMA-able context buffer, if it was allocated. */
+ if (rctx->dma_buf.vaddr) {
+ memzero_explicit(rctx->dma_buf.vaddr, rctx->dma_buf.size);
+ dma_free_coherent(dev, rctx->dma_buf.size, rctx->dma_buf.vaddr,
+ rctx->dma_buf.dma_addr);
+ memset(&rctx->dma_buf, 0, sizeof(rctx->dma_buf));
+ }
+
+ if (!rctx->dma_list.head)
+ return;
+
+ if (rctx->sg_dma_nents > 0)
+ dma_unmap_sg(dev, hcu_dev->req->src, rctx->sg_dma_nents,
+ DMA_TO_DEVICE);
+
+ dma_free_coherent(dev,
+ sizeof(*rctx->dma_list.head) * rctx->dma_list.nents,
+ rctx->dma_list.head, rctx->dma_list.dma_addr);
+
+ memset(&rctx->dma_list, 0, sizeof(rctx->dma_list));
+}
+
+/* Add a new DMA entry at the end of the OCS DMA list. */
+static int kmb_ocs_add_dma_tail(struct ocs_hcu_rctx *rctx,
+ dma_addr_t addr, size_t len)
+{
+ struct ocs_hcu_dev *hcu_dev = rctx->hcu_dev;
+ struct device *dev = hcu_dev->dev;
+ struct ocs_dma_list *dma_list = &rctx->dma_list;
+ struct ocs_dma_desc *old_tail = dma_list->tail;
+ struct ocs_dma_desc *new_tail = old_tail ?
+ old_tail + 1 : dma_list->head;
+
+ if (!len)
+ return 0;
+
+ if (addr & ~OCS_HCU_DMA_BIT_MASK) {
+ dev_err(dev,
+ "Unexpected error: Invalid DMA address for OCS HCU\n");
+ return -EINVAL;
+ }
+
+ if (new_tail - dma_list->head >= dma_list->nents) {
+ dev_err(dev, "Unexpected error: OCS DMA list is full\n");
+ return -ENOMEM;
+ }
+
+ /*
+ * If there was an old tail (i.e., this is not the first element we are
+ * adding), un-terminate the old tail and make it point to the new one.
+ */
+ if (old_tail) {
+ old_tail->ll_flags &= ~OCS_LL_DMA_FLAG_TERMINATE;
+ /*
+ * The old tail 'nxt_desc' must point to the DMA address of the
+ * new tail.
+ */
+ old_tail->nxt_desc = dma_list->dma_addr +
+ sizeof(*dma_list->tail) * (new_tail -
+ dma_list->head);
+ }
+
+ new_tail->src_adr = (u32)addr;
+ new_tail->src_len = (u32)len;
+ new_tail->ll_flags = OCS_LL_DMA_FLAG_TERMINATE;
+ new_tail->nxt_desc = 0;
+
+ /* Update list tail with new tail. */
+ dma_list->tail = new_tail;
+
+ return 0;
+}
+
+/*
+ * Initialize OCS DMA list:
+ * - Allocate DMA linked list (number of elements: SG entries to process +
+ * context buffer, if not empty).
+ * - Allocate DMA-able context buffer (if needed) and add it to the DMA list.
+ * - Add SG entries to the DMA list.
+ *
+ * Note: if this is a final request, we process all the data in the SG list,
+ * otherwise we can only process up to the maximum amount of block-aligned data
+ * (the remainder will be put into the context buffer and processed in the next
+ * request).
+ */
+static int kmb_ocs_init_dma_list(struct ocs_hcu_dev *hcu_dev)
+{
+ struct ahash_request *req = hcu_dev->req;
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
+ struct device *dev = hcu_dev->dev;
+ struct scatterlist *sg = req->src;
+ unsigned int remainder = 0;
+ unsigned int total;
+ size_t nents;
+ size_t count;
+ int rc;
+ int i;
+
+ total = kmb_get_total_data(rctx);
+ if (!total)
+ return 0;
+
+ /*
+ * If this is not a final DMA (terminated DMA), the data passed to the
+ * HCU must be aligned to the block size; compute the remainder data to
+ * be processed in the next request.
+ */
+ if (!(rctx->flags & REQ_FINAL))
+ remainder = total % rctx->blk_sz;
+
+ /* Determine the number of scatter gather list nodes to process. */
+ nents = sg_nents_for_len(sg, rctx->sg_data_total - remainder);
+ rctx->sg_dma_nents = nents;
+
+ /* Add extra DMA entry for data in context buffer, if any. */
+ if (rctx->buf_cnt)
+ nents++;
+
+ /* Total size of the DMA list to allocate. */
+ rctx->dma_list.head =
+ dma_alloc_coherent(dev, sizeof(*rctx->dma_list.head) * nents,
+ &rctx->dma_list.dma_addr, GFP_KERNEL);
+ if (!rctx->dma_list.head) {
+ dev_err(dev, "Failed to allocated DMA list\n");
+ return -ENOMEM;
+ }
+ rctx->dma_list.nents = nents;
+ rctx->dma_list.tail = NULL;
+
+ rc = dma_map_sg(hcu_dev->dev, req->src, rctx->sg_dma_nents,
+ DMA_TO_DEVICE);
+ if (rc != rctx->sg_dma_nents) {
+ dev_err(dev, "Failed to MAP SG\n");
+ rc = -ENOMEM;
+ goto cleanup;
+ }
+
+ /*
+ * If context buffer is not empty, create DMA-able buffer for it, copy
+ * context to new buffer and add it to the DMA list.
+ */
+ if (rctx->buf_cnt) {
+ rctx->dma_buf.size = rctx->buf_cnt;
+ rctx->dma_buf.vaddr =
+ dma_alloc_coherent(dev, rctx->dma_buf.size,
+ &rctx->dma_buf.dma_addr,
+ GFP_KERNEL);
+ if (!rctx->dma_buf.vaddr) {
+ dev_err(dev, "Failed to allocate DMA Buf\n");
+ goto cleanup;
+ }
+ memcpy(rctx->dma_buf.vaddr, rctx->buffer, rctx->buf_cnt);
+ rc = kmb_ocs_add_dma_tail(rctx, rctx->dma_buf.dma_addr,
+ rctx->dma_buf.size);
+ if (rc)
+ goto cleanup;
+ rctx->buf_cnt = 0;
+ }
+
+ /* Add the SG nodes to be processed to the DMA linked list. */
+ for_each_sg(req->src, rctx->sg, rctx->sg_dma_nents, i) {
+ count = min(rctx->sg_data_total - remainder,
+ rctx->sg->length - rctx->sg_data_offset);
+ /*
+ * Do not create a zero length DMA descriptor. Check in case of
+ * zero length SG node.
+ */
+ if (count == 0)
+ continue;
+ /* Add sg to HCU DMA list. */
+ rc = kmb_ocs_add_dma_tail(rctx, rctx->sg->dma_address,
+ count);
+ if (rc)
+ goto cleanup;
+
+ /* Update amount of data remaining in SG list. */
+ rctx->sg_data_total -= count;
+
+ /*
+ * If remaining data is equal to remainder (note: 'less than'
+ * case will never happen in practice), we are done: update
+ * offset and exit the loop.
+ */
+ if (rctx->sg_data_total <= remainder) {
+ rctx->sg_data_offset += count;
+ break;
+ }
+
+ /*
+ * If we get here is because we need to process the next sg in
+ * the list; set offset within the sg to 0.
+ */
+ rctx->sg_data_offset = 0;
+ }
+
+ return 0;
+cleanup:
+ dev_err(dev, "Failed to map DMA buffer.\n");
+ kmb_ocs_free_dma_list(rctx);
+
+ return rc;
+}
+
+static void kmb_ocs_hcu_secure_cleanup(struct ocs_hcu_dev *hcu_dev)
+{
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(hcu_dev->req);
+
+ /* Clear buffer of any data. */
+ memzero_explicit(rctx->buffer, sizeof(rctx->buffer));
+ /*
+ * Clear the key in HW.
+ *
+ * NOTE: the key in the tfm context (ctx->key) is cleared in
+ * kmb_ocs_hcu_hmac_cra_exit(), i.e., when tfm is de-initialized.
+ */
+ ocs_hcu_clear_key(hcu_dev);
+}
+
+static void kmb_ocs_hcu_finish_request(struct ocs_hcu_dev *hcu_dev, int error)
+{
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(hcu_dev->req);
+
+ if (error)
+ goto exit;
+
+ /* Get the intermediate data (including digest). */
+ error = ocs_hcu_get_intermediate_data(hcu_dev, &rctx->idata,
+ rctx->algo);
+ if (error)
+ goto exit;
+ /*
+ * If this is not the final request
+ * - Set the intermediate data flag so that intermediate data will be
+ * written back to HW during the next request processing.
+ * - Move remaining data in the SG list to the request buffer, so that
+ * it will be processed during the next request.
+ */
+ if (!(rctx->flags & REQ_FINAL)) {
+ rctx->flags |= REQ_FLAGS_INTERMEDIATE_DATA;
+ error = flush_sg_to_ocs_buffer(rctx);
+ goto exit;
+ }
+
+ /*
+ * If we get here, this was the final request and the digest in the
+ * intermediate date is actually the final digest: copy it to the
+ * request result field.
+ */
+ memcpy(hcu_dev->req->result, rctx->idata.digest, rctx->dig_sz);
+
+exit:
+ if (error || rctx->flags & REQ_FINAL)
+ kmb_ocs_hcu_secure_cleanup(hcu_dev);
+ ocs_hcu_hw_disable(hcu_dev);
+ kmb_ocs_free_dma_list(rctx);
+ crypto_finalize_hash_request(hcu_dev->engine, hcu_dev->req, error);
+}
+
+static int kmb_ocs_hcu_set_hw(struct ocs_hcu_dev *hcu_dev, int algo)
+{
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(hcu_dev->req);
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(hcu_dev->req);
+ struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
+ struct device *dev = hcu_dev->dev;
+ int rc;
+
+ rc = ocs_hcu_wait_busy(hcu_dev);
+ if (rc) {
+ dev_err(hcu_dev->dev, "%s HW Busy, cannot continue.\n",
+ __func__);
+ return -EIO;
+ }
+
+ /* Configure the hardware for the current request. */
+ rc = ocs_hcu_hw_cfg(hcu_dev, algo);
+ if (rc)
+ return rc;
+
+ if (rctx->flags & REQ_FLAGS_INTERMEDIATE_DATA) {
+ ocs_hcu_set_intermediate_data(hcu_dev, &rctx->idata, algo);
+ rctx->flags &= ~REQ_FLAGS_INTERMEDIATE_DATA;
+ }
+
+ /*
+ * Set key if all the following conditions are met:
+ * 1. We are using HW HMAC
+ * 2. Key has not been set already
+ */
+ if (rctx->flags & REQ_FLAGS_HMAC_HW &&
+ !(rctx->flags & REQ_FLAGS_HMAC_HW_KEY_SET)) {
+ if (ctx->key_len > HCU_HW_KEY_LEN) {
+ dev_err(dev,
+ "Unexpected error: key len > HCU_HW_KEY_LEN\n");
+ return -EINVAL;
+ }
+ /*
+ * Hardware requires all the bytes of the HW Key vector to be
+ * written. So pad with zero until we reach HCU_HW_KEY_LEN.
+ */
+ memzero_explicit(&ctx->key[ctx->key_len],
+ HCU_HW_KEY_LEN - ctx->key_len);
+ rc = ocs_hcu_write_key(hcu_dev, ctx->key, HCU_HW_KEY_LEN);
+ if (rc)
+ return rc;
+ rctx->flags |= REQ_FLAGS_HMAC_HW_KEY_SET;
+ }
+
+ return 0;
+}
+
+static int kmb_ocs_hcu_hash_pio(struct ocs_hcu_dev *hcu_dev,
+ u8 *buf, u32 sz, u32 algo, bool term)
+{
+ int rc = 0;
+
+ /* Configure the hardware for the current request. */
+ rc = kmb_ocs_hcu_set_hw(hcu_dev, algo);
+
+ if (rc)
+ return rc;
+
+ if (sz != ocs_hcu_hash_cpu(hcu_dev, buf, sz, algo, term))
+ return -EIO;
+
+ return 0;
+}
+
+static int kmb_ocs_hcu_tx_dma(struct ocs_hcu_dev *hcu_dev)
+{
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(hcu_dev->req);
+ bool term = !!(rctx->flags & REQ_FINAL);
+ int rc;
+
+ if (!rctx->dma_list.head)
+ return 0;
+
+ /* Configure the hardware for the current request. */
+ rc = kmb_ocs_hcu_set_hw(hcu_dev, rctx->algo);
+
+ if (rc)
+ return rc;
+
+ /* Start the DMA engine with the descriptor address stored. */
+ rc = ocs_hcu_ll_dma_start(hcu_dev, rctx->dma_list.dma_addr, term);
+ if (rc)
+ return rc;
+
+ return 0;
+}
+
+static int kmb_ocs_hcu_handle_queue(struct ahash_request *req)
+{
+ struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
+
+ if (!hcu_dev)
+ return -ENOENT;
+
+ return crypto_transfer_hash_request_to_engine(hcu_dev->engine,
+ req);
+}
+
+static int kmb_ocs_hcu_prepare_request(struct crypto_engine *engine, void *areq)
+{
+ struct ahash_request *req = container_of(areq, struct ahash_request,
+ base);
+ struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
+ int rc;
+
+ if (!hcu_dev)
+ return -ENOENT;
+
+ hcu_dev->req = req;
+
+ /*
+ * If the request has no data (i.e., it's a final request without data),
+ * we are done.
+ */
+ if (kmb_get_total_data(rctx) == 0)
+ return 0;
+ /* Otherwise, move the data into the HCU DMA linked list. */
+ rc = kmb_ocs_init_dma_list(hcu_dev);
+ if (rc)
+ return rc;
+ /* Set the flag to notify of pending data. */
+ rctx->flags |= REQ_FLAGS_DO_DATA;
+
+ return 0;
+}
+
+static int kmb_ocs_hcu_do_final(struct ocs_hcu_dev *hcu_dev)
+{
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(hcu_dev->req);
+ int rc;
+
+ rc = kmb_ocs_hcu_set_hw(hcu_dev, rctx->algo);
+ if (rc)
+ return rc;
+
+ ocs_hcu_tx_data_done(hcu_dev);
+
+ return 0;
+}
+
+static int prepare_ipad(struct ahash_request *req)
+{
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
+ int i;
+
+ WARN(rctx->buf_cnt != 0, "rctx->buf_cnt = %zu\n", rctx->buf_cnt);
+ WARN(!(rctx->flags & REQ_FLAGS_HMAC_SW), "Not HMAC SW");
+ /*
+ * Key length must be equal to block size. If key is shorter,
+ * we pad it with zero (note: key cannot be longer, since
+ * longer keys are hashed by kmb_ocs_hcu_setkey()).
+ */
+ WARN_ON(ctx->key_len > rctx->blk_sz);
+ memzero_explicit(&ctx->key[ctx->key_len],
+ rctx->blk_sz - ctx->key_len);
+ ctx->key_len = rctx->blk_sz;
+ /*
+ * Prepare IPAD for HMAC. Only done for first block.
+ * HMAC(k,m) = H(k ^ opad || H(k ^ ipad || m))
+ * k ^ ipad will be first hashed block.
+ * k ^ opad will be calculated in the final request.
+ * Only needed if not using HW HMAC.
+ */
+ for (i = 0; i < rctx->blk_sz; i++)
+ rctx->buffer[i] = ctx->key[i] ^ HMAC_IPAD_VALUE;
+ rctx->buf_cnt = rctx->blk_sz;
+
+ return 0;
+}
+
+static int kmb_ocs_hcu_do_one_request(struct crypto_engine *engine, void *areq)
+{
+ struct ahash_request *req = container_of(areq, struct ahash_request,
+ base);
+ struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
+
+ if (!hcu_dev)
+ return -ENOENT;
+
+ hcu_dev->req = req;
+
+ /* Initialize the hardware. */
+ ocs_hcu_hw_init(hcu_dev);
+
+ /*
+ * If there is data to process (i.e., this is an update request or a
+ * final request with data), process the data.
+ */
+ if (rctx->flags & REQ_FLAGS_DO_DATA) {
+ rctx->flags &= ~REQ_FLAGS_DO_DATA;
+ return kmb_ocs_hcu_tx_dma(hcu_dev);
+ }
+ /* Otherwise, if this is a final request, finalize the hash. */
+ if (rctx->flags & REQ_FINAL)
+ return kmb_ocs_hcu_do_final(hcu_dev);
+ /* If we end up here, something was wrong with the request. */
+ return -EINVAL;
+}
+
+static int kmb_ocs_hcu_init(struct ahash_request *req)
+{
+ struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
+
+ if (!hcu_dev)
+ return -ENOENT;
+
+ /* Initialize entire request context to zero. */
+ memset(rctx, 0, sizeof(*rctx));
+
+ rctx->hcu_dev = hcu_dev;
+ rctx->dig_sz = crypto_ahash_digestsize(tfm);
+
+ switch (rctx->dig_sz) {
+#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
+ case SHA224_DIGEST_SIZE:
+ rctx->blk_sz = SHA224_BLOCK_SIZE;
+ rctx->algo = OCS_HCU_ALGO_SHA224;
+ break;
+#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
+ case SHA256_DIGEST_SIZE:
+ rctx->blk_sz = SHA256_BLOCK_SIZE;
+ /*
+ * SHA256 and SM3 have the same digest size: use info from tfm
+ * context to find out which one we should use.
+ */
+ rctx->algo = ctx->is_sm3_tfm ? OCS_HCU_ALGO_SM3 :
+ OCS_HCU_ALGO_SHA256;
+ break;
+ case SHA384_DIGEST_SIZE:
+ rctx->blk_sz = SHA384_BLOCK_SIZE;
+ rctx->algo = OCS_HCU_ALGO_SHA384;
+ break;
+ case SHA512_DIGEST_SIZE:
+ rctx->blk_sz = SHA512_BLOCK_SIZE;
+ rctx->algo = OCS_HCU_ALGO_SHA512;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* Clear the intermediate data. */
+ memzero_explicit(&rctx->idata, sizeof(rctx->idata));
+ /* If this is not a HMAC request, we are done. */
+ if (!ctx->is_hmac_tfm)
+ return 0;
+
+ rctx->flags |= REQ_FLAGS_HMAC;
+
+ return 0;
+}
+
+static int kmb_ocs_hcu_update(struct ahash_request *req)
+{
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
+ int rc;
+
+ if (!req->nbytes)
+ return 0;
+
+ /* Check for overflow */
+ if (check_add_overflow(rctx->sg_data_total, req->nbytes,
+ &rctx->sg_data_total))
+ return -EINVAL;
+
+ rctx->sg_data_offset = 0;
+ rctx->sg = req->src;
+
+ /*
+ * If we are doing HMAC, then we must use SW-assisted HMAC, since HW
+ * HMAC does not support context switching (so can only be used with
+ * finup() or digest().
+ */
+ if (rctx->flags & REQ_FLAGS_HMAC &&
+ !(rctx->flags & REQ_FLAGS_HMAC_SW)) {
+ rctx->flags |= REQ_FLAGS_HMAC_SW;
+ rc = prepare_ipad(req);
+ if (rc)
+ return rc;
+ }
+
+ /*
+ * If remaining sg_data fits into ctx buffer, just copy it there; we'll
+ * process it at the next update() or final().
+ */
+ if (rctx->sg_data_total <= (sizeof(rctx->buffer) - rctx->buf_cnt))
+ return flush_sg_to_ocs_buffer(rctx);
+
+ return kmb_ocs_hcu_handle_queue(req);
+}
+
+static int kmb_ocs_hcu_final(struct ahash_request *req)
+{
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
+ int rc;
+
+ rctx->sg = req->src;
+ rctx->sg_data_offset = 0;
+ rctx->flags |= REQ_FINAL;
+
+ /*
+ * If this is a HMAC request and, so far, we didn't have to switch to
+ * SW HMAC, check if we can use HW HMAC.
+ */
+ if (rctx->flags & REQ_FLAGS_HMAC &&
+ !(rctx->flags & REQ_FLAGS_HMAC_SW)) {
+ /*
+ * If we are here, it means we never processed any data so far,
+ * so we can use HW HMAC, but only if there is some data to
+ * process (since OCS HW MAC does not support zero-length
+ * messages) and the key length is supported by the hardware
+ * (OCS HCU HW only supports length <= 64); if HW HMAC cannot
+ * be used, fall back to SW-assisted HMAC.
+ */
+ if (kmb_get_total_data(rctx) &&
+ ctx->key_len <= HCU_HW_KEY_LEN) {
+ rctx->algo |= OCS_HCU_ALGO_HMAC_MASK;
+ rctx->flags |= REQ_FLAGS_HMAC_HW;
+ } else {
+ rctx->flags |= REQ_FLAGS_HMAC_SW;
+ rc = prepare_ipad(req);
+ if (rc)
+ return rc;
+ }
+ }
+ /*
+ * If SW HMAC is being used, request OPAD computation (do in IRQ
+ * thread, after the full message has been hashed).
+ */
+ if (rctx->flags & REQ_FLAGS_HMAC_SW)
+ rctx->flags |= REQ_FLAGS_HMAC_SW_DO_OPAD;
+
+ return kmb_ocs_hcu_handle_queue(req);
+}
+
+static int kmb_ocs_hcu_finup(struct ahash_request *req)
+{
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
+
+ /* Check for overflow */
+ if (check_add_overflow(rctx->sg_data_total, req->nbytes,
+ &rctx->sg_data_total))
+ return -EINVAL;
+
+ return kmb_ocs_hcu_final(req);
+}
+
+static int kmb_ocs_hcu_digest(struct ahash_request *req)
+{
+ int rc = 0;
+ struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
+
+ if (!hcu_dev)
+ return -ENOENT;
+
+ rc = kmb_ocs_hcu_init(req);
+ if (rc)
+ return rc;
+
+ rc = kmb_ocs_hcu_finup(req);
+
+ return rc;
+}
+
+static int kmb_ocs_hcu_export(struct ahash_request *req, void *out)
+{
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
+
+ /* Intermediate data is always stored and applied per request. */
+ memcpy(out, rctx, sizeof(*rctx));
+
+ return 0;
+}
+
+static int kmb_ocs_hcu_import(struct ahash_request *req, const void *in)
+{
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(req);
+
+ /* Intermediate data is always stored and applied per request. */
+ memcpy(rctx, in, sizeof(*rctx));
+
+ return 0;
+}
+
+static int kmb_ocs_hcu_setkey(struct crypto_ahash *tfm, const u8 *key,
+ unsigned int keylen)
+{
+ struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
+ unsigned int digestsize = crypto_ahash_digestsize(tfm);
+ size_t blk_sz = crypto_ahash_blocksize(tfm);
+ struct crypto_ahash *ahash_tfm;
+ struct ahash_request *req;
+ struct crypto_wait wait;
+ struct scatterlist sg;
+ const char *alg_name;
+ u8 *buf;
+ int rc;
+
+ /*
+ * Key length must be equal to block size:
+ * - If key is shorter, we are done for now (the key will be padded
+ * later on); this is to maximize the use of HW HMAC (which works
+ * only for keys <= 64 bytes).
+ * - If key is longer, we hash it.
+ */
+ if (keylen <= blk_sz) {
+ memcpy(ctx->key, key, keylen);
+ ctx->key_len = keylen;
+ return 0;
+ }
+
+ switch (digestsize) {
+#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
+ case SHA224_DIGEST_SIZE:
+ alg_name = "sha224-keembay-ocs";
+ break;
+#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
+ case SHA256_DIGEST_SIZE:
+ alg_name = ctx->is_sm3_tfm ? "sm3-keembay-ocs" :
+ "sha256-keembay-ocs";
+ break;
+ case SHA384_DIGEST_SIZE:
+ alg_name = "sha384-keembay-ocs";
+ break;
+ case SHA512_DIGEST_SIZE:
+ alg_name = "sha512-keembay-ocs";
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
+ if (IS_ERR(ahash_tfm))
+ return PTR_ERR(ahash_tfm);
+
+ req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
+ if (!req) {
+ rc = -ENOMEM;
+ goto err_free_ahash;
+ }
+
+ crypto_init_wait(&wait);
+ ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
+ crypto_req_done, &wait);
+ crypto_ahash_clear_flags(ahash_tfm, ~0);
+
+ buf = kzalloc(keylen, GFP_KERNEL);
+ if (!buf) {
+ rc = -ENOMEM;
+ goto err_free_req;
+ }
+
+ memcpy(buf, key, keylen);
+ sg_init_one(&sg, buf, keylen);
+ ahash_request_set_crypt(req, &sg, ctx->key, keylen);
+
+ rc = crypto_wait_req(crypto_ahash_digest(req), &wait);
+ if (rc == 0)
+ ctx->key_len = digestsize;
+
+ kfree(buf);
+err_free_req:
+ ahash_request_free(req);
+err_free_ahash:
+ crypto_free_ahash(ahash_tfm);
+
+ return rc;
+}
+
+/* Set request size and initialize tfm context. */
+static void __cra_init(struct crypto_tfm *tfm, struct ocs_hcu_ctx *ctx)
+{
+ crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
+ sizeof(struct ocs_hcu_rctx));
+
+ /* Init context to 0. */
+ memzero_explicit(ctx, sizeof(*ctx));
+ /* Set engine ops. */
+ ctx->engine_ctx.op.do_one_request = kmb_ocs_hcu_do_one_request;
+ ctx->engine_ctx.op.prepare_request = kmb_ocs_hcu_prepare_request;
+}
+
+static int kmb_ocs_hcu_sha_cra_init(struct crypto_tfm *tfm)
+{
+ struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
+
+ __cra_init(tfm, ctx);
+
+ return 0;
+}
+
+static int kmb_ocs_hcu_sm3_cra_init(struct crypto_tfm *tfm)
+{
+ struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
+
+ __cra_init(tfm, ctx);
+
+ ctx->is_sm3_tfm = true;
+
+ return 0;
+}
+
+static int kmb_ocs_hcu_hmac_sm3_cra_init(struct crypto_tfm *tfm)
+{
+ struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
+
+ __cra_init(tfm, ctx);
+
+ ctx->is_sm3_tfm = true;
+ ctx->is_hmac_tfm = true;
+
+ return 0;
+}
+
+static int kmb_ocs_hcu_hmac_cra_init(struct crypto_tfm *tfm)
+{
+ struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
+
+ __cra_init(tfm, ctx);
+
+ ctx->is_hmac_tfm = true;
+
+ return 0;
+}
+
+/* Function called when 'tfm' is de-initialized. */
+static void kmb_ocs_hcu_hmac_cra_exit(struct crypto_tfm *tfm)
+{
+ struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
+
+ /* Clear the key. */
+ memzero_explicit(ctx->key, sizeof(ctx->key));
+}
+
+static struct ahash_alg ocs_hcu_algs[] = {
+#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
+{
+ .init = kmb_ocs_hcu_init,
+ .update = kmb_ocs_hcu_update,
+ .final = kmb_ocs_hcu_final,
+ .finup = kmb_ocs_hcu_finup,
+ .digest = kmb_ocs_hcu_digest,
+ .export = kmb_ocs_hcu_export,
+ .import = kmb_ocs_hcu_import,
+ .halg = {
+ .digestsize = SHA224_DIGEST_SIZE,
+ .statesize = sizeof(struct ocs_hcu_rctx),
+ .base = {
+ .cra_name = "sha224",
+ .cra_driver_name = "sha224-keembay-ocs",
+ .cra_priority = 255,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA224_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
+ .cra_alignmask = KMB_OCS_HCU_ALIGN_MASK,
+ .cra_module = THIS_MODULE,
+ .cra_init = kmb_ocs_hcu_sha_cra_init,
+ }
+ }
+},
+{
+ .init = kmb_ocs_hcu_init,
+ .update = kmb_ocs_hcu_update,
+ .final = kmb_ocs_hcu_final,
+ .finup = kmb_ocs_hcu_finup,
+ .digest = kmb_ocs_hcu_digest,
+ .export = kmb_ocs_hcu_export,
+ .import = kmb_ocs_hcu_import,
+ .setkey = kmb_ocs_hcu_setkey,
+ .halg = {
+ .digestsize = SHA224_DIGEST_SIZE,
+ .statesize = sizeof(struct ocs_hcu_rctx),
+ .base = {
+ .cra_name = "hmac(sha224)",
+ .cra_driver_name = "hmac-sha224-keembay-ocs",
+ .cra_priority = 255,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA224_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
+ .cra_alignmask = KMB_OCS_HCU_ALIGN_MASK,
+ .cra_module = THIS_MODULE,
+ .cra_init = kmb_ocs_hcu_hmac_cra_init,
+ .cra_exit = kmb_ocs_hcu_hmac_cra_exit,
+ }
+ }
+},
+#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
+{
+ .init = kmb_ocs_hcu_init,
+ .update = kmb_ocs_hcu_update,
+ .final = kmb_ocs_hcu_final,
+ .finup = kmb_ocs_hcu_finup,
+ .digest = kmb_ocs_hcu_digest,
+ .export = kmb_ocs_hcu_export,
+ .import = kmb_ocs_hcu_import,
+ .halg = {
+ .digestsize = SHA256_DIGEST_SIZE,
+ .statesize = sizeof(struct ocs_hcu_rctx),
+ .base = {
+ .cra_name = "sha256",
+ .cra_driver_name = "sha256-keembay-ocs",
+ .cra_priority = 255,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA256_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
+ .cra_alignmask = KMB_OCS_HCU_ALIGN_MASK,
+ .cra_module = THIS_MODULE,
+ .cra_init = kmb_ocs_hcu_sha_cra_init,
+ }
+ }
+},
+{
+ .init = kmb_ocs_hcu_init,
+ .update = kmb_ocs_hcu_update,
+ .final = kmb_ocs_hcu_final,
+ .finup = kmb_ocs_hcu_finup,
+ .digest = kmb_ocs_hcu_digest,
+ .export = kmb_ocs_hcu_export,
+ .import = kmb_ocs_hcu_import,
+ .setkey = kmb_ocs_hcu_setkey,
+ .halg = {
+ .digestsize = SHA256_DIGEST_SIZE,
+ .statesize = sizeof(struct ocs_hcu_rctx),
+ .base = {
+ .cra_name = "hmac(sha256)",
+ .cra_driver_name = "hmac-sha256-keembay-ocs",
+ .cra_priority = 255,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA256_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
+ .cra_alignmask = KMB_OCS_HCU_ALIGN_MASK,
+ .cra_module = THIS_MODULE,
+ .cra_init = kmb_ocs_hcu_hmac_cra_init,
+ .cra_exit = kmb_ocs_hcu_hmac_cra_exit,
+ }
+ }
+},
+{
+ .init = kmb_ocs_hcu_init,
+ .update = kmb_ocs_hcu_update,
+ .final = kmb_ocs_hcu_final,
+ .finup = kmb_ocs_hcu_finup,
+ .digest = kmb_ocs_hcu_digest,
+ .export = kmb_ocs_hcu_export,
+ .import = kmb_ocs_hcu_import,
+ .halg = {
+ .digestsize = SM3_DIGEST_SIZE,
+ .statesize = sizeof(struct ocs_hcu_rctx),
+ .base = {
+ .cra_name = "sm3",
+ .cra_driver_name = "sm3-keembay-ocs",
+ .cra_priority = 255,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SM3_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
+ .cra_alignmask = KMB_OCS_HCU_ALIGN_MASK,
+ .cra_module = THIS_MODULE,
+ .cra_init = kmb_ocs_hcu_sm3_cra_init,
+ }
+ }
+},
+{
+ .init = kmb_ocs_hcu_init,
+ .update = kmb_ocs_hcu_update,
+ .final = kmb_ocs_hcu_final,
+ .finup = kmb_ocs_hcu_finup,
+ .digest = kmb_ocs_hcu_digest,
+ .export = kmb_ocs_hcu_export,
+ .import = kmb_ocs_hcu_import,
+ .setkey = kmb_ocs_hcu_setkey,
+ .halg = {
+ .digestsize = SM3_DIGEST_SIZE,
+ .statesize = sizeof(struct ocs_hcu_rctx),
+ .base = {
+ .cra_name = "hmac(sm3)",
+ .cra_driver_name = "hmac-sm3-keembay-ocs",
+ .cra_priority = 255,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SM3_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
+ .cra_alignmask = KMB_OCS_HCU_ALIGN_MASK,
+ .cra_module = THIS_MODULE,
+ .cra_init = kmb_ocs_hcu_hmac_sm3_cra_init,
+ .cra_exit = kmb_ocs_hcu_hmac_cra_exit,
+ }
+ }
+},
+{
+ .init = kmb_ocs_hcu_init,
+ .update = kmb_ocs_hcu_update,
+ .final = kmb_ocs_hcu_final,
+ .finup = kmb_ocs_hcu_finup,
+ .digest = kmb_ocs_hcu_digest,
+ .export = kmb_ocs_hcu_export,
+ .import = kmb_ocs_hcu_import,
+ .halg = {
+ .digestsize = SHA384_DIGEST_SIZE,
+ .statesize = sizeof(struct ocs_hcu_rctx),
+ .base = {
+ .cra_name = "sha384",
+ .cra_driver_name = "sha384-keembay-ocs",
+ .cra_priority = 255,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA384_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
+ .cra_alignmask = KMB_OCS_HCU_ALIGN_MASK,
+ .cra_module = THIS_MODULE,
+ .cra_init = kmb_ocs_hcu_sha_cra_init,
+ }
+ }
+},
+{
+ .init = kmb_ocs_hcu_init,
+ .update = kmb_ocs_hcu_update,
+ .final = kmb_ocs_hcu_final,
+ .finup = kmb_ocs_hcu_finup,
+ .digest = kmb_ocs_hcu_digest,
+ .export = kmb_ocs_hcu_export,
+ .import = kmb_ocs_hcu_import,
+ .setkey = kmb_ocs_hcu_setkey,
+ .halg = {
+ .digestsize = SHA384_DIGEST_SIZE,
+ .statesize = sizeof(struct ocs_hcu_rctx),
+ .base = {
+ .cra_name = "hmac(sha384)",
+ .cra_driver_name = "hmac-sha384-keembay-ocs",
+ .cra_priority = 255,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA384_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
+ .cra_alignmask = KMB_OCS_HCU_ALIGN_MASK,
+ .cra_module = THIS_MODULE,
+ .cra_init = kmb_ocs_hcu_hmac_cra_init,
+ .cra_exit = kmb_ocs_hcu_hmac_cra_exit,
+ }
+ }
+},
+{
+ .init = kmb_ocs_hcu_init,
+ .update = kmb_ocs_hcu_update,
+ .final = kmb_ocs_hcu_final,
+ .finup = kmb_ocs_hcu_finup,
+ .digest = kmb_ocs_hcu_digest,
+ .export = kmb_ocs_hcu_export,
+ .import = kmb_ocs_hcu_import,
+ .halg = {
+ .digestsize = SHA512_DIGEST_SIZE,
+ .statesize = sizeof(struct ocs_hcu_rctx),
+ .base = {
+ .cra_name = "sha512",
+ .cra_driver_name = "sha512-keembay-ocs",
+ .cra_priority = 255,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA512_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
+ .cra_alignmask = KMB_OCS_HCU_ALIGN_MASK,
+ .cra_module = THIS_MODULE,
+ .cra_init = kmb_ocs_hcu_sha_cra_init,
+ }
+ }
+},
+{
+ .init = kmb_ocs_hcu_init,
+ .update = kmb_ocs_hcu_update,
+ .final = kmb_ocs_hcu_final,
+ .finup = kmb_ocs_hcu_finup,
+ .digest = kmb_ocs_hcu_digest,
+ .export = kmb_ocs_hcu_export,
+ .import = kmb_ocs_hcu_import,
+ .setkey = kmb_ocs_hcu_setkey,
+ .halg = {
+ .digestsize = SHA512_DIGEST_SIZE,
+ .statesize = sizeof(struct ocs_hcu_rctx),
+ .base = {
+ .cra_name = "hmac(sha512)",
+ .cra_driver_name = "hmac-sha512-keembay-ocs",
+ .cra_priority = 255,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA512_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct ocs_hcu_ctx),
+ .cra_alignmask = KMB_OCS_HCU_ALIGN_MASK,
+ .cra_module = THIS_MODULE,
+ .cra_init = kmb_ocs_hcu_hmac_cra_init,
+ .cra_exit = kmb_ocs_hcu_hmac_cra_exit,
+ }
+ }
+}
+
+};
+
+static irqreturn_t kmb_ocs_hcu_irq_thread(int irq, void *dev_id)
+{
+ struct ocs_hcu_dev *hcu_dev = (struct ocs_hcu_dev *)dev_id;
+ struct ocs_hcu_rctx *rctx = ahash_request_ctx(hcu_dev->req);
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(hcu_dev->req);
+ struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
+ int rc = 0;
+ int i;
+
+ if (hcu_dev->flags & HCU_FLAGS_HCU_ERROR_MASK) {
+ rc = -EIO;
+ goto finish;
+ }
+
+ /*
+ * If the DO_OPAD flag is set, it means that we are finalizing a SW
+ * HMAC request and we just computed the result of H(k ^ ipad || m).
+ *
+ * We now need to complete the HMAC calculation with the OPAD step,
+ * that is, we need to compute H(k ^ opad || digest), where digest is
+ * the digest we just obtained, i.e., H(k ^ ipad || m).
+ */
+ if (rctx->flags & REQ_FLAGS_HMAC_SW_DO_OPAD) {
+ /* Gets the intermediate data (which includes the digest). */
+ rc = ocs_hcu_get_intermediate_data(hcu_dev, &rctx->idata,
+ rctx->algo);
+ if (rc)
+ goto finish;
+ /*
+ * Compute k ^ opad and store it in the request buffer (which
+ * is not used anymore at this point).
+ * Note: key has been padded / hashed already (so keylen ==
+ * blksz) .
+ */
+ WARN_ON(ctx->key_len != rctx->blk_sz);
+ for (i = 0; i < rctx->blk_sz; i++)
+ rctx->buffer[i] = ctx->key[i] ^ HMAC_OPAD_VALUE;
+ /* Now append the digest to the rest of the buffer. */
+ for (i = 0; (i < rctx->dig_sz); i++)
+ rctx->buffer[rctx->blk_sz + i] = rctx->idata.digest[i];
+ /*
+ * Remove the DO_OPAD flag (so we won't end up here again after
+ * final hash is computed).
+ */
+ rctx->flags &= ~(REQ_FLAGS_HMAC_SW_DO_OPAD);
+ /* Now hash the buffer to obtain the final HMAC. */
+ rc = kmb_ocs_hcu_hash_pio(hcu_dev, rctx->buffer,
+ rctx->blk_sz + rctx->dig_sz,
+ rctx->algo, true);
+ if (rc)
+ goto finish;
+
+ return IRQ_HANDLED;
+ }
+
+finish:
+ kmb_ocs_hcu_finish_request(hcu_dev, rc);
+
+ return IRQ_HANDLED;
+}
+
+/* Device tree driver match. */
+static const struct of_device_id kmb_ocs_hcu_of_match[] = {
+ {
+ .compatible = "intel,keembay-ocs-hcu",
+ },
+ {}
+};
+
+static int kmb_ocs_hcu_remove(struct platform_device *pdev)
+{
+ struct ocs_hcu_dev *hcu_dev;
+ int rc;
+
+ hcu_dev = platform_get_drvdata(pdev);
+ if (!hcu_dev)
+ return -ENODEV;
+
+ crypto_unregister_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs));
+
+ spin_lock(&ocs_hcu.lock);
+ list_del(&hcu_dev->list);
+ spin_unlock(&ocs_hcu.lock);
+
+ rc = crypto_engine_exit(hcu_dev->engine);
+
+ ocs_hcu_hw_disable(hcu_dev);
+
+ return rc;
+}
+
+static int kmb_ocs_hcu_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct ocs_hcu_dev *hcu_dev;
+ struct resource *hcu_mem;
+ int rc;
+
+ hcu_dev = devm_kzalloc(dev, sizeof(*hcu_dev), GFP_KERNEL);
+ if (!hcu_dev)
+ return -ENOMEM;
+
+ hcu_dev->dev = dev;
+
+ platform_set_drvdata(pdev, hcu_dev);
+ rc = dma_set_mask_and_coherent(&pdev->dev, OCS_HCU_DMA_BIT_MASK);
+ if (rc)
+ return rc;
+
+ INIT_LIST_HEAD(&hcu_dev->list);
+
+ /* Get the memory address and remap. */
+ hcu_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!hcu_mem) {
+ dev_err(dev, "Could not retrieve io mem resource.\n");
+ rc = -ENODEV;
+ goto list_del;
+ }
+
+ hcu_dev->io_base = devm_ioremap_resource(dev, hcu_mem);
+ if (IS_ERR(hcu_dev->io_base)) {
+ dev_err(dev, "Could not io-remap mem resource.\n");
+ rc = PTR_ERR(hcu_dev->io_base);
+ goto list_del;
+ }
+
+ /* Get and request IRQ. */
+ hcu_dev->irq = platform_get_irq(pdev, 0);
+ if (hcu_dev->irq < 0) {
+ dev_err(dev, "Could not retrieve IRQ.\n");
+ rc = hcu_dev->irq;
+ goto list_del;
+ }
+
+ rc = devm_request_threaded_irq(&pdev->dev, hcu_dev->irq,
+ ocs_hcu_irq_handler,
+ kmb_ocs_hcu_irq_thread,
+ 0, "keembay-ocs-hcu", hcu_dev);
+ if (rc < 0) {
+ dev_err(dev, "Could not request IRQ.\n");
+ goto list_del;
+ }
+
+ spin_lock(&ocs_hcu.lock);
+ list_add_tail(&hcu_dev->list, &ocs_hcu.dev_list);
+ spin_unlock(&ocs_hcu.lock);
+
+ /* Initialize crypto engine */
+ hcu_dev->engine = crypto_engine_alloc_init(dev, 1);
+ if (!hcu_dev->engine)
+ goto list_del;
+
+ rc = crypto_engine_start(hcu_dev->engine);
+ if (rc) {
+ dev_err(dev, "Could not start engine.\n");
+ goto cleanup;
+ }
+
+ /* Security infrastructure guarantees OCS clock is enabled. */
+
+ rc = crypto_register_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs));
+ if (rc) {
+ dev_err(dev, "Could not register algorithms.\n");
+ goto cleanup;
+ }
+
+ return 0;
+cleanup:
+ crypto_engine_exit(hcu_dev->engine);
+list_del:
+ spin_lock(&ocs_hcu.lock);
+ list_del(&hcu_dev->list);
+ spin_unlock(&ocs_hcu.lock);
+
+ return rc;
+}
+
+/* The OCS driver is a platform device. */
+static struct platform_driver kmb_ocs_hcu_driver = {
+ .probe = kmb_ocs_hcu_probe,
+ .remove = kmb_ocs_hcu_remove,
+ .driver = {
+ .name = DRV_NAME,
+ .of_match_table = kmb_ocs_hcu_of_match,
+ },
+};
+
+module_platform_driver(kmb_ocs_hcu_driver);
+
+MODULE_LICENSE("GPL");
new file mode 100644
@@ -0,0 +1,593 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel Keem Bay OCS HCU Crypto Driver.
+ *
+ * Copyright (C) 2018-2020 Intel Corporation
+ */
+
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/iopoll.h>
+#include <linux/irq.h>
+#include <linux/module.h>
+
+#include <crypto/sha.h>
+
+#include "ocs-hcu.h"
+
+#define OCS_HCU_MODE 0x00
+#define OCS_HCU_CHAIN 0x04
+#define OCS_HCU_OPERATION 0x08
+#define OCS_HCU_KEY_0 0x0C
+#define OCS_HCU_KEY_1 0x10
+#define OCS_HCU_KEY_2 0x14
+#define OCS_HCU_KEY_3 0x18
+#define OCS_HCU_KEY_4 0x1C
+#define OCS_HCU_KEY_5 0x20
+#define OCS_HCU_KEY_6 0x24
+#define OCS_HCU_KEY_7 0x28
+#define OCS_HCU_KEY_8 0x2C
+#define OCS_HCU_KEY_9 0x30
+#define OCS_HCU_KEY_10 0x34
+#define OCS_HCU_KEY_11 0x38
+#define OCS_HCU_KEY_12 0x3C
+#define OCS_HCU_KEY_13 0x40
+#define OCS_HCU_KEY_14 0x44
+#define OCS_HCU_KEY_15 0x48
+#define OCS_HCU_ISR 0x50
+#define OCS_HCU_IER 0x54
+#define OCS_HCU_STATUS 0x58
+#define OCS_HCU_MSG_LEN_LO 0x60
+#define OCS_HCU_MSG_LEN_HI 0x64
+#define OCS_HCU_KEY_BYTE_ORDER_CFG 0x80
+#define OCS_HCU_DMA_SRC_ADDR 0x400
+#define OCS_HCU_DMA_DST_ADDR 0x404
+#define OCS_HCU_DMA_SRC_SIZE 0x408
+#define OCS_HCU_DMA_DST_SIZE 0x40C
+#define OCS_HCU_DMA_DMA_MODE 0x410
+#define OCS_HCU_DMA_OTHER_MODE 0x414
+#define OCS_HCU_DMA_NEXT_SRC_DESCR 0x418
+#define OCS_HCU_DMA_NEXT_DST_DESCR 0x41C
+#define OCS_HCU_DMA_WHILE_ACTIVE_MODE 0x420
+#define OCS_HCU_DMA_LOG 0x424
+#define OCS_HCU_DMA_STATUS 0x428
+#define OCS_HCU_DMA_PERF_CNTR 0x42C
+#define OCS_HCU_DMA_VALID_SAI_31_0 0x440
+#define OCS_HCU_DMA_VALID_SAI_63_32 0x444
+#define OCS_HCU_DMA_VALID_SAI_95_64 0x448
+#define OCS_HCU_DMA_VALID_SAI_127_96 0x44C
+#define OCS_HCU_DMA_VALID_SAI_159_128 0x450
+#define OCS_HCU_DMA_VALID_SAI_191_160 0x454
+#define OCS_HCU_DMA_VALID_SAI_223_192 0x458
+#define OCS_HCU_DMA_VALID_SAI_255_224 0x45C
+#define OCS_HCU_DMA_MSI_ISR 0x480
+#define OCS_HCU_DMA_MSI_IER 0x484
+#define OCS_HCU_DMA_MSI_MASK 0x488
+#define OCS_HCU_DMA_MSI_MA 0x800
+#define OCS_HCU_DMA_MSI_DA 0x804
+#define OCS_HCU_DMA_MSI_EN 0x808
+#define OCS_HCU_DMA_INBUFFER_WRITE_FIFO 0x600
+#define OCS_HCU_DMA_OUTBUFFER_READ_FIFO 0x700
+
+/* Register bit definitions. */
+#define HCU_MODE_ALGO_SHIFT 16
+#define HCU_MODE_ALGO_MASK (OCS_HCU_ALGO_MASK \
+ << HCU_MODE_ALGO_SHIFT)
+
+#define HCU_STATUS_BUSY_MASK BIT(0)
+
+#define HCU_BYTE_ORDER_SWAP BIT(0)
+
+#define HCU_IRQ_HASH_DONE BIT(2)
+#define HCU_IRQ_HASH_ERR (BIT(3) | BIT(1) | BIT(0))
+
+#define HCU_DMA_IRQ_SRC_DONE BIT(0)
+#define HCU_DMA_IRQ_DST_DONE BIT(1)
+#define HCU_DMA_IRQ_SAI_ERR BIT(2)
+#define HCU_DMA_IRQ_BAD_COMP_ERR BIT(3)
+#define HCU_DMA_IRQ_INBUF_RD_ERR BIT(4)
+#define HCU_DMA_IRQ_INBUF_WD_ERR BIT(5)
+#define HCU_DMA_IRQ_OUTBUF_WR_ERR BIT(6)
+#define HCU_DMA_IRQ_OUTBUF_RD_ERR BIT(7)
+#define HCU_DMA_IRQ_CRD_ERR BIT(8)
+#define HCU_DMA_IRQ_ERR_MASK (HCU_DMA_IRQ_SAI_ERR | \
+ HCU_DMA_IRQ_BAD_COMP_ERR | \
+ HCU_DMA_IRQ_INBUF_RD_ERR | \
+ HCU_DMA_IRQ_INBUF_WD_ERR | \
+ HCU_DMA_IRQ_OUTBUF_WR_ERR | \
+ HCU_DMA_IRQ_OUTBUF_RD_ERR | \
+ HCU_DMA_IRQ_CRD_ERR)
+
+#define HCU_DMA_SNOOP_MASK (0x7 << 28)
+#define HCU_DMA_SRC_LL_EN BIT(25)
+#define HCU_DMA_EN BIT(31)
+#define HCU_DMA_STAT_SRC_DONE BIT(15)
+
+#define HCU_MODE_HMAC_SHIFT 22
+#define HCU_MODE_HMAC_MASK BIT(HCU_MODE_HMAC_SHIFT)
+
+#define KMB_HCU_ENDIANNESS_VALUE (0x2A)
+
+#define HCU_DMA_MSI_UNMASK BIT(0)
+#define HCU_DMA_MSI_DISABLE 0
+#define HCU_IRQ_DISABLE 0
+
+#define OCS_HCU_START BIT(0)
+#define OCS_HCU_TERMINATE BIT(1)
+
+#define HCU_CHAIN_WRITE_ENDIANNESS_OFFSET 30
+#define HCU_CHAIN_READ_ENDIANNESS_OFFSET 28
+#define HCU_DATA_WRITE_ENDIANNESS_OFFSET 26
+
+#define OCS_HCU_NUM_CHAINS_SHA256_224_SM3 8
+#define OCS_HCU_NUM_CHAINS_SHA384_512 16
+
+#define OCS_HCU_HASH_FINAL_CPU_RETRIES 1000
+/*
+ * While polling on a busy HCU, wait maximum 200us between one check and the
+ * other.
+ */
+#define OCS_HCU_WAIT_BUSY_RETRY_DELAY_US 200
+/* Wait on a busy HCU for maximum 1 second. */
+#define OCS_HCU_WAIT_BUSY_TIMEOUT_US 1000000
+
+static inline u32 ocs_hcu_num_chains(u32 algo)
+{
+ switch (algo & OCS_HCU_ALGO_MASK) {
+ case OCS_HCU_ALGO_SHA224:
+ case OCS_HCU_ALGO_SHA256:
+ case OCS_HCU_ALGO_SM3:
+ return OCS_HCU_NUM_CHAINS_SHA256_224_SM3;
+ case OCS_HCU_ALGO_SHA384:
+ case OCS_HCU_ALGO_SHA512:
+ return OCS_HCU_NUM_CHAINS_SHA384_512;
+ default:
+ return 0;
+ };
+}
+
+static inline u32 ocs_hcu_block_size(u32 algo)
+{
+ switch (algo & OCS_HCU_ALGO_MASK) {
+ case OCS_HCU_ALGO_SHA224:
+ return SHA224_BLOCK_SIZE;
+ case OCS_HCU_ALGO_SHA256:
+ case OCS_HCU_ALGO_SM3:
+ /* SM3 shares the same block size. */
+ return SHA256_BLOCK_SIZE;
+ case OCS_HCU_ALGO_SHA384:
+ return SHA384_BLOCK_SIZE;
+ case OCS_HCU_ALGO_SHA512:
+ return SHA512_BLOCK_SIZE;
+ default:
+ return 0;
+ }
+}
+
+/**
+ * ocs_hcu_wait_busy() - Wait for HCU OCS hardware to became usable.
+ * @hcu_dev: OCS HCU device to wait for.
+ *
+ * Return: 0 if device free, -ETIMEOUT if device busy and internal timeout has
+ * expired.
+ */
+int ocs_hcu_wait_busy(struct ocs_hcu_dev *hcu_dev)
+{
+ long val;
+
+ return readl_poll_timeout(hcu_dev->io_base + OCS_HCU_STATUS, val,
+ !(val & HCU_STATUS_BUSY_MASK),
+ OCS_HCU_WAIT_BUSY_RETRY_DELAY_US,
+ OCS_HCU_WAIT_BUSY_TIMEOUT_US);
+}
+
+static void ocs_hcu_done_irq_en(struct ocs_hcu_dev *hcu_dev)
+{
+ /* Clear any pending interrupts. */
+ writel(0xFFFFFFFF, hcu_dev->io_base + OCS_HCU_ISR);
+ /* Enable error and HCU done interrupts. */
+ writel(HCU_IRQ_HASH_DONE | HCU_IRQ_HASH_ERR,
+ hcu_dev->io_base + OCS_HCU_IER);
+}
+
+static void ocs_hcu_dma_irq_en(struct ocs_hcu_dev *hcu_dev)
+{
+ /* Clear any pending interrupts. */
+ writel(0xFFFFFFFF, hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR);
+ /* Only operating on DMA source completion and error interrupts. */
+ writel(HCU_DMA_IRQ_ERR_MASK | HCU_DMA_IRQ_SRC_DONE,
+ hcu_dev->io_base + OCS_HCU_DMA_MSI_IER);
+ /* Unmask */
+ writel(HCU_DMA_MSI_UNMASK, hcu_dev->io_base + OCS_HCU_DMA_MSI_MASK);
+}
+
+static void ocs_hcu_irq_dis(struct ocs_hcu_dev *hcu_dev)
+{
+ writel(HCU_IRQ_DISABLE, hcu_dev->io_base + OCS_HCU_IER);
+ writel(HCU_DMA_MSI_DISABLE, hcu_dev->io_base + OCS_HCU_DMA_MSI_IER);
+}
+
+/**
+ * ocs_hcu_get_intermediate_data() - Get intermediate data.
+ * @hcu_dev: The target HCU device.
+ * @data: Where to store the intermediate.
+ * @algo: The algorithm being used.
+ *
+ * This function is used to save the current hashing process state in order to
+ * continue it in the future.
+ *
+ * Note: once all data has been processed, the intermediate data actually
+ * contains the hashing result. So this function is also used to retrieve the
+ * final result of a hashing process.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int ocs_hcu_get_intermediate_data(struct ocs_hcu_dev *hcu_dev,
+ struct ocs_hcu_idata *data, u32 algo)
+{
+ const int n = ocs_hcu_num_chains(algo);
+ u32 *chain;
+ int busy;
+ int i;
+
+ /* Data not requested. */
+ if (!data)
+ return -EINVAL;
+
+ chain = (u32 *)data->digest;
+
+ /* Ensure that the OCS is no longer busy before reading the chains. */
+ busy = ocs_hcu_wait_busy(hcu_dev);
+
+ if (busy)
+ return -EBUSY;
+
+ for (i = 0; i < n; i++)
+ chain[i] = readl(hcu_dev->io_base + OCS_HCU_CHAIN);
+
+ data->msg_len_lo = readl(hcu_dev->io_base + OCS_HCU_MSG_LEN_LO);
+ data->msg_len_hi = readl(hcu_dev->io_base + OCS_HCU_MSG_LEN_HI);
+
+ return 0;
+}
+
+/**
+ * ocs_hcu_set_intermediate_data() - Set intermediate data.
+ * @hcu_dev: The target HCU device.
+ * @data: The intermediate data to be set.
+ * @algo: The algorithm being used.
+ *
+ * This function is used to continue a previous hashing process.
+ */
+void ocs_hcu_set_intermediate_data(struct ocs_hcu_dev *hcu_dev,
+ struct ocs_hcu_idata *data, u32 algo)
+{
+ const int n = ocs_hcu_num_chains(algo);
+ u32 *chain = (u32 *)data->digest;
+ int i;
+
+ for (i = 0; i < n; i++)
+ writel(chain[i], hcu_dev->io_base + OCS_HCU_CHAIN);
+
+ writel(data->msg_len_lo, hcu_dev->io_base + OCS_HCU_MSG_LEN_LO);
+ writel(data->msg_len_hi, hcu_dev->io_base + OCS_HCU_MSG_LEN_HI);
+}
+
+/**
+ * ocs_hcu_hw_init() - Initialize the HCU device.
+ * @hcu_dev: The HCU device to initialize.
+ */
+void ocs_hcu_hw_init(struct ocs_hcu_dev *hcu_dev)
+{
+ u32 cfg = 0;
+
+ /* Return if HW is already initialized. */
+ if (hcu_dev->flags & HCU_FLAGS_HCU_INIT)
+ return;
+ /* Initialize hardware. */
+ cfg = KMB_HCU_ENDIANNESS_VALUE << HCU_DATA_WRITE_ENDIANNESS_OFFSET;
+ writel(cfg, hcu_dev->io_base + OCS_HCU_MODE);
+ hcu_dev->flags |= HCU_FLAGS_HCU_INIT;
+}
+
+/**
+ * ocs_hcu_hw_cfg() - Configure the HCU hardware.
+ * @hcu_dev: The HCU device to configure.
+ * @algo: The algorithm to be used by the HCU device.
+ *
+ * NOTE: This function must be called after ocs_hcu_hw_init().
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int ocs_hcu_hw_cfg(struct ocs_hcu_dev *hcu_dev, u32 algo)
+{
+ u32 cfg = readl(hcu_dev->io_base + OCS_HCU_MODE);
+ u32 ocs_algo = algo & OCS_HCU_ALGO_MASK;
+
+ if (ocs_algo != OCS_HCU_ALGO_SHA256 &&
+ ocs_algo != OCS_HCU_ALGO_SHA224 &&
+ ocs_algo != OCS_HCU_ALGO_SHA384 &&
+ ocs_algo != OCS_HCU_ALGO_SHA512 &&
+ ocs_algo != OCS_HCU_ALGO_SM3)
+ return -EINVAL;
+
+ if ((hcu_dev->flags & HCU_FLAGS_HCU_INIT) == 0)
+ return -EPERM;
+
+ cfg &= ~HCU_MODE_ALGO_MASK;
+ cfg |= ocs_algo << HCU_MODE_ALGO_SHIFT;
+ cfg &= ~HCU_MODE_HMAC_MASK;
+ if (algo & OCS_HCU_ALGO_HMAC_MASK)
+ cfg |= BIT(HCU_MODE_HMAC_SHIFT);
+
+ writel(cfg, hcu_dev->io_base + OCS_HCU_MODE);
+
+ return 0;
+}
+
+/**
+ * ocs_hcu_hw_disable() - Disable the HCU hardware.
+ * @hcu_dev: The HCU device to disable.
+ */
+void ocs_hcu_hw_disable(struct ocs_hcu_dev *hcu_dev)
+{
+ if ((hcu_dev->flags & HCU_FLAGS_HCU_INIT) == HCU_FLAGS_HCU_INIT) {
+ /* Clear hardware. */
+ writel(0, hcu_dev->io_base + OCS_HCU_MODE);
+ ocs_hcu_irq_dis(hcu_dev);
+ hcu_dev->flags &= ~HCU_FLAGS_HCU_INIT;
+ }
+}
+
+/**
+ * ocs_hcu_tx_data_done() - Request the hardware to compute the final hash.
+ * @hcu_dev: The HCU device to use.
+ */
+void ocs_hcu_tx_data_done(struct ocs_hcu_dev *hcu_dev)
+{
+ /*
+ * Enable HCU interrupts, so that HCU_DONE will be triggered once the
+ * final hash is computed.
+ */
+ ocs_hcu_done_irq_en(hcu_dev);
+ writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION);
+}
+
+static unsigned int ocs_hcu_hash_final_cpu(struct ocs_hcu_dev *hcu_dev,
+ u8 *buf, u32 sz)
+{
+ int retries = OCS_HCU_HASH_FINAL_CPU_RETRIES;
+ u32 sz_32 = sz / sizeof(u32);
+ u32 *buf_32 = (u32 *)buf;
+ int i;
+
+ /* Write in using full register size. */
+ for (i = 0; i < sz_32; i++)
+ writel(buf_32[i], hcu_dev->io_base +
+ OCS_HCU_DMA_INBUFFER_WRITE_FIFO);
+
+ /* Write final bytes into buffer. */
+ for (i = sz_32 * sizeof(u32); i < sz; i++)
+ writeb(buf[i], hcu_dev->io_base +
+ OCS_HCU_DMA_INBUFFER_WRITE_FIFO);
+
+ /* Wait until the writes are complete. */
+ do {
+ if ((readl(hcu_dev->io_base + OCS_HCU_DMA_STATUS) &
+ HCU_DMA_STAT_SRC_DONE))
+ break;
+
+ if ((readl(hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR) &
+ HCU_DMA_IRQ_ERR_MASK))
+ return 0;
+
+ usleep_range(100, 200);
+ } while (retries--);
+
+ return sz;
+}
+
+static unsigned int ocs_hcu_hash_block_aligned_cpu(struct ocs_hcu_dev *hcu_dev,
+ u8 *buf, u32 sz, u32 algo)
+{
+ u32 blk_sz = ocs_hcu_block_size(algo);
+ u32 *buf_32 = (u32 *)buf;
+ u32 blk_sz_32;
+ u32 num_blks;
+ int i;
+
+ if (blk_sz == 0)
+ return 0;
+
+ blk_sz_32 = blk_sz / sizeof(u32);
+ num_blks = sz / blk_sz;
+
+ for (i = 0; i < (blk_sz_32 * num_blks); i++)
+ writel(buf_32[i], hcu_dev->io_base +
+ OCS_HCU_DMA_INBUFFER_WRITE_FIFO);
+
+ if (readl(hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR) &
+ HCU_DMA_IRQ_ERR_MASK)
+ return 0;
+
+ return i * sizeof(u32);
+}
+
+static void ocs_hcu_start_hash(struct ocs_hcu_dev *hcu_dev)
+{
+ writel(OCS_HCU_START, hcu_dev->io_base + OCS_HCU_OPERATION);
+}
+
+/**
+ * ocs_hcu_hash_cpu() - Perform OCS HCU hashing without using DMA.
+ * @hcu_dev: The OCS HCU device to use.
+ * @buf: The data to hash.
+ * @sz: The size of the data to hash.
+ * @algo: The hashing algorithm to use.
+ * @finalize: Whether or not this is the last hashing operation and therefore
+ * the final hash should be compute even if data is not
+ * block-aligned.
+ *
+ * Return: the number of bytes hashed.
+ */
+unsigned int ocs_hcu_hash_cpu(struct ocs_hcu_dev *hcu_dev,
+ u8 *buf, u32 sz, u32 algo, bool finalize)
+{
+ unsigned int written;
+
+ if (!buf)
+ return 0;
+
+ written = ocs_hcu_hash_block_aligned_cpu(hcu_dev, buf, sz, algo);
+
+ if (finalize) {
+ sz -= written;
+ if (sz) {
+ buf += written;
+ written += ocs_hcu_hash_final_cpu(hcu_dev, buf, sz);
+ }
+ ocs_hcu_tx_data_done(hcu_dev);
+ }
+
+ return written;
+}
+
+/**
+ * ocs_hcu_ll_dma_start() - Start OCS HCU hashing via DMA
+ * @hcu_dev: The OCS HCU device to use.
+ * @head: The head of the OCS DMA list to hash.
+ * @finalize: Whether or not this is the last hashing operation and therefore
+ * the final hash should be compute even if data is not
+ * block-aligned.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int ocs_hcu_ll_dma_start(struct ocs_hcu_dev *hcu_dev, dma_addr_t head,
+ bool finalize)
+{
+ u32 cfg = HCU_DMA_SNOOP_MASK | HCU_DMA_SRC_LL_EN | HCU_DMA_EN;
+
+ if (head == DMA_MAPPING_ERROR || head & ~OCS_HCU_DMA_BIT_MASK)
+ return -EINVAL;
+
+ /*
+ * For final requests we use HCU_DONE IRQ to be notified when all input
+ * data has been processed by the HCU; however, we cannot do so for
+ * non-final requests, because we don't get a HCU_DONE IRQ when we
+ * don't terminate the operation.
+ *
+ * Therefore, for non-final requests, we use the DMA IRQ, which
+ * triggers when DMA has finishing feeding all the input data to the
+ * HCU, but the HCU may still be processing it. This is fine, since we
+ * will wait for the HCU processing to be completed when we try to read
+ * intermediate results, in ocs_hcu_get_intermediate_data().
+ */
+ if (finalize)
+ ocs_hcu_done_irq_en(hcu_dev);
+ else
+ ocs_hcu_dma_irq_en(hcu_dev);
+
+ writel(head, hcu_dev->io_base + OCS_HCU_DMA_NEXT_SRC_DESCR);
+ writel(0, hcu_dev->io_base + OCS_HCU_DMA_SRC_SIZE);
+ writel(0, hcu_dev->io_base + OCS_HCU_DMA_DST_SIZE);
+ ocs_hcu_start_hash(hcu_dev);
+ writel(cfg, hcu_dev->io_base + OCS_HCU_DMA_DMA_MODE);
+
+ if (finalize)
+ writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION);
+
+ return 0;
+}
+
+/**
+ * ocs_hcu_write_key() - Write key to OCS HMAC KEY registers.
+ * @hcu_dev: The OCS HCU device the key should be written to.
+ * @key: The key to be written.
+ * @len: The size of the key to write. It must be HCU_HW_KEY_LEN.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int ocs_hcu_write_key(struct ocs_hcu_dev *hcu_dev, u8 *key, size_t len)
+{
+ u32 *key_32 = (u32 *)key;
+ size_t len32;
+ int i = 0;
+
+ if (len != HCU_HW_KEY_LEN)
+ return -EINVAL;
+
+ /*
+ * OCS hardware expects the MSB of the key to be written at the highest
+ * address of the HCU Key vector; in other word, the key must be
+ * written in reverse order.
+ *
+ * Therefore, we first enable byte swapping for the HCU key vector;
+ * so that bytes of 32-bit word written to OCS_HCU_KEY_[0..15] will be
+ * swapped:
+ * 3 <---> 0, 2 <---> 1.
+ */
+ writel(HCU_BYTE_ORDER_SWAP,
+ hcu_dev->io_base + OCS_HCU_KEY_BYTE_ORDER_CFG);
+ /*
+ * And then we write the 32-bit words composing the key starting from
+ * the end of the key.
+ */
+ len32 = HCU_HW_KEY_LEN / sizeof(u32);
+ for (i = 0; i < len32; i++)
+ writel(key_32[len32 - 1 - i],
+ hcu_dev->io_base + OCS_HCU_KEY_0 + (sizeof(u32) * i));
+
+ return 0;
+}
+
+/**
+ * ocs_hcu_write_key() - Clear key stored in OCS HMAC KEY registers.
+ * @hcu_dev: The OCS HCU device whose key registers should be cleared.
+ */
+void ocs_hcu_clear_key(struct ocs_hcu_dev *hcu_dev)
+{
+ int reg_off;
+
+ /* Clear OCS_HCU_KEY_[0..15] */
+ for (reg_off = 0; reg_off < HCU_HW_KEY_LEN; reg_off += sizeof(u32))
+ writel(0, hcu_dev->io_base + OCS_HCU_KEY_0 + reg_off);
+}
+
+irqreturn_t ocs_hcu_irq_handler(int irq, void *dev_id)
+{
+ struct ocs_hcu_dev *hcu_dev = dev_id;
+ u32 hcu_irq = readl(hcu_dev->io_base + OCS_HCU_ISR);
+ u32 dma_irq = readl(hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR);
+ irqreturn_t rc = IRQ_NONE;
+
+ /* Check the HCU status. */
+ if (hcu_irq & HCU_IRQ_HASH_ERR) {
+ hcu_dev->flags |= HCU_FLAGS_HCU_ERR;
+ rc = IRQ_WAKE_THREAD;
+ } else if (hcu_irq & HCU_IRQ_HASH_DONE) {
+ rc = IRQ_WAKE_THREAD;
+ }
+ /* Clear the HCU interrupt. */
+ writel(hcu_irq, hcu_dev->io_base + OCS_HCU_ISR);
+
+ /* Check the DMA status. */
+ if (dma_irq & HCU_DMA_IRQ_ERR_MASK) {
+ hcu_dev->flags |= HCU_FLAGS_HCU_DMA_ERR;
+ rc = IRQ_WAKE_THREAD;
+ goto exit;
+ }
+ if (dma_irq & HCU_DMA_IRQ_SRC_DONE) {
+ /* DMA is complete, indicate that the HCU is done this
+ * transaction.
+ */
+ rc = IRQ_WAKE_THREAD;
+ }
+
+exit:
+ /* Clear the HCU DMA interrupt. */
+ writel(dma_irq, hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR);
+
+ return rc;
+}
+
+MODULE_LICENSE("GPL v2");
new file mode 100644
@@ -0,0 +1,115 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Intel Keem Bay OCS HCU Crypto Driver.
+ *
+ * Copyright (C) 2018-2020 Intel Corporation
+ */
+
+#include <linux/dma-mapping.h>
+
+#ifndef _CRYPTO_OCS_HCU_H
+#define _CRYPTO_OCS_HCU_H
+
+#define OCS_LL_DMA_FLAG_TERMINATE BIT(31)
+#define OCS_LL_DMA_FLAG_FREEZE BIT(30)
+#define OCS_LL_DMA_FLAG_RESERVED (BIT(30) - 1)
+
+#define OCS_HCU_ALGO_SHA256 2
+#define OCS_HCU_ALGO_SHA224 3
+#define OCS_HCU_ALGO_SHA384 4
+#define OCS_HCU_ALGO_SHA512 5
+#define OCS_HCU_ALGO_SM3 6
+
+#define OCS_HCU_ALGO_MASK (BIT(3) - 1)
+
+#define OCS_HCU_ALGO_HMAC_SHIFT 4
+#define OCS_HCU_ALGO_HMAC_MASK BIT(OCS_HCU_ALGO_HMAC_SHIFT)
+
+#define OCS_HCU_DMA_NO_SNOOP 1
+#define OCS_HCU_DMA_SNOOP 0
+#define OCS_HCU_DMA_BTF_SWAP 1
+#define OCS_HCU_DMA_BTF_NO_SWAP 0
+#define OCS_HCU_DMA_ADDR_MODE_FIXED 1
+#define OCS_HCU_DMA_ADDR_MODE_LINEAR 0
+#define OCS_HCU_DMA_BIT_MASK DMA_BIT_MASK(32)
+
+#define OCS_HCU_MAX_CHAIN_NUM 16
+
+/* Device flags */
+#define HCU_FLAGS_HCU_INIT BIT(0)
+#define HCU_FLAGS_HCU_ERR BIT(17)
+#define HCU_FLAGS_HCU_DMA_ERR BIT(18)
+#define HCU_FLAGS_HCU_ERROR_MASK (HCU_FLAGS_HCU_DMA_ERR | \
+ HCU_FLAGS_HCU_ERR)
+
+#define HCU_HW_KEY_LEN 64
+
+/**
+ * HCU device context.
+ * @list: List of device contexts.
+ * @dev: OCS HCU device.
+ * @irq: IRQ number.
+ * @io_base: IO Base of HCU.
+ * @flags: HW flags indicating state.
+ * @req: Request being operated on.
+ * @engine: Crypto engine for the device.
+ */
+struct ocs_hcu_dev {
+ struct list_head list;
+ struct device *dev;
+ int irq;
+ /* Base address of OCS HCU */
+ void __iomem *io_base;
+ /* Status of the OCS HCU device */
+ u32 flags;
+ /* Active request. */
+ struct ahash_request *req;
+ struct crypto_engine *engine;
+};
+
+/**
+ * struct ocs_dma_desc - OCS DMA linked list descriptor.
+ * @src_addr: Source address of the data.
+ * @src_len: Length of data to be fetched.
+ * @nxt_desc: Next descriptor to fetch.
+ * @ll_flags: Flags (Freeze @ terminate) for the DMA engine.
+ */
+struct ocs_dma_desc {
+ u32 src_adr;
+ u32 src_len;
+ u32 nxt_desc;
+ u32 ll_flags;
+};
+
+/**
+ * Structure to contain the intermediate data generated by the HCU.
+ * @msg_len_lo: Length of data the HCU has operated on in bits, low 32b.
+ * @msg_len_hi: Length of data the HCU has operated on in bits, high 32b.
+ * @digest: The digest read from the HCU. If the HCU is terminated, it will
+ * contain the actual hash digest. Otherwise it is the intermediate
+ * state.
+ */
+struct ocs_hcu_idata {
+ u32 msg_len_lo;
+ u32 msg_len_hi;
+ u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
+};
+
+irqreturn_t ocs_hcu_irq_handler(int irq, void *dev_id);
+int ocs_hcu_get_intermediate_data(struct ocs_hcu_dev *hcu_dev,
+ struct ocs_hcu_idata *data, u32 algo);
+void ocs_hcu_set_intermediate_data(struct ocs_hcu_dev *hcu_dev,
+ struct ocs_hcu_idata *data, u32 algo);
+void ocs_hcu_hw_init(struct ocs_hcu_dev *hcu_dev);
+void ocs_hcu_hw_disable(struct ocs_hcu_dev *hcu_dev);
+int ocs_hcu_hw_cfg(struct ocs_hcu_dev *hcu_dev, u32 algo);
+unsigned int ocs_hcu_hash_cpu(struct ocs_hcu_dev *hcu_dev,
+ u8 *buf, u32 sz, u32 algo, bool finalize);
+int ocs_hcu_ll_dma_start(struct ocs_hcu_dev *hcu_dev, dma_addr_t head,
+ bool finalize);
+void ocs_hcu_tx_data_done(struct ocs_hcu_dev *hcu_dev);
+int ocs_hcu_wait_busy(struct ocs_hcu_dev *hcu_dev);
+int ocs_hcu_write_key(struct ocs_hcu_dev *hcu_dev, u8 *key, size_t len);
+void ocs_hcu_clear_key(struct ocs_hcu_dev *hcu_dev);
+
+#endif /* _CRYPTO_OCS_HCU_H */