From patchwork Wed Jun 25 14:10:14 2014 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Lorenzo Pieralisi X-Patchwork-Id: 32489 Return-Path: X-Original-To: linaro@patches.linaro.org Delivered-To: linaro@patches.linaro.org Received: from mail-oa0-f72.google.com (mail-oa0-f72.google.com [209.85.219.72]) by ip-10-151-82-157.ec2.internal (Postfix) with ESMTPS id 8396720C88 for ; Wed, 25 Jun 2014 14:11:30 +0000 (UTC) Received: by mail-oa0-f72.google.com with SMTP id eb12sf10980568oac.3 for ; Wed, 25 Jun 2014 07:11:30 -0700 (PDT) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20130820; h=x-gm-message-state:mime-version:delivered-to:from:to:cc:subject :date:message-id:in-reply-to:references:sender:precedence:list-id :x-original-sender:x-original-authentication-results:mailing-list :list-post:list-help:list-archive:list-unsubscribe:content-type :content-transfer-encoding; bh=7Sx3r9bdn2/dPCTV6maeTVvqLwhcth9xE62VAhMsPg4=; b=VhKfV2RoMN7YkeOFa7/PWQK1AaaWLjbg/BoeGeZxRrVdsCt4o24CtnmURM5kP2dleU fwYdyUgEGMAzV0/Bt6JpjCFNNpFhxgOND2BHRb8QlI+CF4FxWjFbTheN6Gg0G2Ux6tXB 9CY4aFmYJ1P96IRpXvaaTY13eSsu7eXnCAbKFaS+gAu9xvekQrHPVwQI+HA9MhsYnUnA jGNBoxbL/LHKUF1LZWac3LXhIh62wgAfSPDfcXC9oigHeOtpxFTHi0ppU7tqPYQiWh7A isyA3ch5GwIxegskzST22sgZ6dh2ZmrJvONDFf6CGsDQU2kWGtGZlqGYefoF16HIdY6O wrCA== X-Gm-Message-State: ALoCoQkKdePu26Kx+szSvvKhapn0k8H4BJj3HRJzM+Vb1kw7+Oj8lBSaXjtQvBApKIxGP7CHEFz+ X-Received: by 10.182.125.4 with SMTP id mm4mr4596286obb.49.1403705490082; Wed, 25 Jun 2014 07:11:30 -0700 (PDT) MIME-Version: 1.0 X-BeenThere: patchwork-forward@linaro.org Received: by 10.140.40.209 with SMTP id x75ls2668590qgx.46.gmail; Wed, 25 Jun 2014 07:11:30 -0700 (PDT) X-Received: by 10.220.105.136 with SMTP id t8mr7144184vco.13.1403705489958; Wed, 25 Jun 2014 07:11:29 -0700 (PDT) Received: from mail-ve0-f169.google.com (mail-ve0-f169.google.com [209.85.128.169]) by mx.google.com with ESMTPS id ob8si2337882vcb.22.2014.06.25.07.11.29 for (version=TLSv1 cipher=ECDHE-RSA-RC4-SHA bits=128/128); Wed, 25 Jun 2014 07:11:29 -0700 (PDT) Received-SPF: pass (google.com: domain of patch+caf_=patchwork-forward=linaro.org@linaro.org designates 209.85.128.169 as permitted sender) client-ip=209.85.128.169; Received: by mail-ve0-f169.google.com with SMTP id pa12so2072054veb.0 for ; Wed, 25 Jun 2014 07:11:29 -0700 (PDT) X-Received: by 10.220.53.72 with SMTP id l8mr7238123vcg.16.1403705489867; Wed, 25 Jun 2014 07:11:29 -0700 (PDT) X-Forwarded-To: patchwork-forward@linaro.org X-Forwarded-For: patch@linaro.org patchwork-forward@linaro.org Delivered-To: patch@linaro.org Received: by 10.221.37.5 with SMTP id tc5csp292877vcb; Wed, 25 Jun 2014 07:11:28 -0700 (PDT) X-Received: by 10.69.31.107 with SMTP id kl11mr12130199pbd.70.1403705487209; Wed, 25 Jun 2014 07:11:27 -0700 (PDT) Received: from vger.kernel.org (vger.kernel.org. [209.132.180.67]) by mx.google.com with ESMTP id li1si5347491pab.183.2014.06.25.07.11.26; Wed, 25 Jun 2014 07:11:26 -0700 (PDT) Received-SPF: none (google.com: linux-pm-owner@vger.kernel.org does not designate permitted sender hosts) client-ip=209.132.180.67; Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1757065AbaFYOLY (ORCPT + 13 others); Wed, 25 Jun 2014 10:11:24 -0400 Received: from service87.mimecast.com ([91.220.42.44]:48287 "EHLO service87.mimecast.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1757253AbaFYOKa (ORCPT ); Wed, 25 Jun 2014 10:10:30 -0400 Received: from cam-owa1.Emea.Arm.com (fw-tnat.cambridge.arm.com [217.140.96.21]) by service87.mimecast.com; Wed, 25 Jun 2014 15:10:27 +0100 Received: from red-moon.cambridge.arm.com ([10.1.255.212]) by cam-owa1.Emea.Arm.com with Microsoft SMTPSVC(6.0.3790.3959); Wed, 25 Jun 2014 15:10:16 +0100 From: Lorenzo Pieralisi To: linux-arm-kernel@lists.infradead.org, linux-pm@vger.kernel.org, devicetree@vger.kernel.org Cc: Lorenzo Pieralisi , Mark Rutland , Sudeep Holla , Catalin Marinas , Charles Garcia Tobin , Nicolas Pitre , Rob Herring , Grant Likely , Peter De Schrijver , Santosh Shilimkar , Daniel Lezcano , Amit Kucheria , Vincent Guittot , Antti Miettinen , Stephen Boyd , Kevin Hilman , Sebastian Capella , Tomasz Figa , Mark Brown , Paul Walmsley , Chander Kashyap Subject: [PATCH v5 1/8] Documentation: arm: define DT idle states bindings Date: Wed, 25 Jun 2014 15:10:14 +0100 Message-Id: <1403705421-17597-2-git-send-email-lorenzo.pieralisi@arm.com> X-Mailer: git-send-email 1.9.1 In-Reply-To: <1403705421-17597-1-git-send-email-lorenzo.pieralisi@arm.com> References: <1403705421-17597-1-git-send-email-lorenzo.pieralisi@arm.com> X-OriginalArrivalTime: 25 Jun 2014 14:10:16.0249 (UTC) FILETIME=[304AD290:01CF907F] X-MC-Unique: 114062515102705801 Sender: linux-pm-owner@vger.kernel.org Precedence: list List-ID: X-Mailing-List: linux-pm@vger.kernel.org X-Removed-Original-Auth: Dkim didn't pass. X-Original-Sender: lorenzo.pieralisi@arm.com X-Original-Authentication-Results: mx.google.com; spf=pass (google.com: domain of patch+caf_=patchwork-forward=linaro.org@linaro.org designates 209.85.128.169 as permitted sender) smtp.mail=patch+caf_=patchwork-forward=linaro.org@linaro.org Mailing-list: list patchwork-forward@linaro.org; contact patchwork-forward+owners@linaro.org X-Google-Group-Id: 836684582541 List-Post: , List-Help: , List-Archive: List-Unsubscribe: , ARM based platforms implement a variety of power management schemes that allow processors to enter idle states at run-time. The parameters defining these idle states vary on a per-platform basis forcing the OS to hardcode the state parameters in platform specific static tables whose size grows as the number of platforms supported in the kernel increases and hampers device drivers standardization. Therefore, this patch aims at standardizing idle state device tree bindings for ARM platforms. Bindings define idle state parameters inclusive of entry methods and state latencies, to allow operating systems to retrieve the configuration entries from the device tree and initialize the related power management drivers, paving the way for common code in the kernel to deal with idle states and removing the need for static data in current and previous kernel versions. Reviewed-by: Sebastian Capella Signed-off-by: Lorenzo Pieralisi Reviewed-by: Nicolas Pitre --- Documentation/devicetree/bindings/arm/cpus.txt | 8 + .../devicetree/bindings/arm/idle-states.txt | 733 +++++++++++++++++++++ 2 files changed, 741 insertions(+) create mode 100644 Documentation/devicetree/bindings/arm/idle-states.txt diff --git a/Documentation/devicetree/bindings/arm/cpus.txt b/Documentation/devicetree/bindings/arm/cpus.txt index 1fe72a0..a44d4fd 100644 --- a/Documentation/devicetree/bindings/arm/cpus.txt +++ b/Documentation/devicetree/bindings/arm/cpus.txt @@ -215,6 +215,12 @@ nodes to be present and contain the properties described below. Value type: Definition: Specifies the ACC[2] node associated with this CPU. + - cpu-idle-states + Usage: Optional + Value type: + Definition: + # List of phandles to idle state nodes supported + by this cpu [3]. Example 1 (dual-cluster big.LITTLE system 32-bit): @@ -411,3 +417,5 @@ cpus { -- [1] arm/msm/qcom,saw2.txt [2] arm/msm/qcom,kpss-acc.txt +[3] ARM Linux kernel documentation - idle states bindings + Documentation/devicetree/bindings/arm/idle-states.txt diff --git a/Documentation/devicetree/bindings/arm/idle-states.txt b/Documentation/devicetree/bindings/arm/idle-states.txt new file mode 100644 index 0000000..5efd198 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/idle-states.txt @@ -0,0 +1,733 @@ +========================================== +ARM idle states binding description +========================================== + +========================================== +1 - Introduction +========================================== + +ARM systems contain HW capable of managing power consumption dynamically, +where cores can be put in different low-power states (ranging from simple +wfi to power gating) according to OS PM policies. The CPU states representing +the range of dynamic idle states that a processor can enter at run-time, can be +specified through device tree bindings representing the parameters required +to enter/exit specific idle states on a given processor. + +According to the Server Base System Architecture document (SBSA, [3]), the +power states an ARM CPU can be put into are identified by the following list: + +- Running +- Idle_standby +- Idle_retention +- Sleep +- Off + +The power states described in the SBSA document define the basic CPU states on +top of which ARM platforms implement power management schemes that allow an OS +PM implementation to put the processor in different idle states (which include +states listed above; "off" state is not an idle state since it does not have +wake-up capabilities, hence it is not considered in this document). + +Idle state parameters (eg entry latency) are platform specific and need to be +characterized with bindings that provide the required information to OS PM +code so that it can build the required tables and use them at runtime. + +The device tree binding definition for ARM idle states is the subject of this +document. + +=========================================== +2 - idle-states definitions +=========================================== + +Idle states are characterized for a specific system through a set of +timing and energy related properties, that underline the HW behaviour +triggered upon idle states entry and exit. + +The following diagram depicts the CPU execution phases and related timing +properties required to enter and exit an idle state: + +..__[EXEC]__|__[PREP]__|__[ENTRY]__|__[IDLE]__|__[EXIT]__|__[EXEC]__.. + | | | | | + + |<------ entry ------->| + | latency | + |<- exit ->| + | latency | + |<-------- min-residency -------->| + |<------- wakeup-latency ------->| + + Diagram 1: CPU idle state execution phases + +EXEC: Normal CPU execution. + +PREP: Preparation phase before committing the hardware to idle mode + like cache flushing. This is abortable on pending wake-up + event conditions. The abort latency is assumed to be negligible + (i.e. less than the ENTRY + EXIT duration). If aborted, CPU + goes back to EXEC. This phase is optional. If not abortable, + this should be included in the ENTRY phase instead. + +ENTRY: The hardware is committed to idle mode. This period must run + to completion up to IDLE before anything else can happen. + +IDLE: This is the actual energy-saving idle period. This may last + between 0 and infinite time, until a wake-up event occurs. + +EXIT: Period during which the CPU is brought back to operational + mode (EXEC). + +entry-latency: Worst case latency required to enter the idle state. The +exit-latency may be guaranteed only after entry-latency has passed. + +min-residency: Minimum period, including preparation and entry, for a given +idle state to be worthwhile energywise. + +wakeup-latency: Maximum delay between the signaling of a wake-up event and the +CPU being able to execute normal code again. If not specified, this is assumed +to be entry-latency + exit-latency. + +These timing parameters can be used by an OS in different circumstances. + +An idle CPU requires the expected min-residency time to select the most +appropriate idle state based on the expected expiry time of the next IRQ +(ie wake-up) that causes the CPU to return to the EXEC phase. + +An operating system scheduler may need to compute the shortest wake-up delay +for CPUs in the system by detecting how long will it take to get a CPU out +of an idle state, eg: + +wakeup-delay = exit-latency + max(entry-latency - (now - entry-timestamp), 0) + +In other words, the scheduler can make its scheduling decision by selecting +(eg waking-up) the CPU with the shortest wake-up latency. +The wake-up latency must take into account the entry latency if that period +has not expired. The abortable nature of the PREP period can be ignored +if it cannot be relied upon (e.g. the PREP deadline may occur much sooner than +the worst case since it depends on the CPU operating conditions, ie caches +state). + +An OS has to reliably probe the wakeup-latency since some devices can enforce +latency constraints guarantees to work properly, so the OS has to detect the +worst case wake-up latency it can incur if a CPU is allowed to enter an +idle state, and possibly to prevent that to guarantee reliable device +functioning. + +The min-residency time parameter deserves further explanation since it is +expressed in time units but must factor in energy consumption coefficients. + +The energy consumption of a cpu when it enters a power state can be roughly +characterised by the following graph: + + | + | + | + e | + n | /--- + e | /------ + r | /------ + g | /----- + y | /------ + | ---- + | /| + | / | + | / | + | / | + | / | + | / | + |/ | + -----|-------+---------------------------------- + 0| 1 time(ms) + + Graph 1: Energy vs time example + +The graph is split in two parts delimited by time 1ms on the X-axis. +The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope +and denotes the energy costs incurred whilst entering and leaving the idle +state. +The graph curve in the area delimited by X-axis values = {x | x > 1ms } has +shallower slope and essentially represents the energy consumption of the idle +state. + +min-residency is defined for a given idle state as the minimum expected +residency time for a state (inclusive of preparation and entry) after +which choosing that state become the most energy efficient option. A good +way to visualise this, is by taking the same graph above and comparing some +states energy consumptions plots. + +For sake of simplicity, let's consider a system with two idle states IDLE1, +and IDLE2: + + | + | + | + | /-- IDLE1 + e | /--- + n | /---- + e | /--- + r | /-----/--------- IDLE2 + g | /-------/--------- + y | ------------ /---| + | / /---- | + | / /--- | + | / /---- | + | / /--- | + | --- | + | / | + | / | + |/ | time + ---/----------------------------+------------------------ + |IDLE1-energy < IDLE2-energy | IDLE2-energy < IDLE1-energy + | + IDLE2-min-residency + + Graph 2: idle states min-residency example + +In graph 2 above, that takes into account idle states entry/exit energy +costs, it is clear that if the idle state residency time (ie time till next +wake-up IRQ) is less than IDLE2-min-residency, IDLE1 is the better idle state +choice energywise. + +This is mainly down to the fact that IDLE1 entry/exit energy costs are lower +than IDLE2. + +However, the lower power consumption (ie shallower energy curve slope) of idle +state IDLE2 implies that after a suitable time, IDLE2 becomes more energy +efficient. + +The time at which IDLE2 becomes more energy efficient than IDLE1 (and other +shallower states in a system with multiple idle states) is defined +IDLE2-min-residency and corresponds to the time when energy consumption of +IDLE1 and IDLE2 states breaks even. + +The definitions provided in this section underpin the idle states +properties specification that is the subject of the following sections. + +=========================================== +3 - idle-states node +=========================================== + +ARM processor idle states are defined within the idle-states node, which is +a direct child of the cpus node [1] and provides a container where the +processor idle states, defined as device tree nodes, are listed. + +- idle-states node + + Usage: Optional - On ARM systems, it is a container of processor idle + states nodes. If the system does not provide CPU + power management capabilities or the processor just + supports idle_standby an idle-states node is not + required. + + Description: idle-states node is a container node, where its + subnodes describe the CPU idle states. + + Node name must be "idle-states". + + The idle-states node's parent node must be the cpus node. + + The idle-states node's child nodes can be: + + - one or more state nodes + + Any other configuration is considered invalid. + + An idle-states node defines the following properties: + + - entry-method + Usage: Required + Value type: + Definition: Describes the method by which a CPU enters the + idle states. This property is required and must be + one of: + + - "arm,psci" + ARM PSCI firmware interface [2]. + + - "[vendor],[method]" + An implementation dependent string with + format "vendor,method", where vendor is a string + denoting the name of the manufacturer and + method is a string specifying the mechanism + used to enter the idle state. + +The nodes describing the idle states (state) can only be defined within the +idle-states node, any other configuration is considered invalid and therefore +must be ignored. + +=========================================== +4 - state node +=========================================== + +A state node represents an idle state description and must be defined as +follows: + +- state node + + Description: must be child of the idle-states node + + The state node name shall follow standard device tree naming + rules ([5], 2.2.1 "Node names"), in particular state nodes which + are siblings within a single common parent must be given a unique name. + + The idle state entered by executing the wfi instruction (idle_standby + SBSA,[3][4]) is considered standard on all ARM platforms and therefore + must not be listed. + + With the definitions provided above, the following list represents + the valid properties for a state node: + + - compatible + Usage: Required + Value type: + Definition: Must be "arm,idle-state". + + - logic-state-retained + Usage: See definition + Value type: + Definition: if present logic is retained on state entry, + otherwise it is lost. + + - cache-state-retained + Usage: See definition + Value type: + Definition: if present cache memory is retained on state entry, + otherwise it is lost. + + - timer-state-retained + Usage: See definition + Value type: + Definition: if present the timer control logic is retained on + state entry, otherwise it is lost. + + - power-rank + Usage: Required + Value type: + Definition: It represents the idle state power-rank. + An increasing value implies less power + consumption. It must be given a sequential + value = {0, 1, ....}, starting from 0. + Phandles in the cpu nodes [1] cpu-idle-states + array property are not allowed to point at idle + state nodes having the same power-rank value. + + - entry-method-param + Usage: See definition. + Value type: + Definition: Depends on the idle-states node entry-method + property value. Refer to the entry-method bindings + for this property value definition. + + - entry-latency-us + Usage: Required + Value type: + Definition: u32 value representing worst case latency in + microseconds required to enter the idle state. + The exit-latency-us duration may be guaranteed + only after entry-latency-us has passed. + + - exit-latency-us + Usage: Required + Value type: + Definition: u32 value representing worst case latency + in microseconds required to exit the idle state. + + - min-residency-us + Usage: Required + Value type: + Definition: u32 value representing minimum residency duration + in microseconds, inclusive of preparation and + entry, for this idle state to be considered + worthwhile energy wise (refer to section 2 of + this document for a complete description). + + - wakeup-latency-us: + Usage: Optional + Value type: + Definition: u32 value representing maximum delay between the + signaling of a wake-up event and the CPU being + able to execute normal code again. If omitted, + this is assumed to be equal to: + + entry-latency-us + exit-latency-us + + It is important to supply this value on systems + where the duration of PREP phase (see diagram 1, + section 2) is non-neglibigle. + In such systems entry-latency-us + exit-latency-us + will exceed wakeup-latency-us by this duration. + +=========================================== +4 - Examples +=========================================== + +Example 1 (ARM 64-bit, 16-cpu system): + +cpus { + #size-cells = <0>; + #address-cells = <2>; + + idle-states { + entry-method = "arm,psci"; + + CPU_RETENTION_0_0: cpu-retention-0-0 { + compatible = "arm,idle-state"; + power-rank = <0>; + logic-state-retained; + cache-state-retained; + entry-method-param = <0x0010000>; + entry-latency-us = <20>; + exit-latency-us = <40>; + min-residency-us = <80>; + }; + + CLUSTER_RETENTION_0: cluster-retention-0 { + compatible = "arm,idle-state"; + power-rank = <2>; + cache-state-retained; + entry-method-param = <0x1010000>; + entry-latency-us = <50>; + exit-latency-us = <100>; + min-residency-us = <250>; + wakeup-latency-us = <130>; + }; + + CPU_SLEEP_0_0: cpu-sleep-0-0 { + compatible = "arm,idle-state"; + power-rank = <1>; + entry-method-param = <0x0010000>; + entry-latency-us = <250>; + exit-latency-us = <500>; + min-residency-us = <950>; + }; + + CLUSTER_SLEEP_0: cluster-sleep-0 { + compatible = "arm,idle-state"; + power-rank = <3>; + entry-method-param = <0x1010000>; + entry-latency-us = <600>; + exit-latency-us = <1100>; + min-residency-us = <2700>; + wakeup-latency-us = <1500>; + }; + + CPU_RETENTION_1_0: cpu-retention-1-0 { + compatible = "arm,idle-state"; + power-rank = <0>; + logic-state-retained; + cache-state-retained; + entry-method-param = <0x0010000>; + entry-latency-us = <20>; + exit-latency-us = <40>; + min-residency-us = <90>; + }; + + CLUSTER_RETENTION_1: cluster-retention-1 { + compatible = "arm,idle-state"; + power-rank = <2>; + cache-state-retained; + entry-method-param = <0x1010000>; + entry-latency-us = <50>; + exit-latency-us = <100>; + min-residency-us = <270>; + wakeup-latency-us = <100>; + }; + + CPU_SLEEP_1_0: cpu-sleep-1-0 { + compatible = "arm,idle-state"; + power-rank = <1>; + entry-method-param = <0x0010000>; + entry-latency-us = <70>; + exit-latency-us = <100>; + min-residency-us = <300>; + wakeup-latency-us = <150>; + }; + + CLUSTER_SLEEP_1: cluster-sleep-1 { + compatible = "arm,idle-state"; + power-rank = <3>; + entry-method-param = <0x1010000>; + entry-latency-us = <500>; + exit-latency-us = <1200>; + min-residency-us = <3500>; + wakeup-latency-us = <1300>; + }; + }; + + CPU0: cpu@0 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x0>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 + &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; + }; + + CPU1: cpu@1 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x1>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 + &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; + }; + + CPU2: cpu@100 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x100>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 + &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; + }; + + CPU3: cpu@101 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x101>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 + &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; + }; + + CPU4: cpu@10000 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x10000>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 + &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; + }; + + CPU5: cpu@10001 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x10001>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 + &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; + }; + + CPU6: cpu@10100 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x10100>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 + &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; + }; + + CPU7: cpu@10101 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x10101>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 + &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; + }; + + CPU8: cpu@100000000 { + device_type = "cpu"; + compatible = "arm,cortex-a53"; + reg = <0x1 0x0>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 + &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; + }; + + CPU9: cpu@100000001 { + device_type = "cpu"; + compatible = "arm,cortex-a53"; + reg = <0x1 0x1>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 + &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; + }; + + CPU10: cpu@100000100 { + device_type = "cpu"; + compatible = "arm,cortex-a53"; + reg = <0x1 0x100>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 + &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; + }; + + CPU11: cpu@100000101 { + device_type = "cpu"; + compatible = "arm,cortex-a53"; + reg = <0x1 0x101>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 + &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; + }; + + CPU12: cpu@100010000 { + device_type = "cpu"; + compatible = "arm,cortex-a53"; + reg = <0x1 0x10000>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 + &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; + }; + + CPU13: cpu@100010001 { + device_type = "cpu"; + compatible = "arm,cortex-a53"; + reg = <0x1 0x10001>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 + &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; + }; + + CPU14: cpu@100010100 { + device_type = "cpu"; + compatible = "arm,cortex-a53"; + reg = <0x1 0x10100>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 + &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; + }; + + CPU15: cpu@100010101 { + device_type = "cpu"; + compatible = "arm,cortex-a53"; + reg = <0x1 0x10101>; + enable-method = "psci"; + cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 + &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; + }; +}; + +Example 2 (ARM 32-bit, 8-cpu system, two clusters): + +cpus { + #size-cells = <0>; + #address-cells = <1>; + + idle-states { + entry-method = "arm,psci"; + + CPU_SLEEP_0_0: cpu-sleep-0-0 { + compatible = "arm,idle-state"; + power-rank = <0>; + entry-method-param = <0x0010000>; + entry-latency-us = <200>; + exit-latency-us = <100>; + min-residency-us = <400>; + wakeup-latency-us = <250>; + }; + + CLUSTER_SLEEP_0: cluster-sleep-0 { + compatible = "arm,idle-state"; + power-rank = <2>; + entry-method-param = <0x1010000>; + entry-latency-us = <500>; + exit-latency-us = <1500>; + min-residency-us = <2500>; + wakeup-latency-us = <1700>; + }; + + CPU_SLEEP_1_0: cpu-sleep-1-0 { + compatible = "arm,idle-state"; + power-rank = <1>; + entry-method-param = <0x0010000>; + entry-latency-us = <300>; + exit-latency-us = <500>; + min-residency-us = <900>; + wakeup-latency-us = <600>; + }; + + CLUSTER_SLEEP_1: cluster-sleep-1 { + compatible = "arm,idle-state"; + power-rank = <3>; + entry-method-param = <0x1010000>; + entry-latency-us = <800>; + exit-latency-us = <2000>; + min-residency-us = <6500>; + wakeup-latency-us = <2300>; + }; + }; + + CPU0: cpu@0 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <0x0>; + enable-method = "psci"; + cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>; + }; + + CPU1: cpu@1 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <0x1>; + enable-method = "psci"; + cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>; + }; + + CPU2: cpu@2 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <0x2>; + enable-method = "psci"; + cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>; + }; + + CPU3: cpu@3 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <0x3>; + enable-method = "psci"; + cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>; + }; + + CPU4: cpu@100 { + device_type = "cpu"; + compatible = "arm,cortex-a7"; + reg = <0x100>; + enable-method = "psci"; + cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>; + }; + + CPU5: cpu@101 { + device_type = "cpu"; + compatible = "arm,cortex-a7"; + reg = <0x101>; + enable-method = "psci"; + cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>; + }; + + CPU6: cpu@102 { + device_type = "cpu"; + compatible = "arm,cortex-a7"; + reg = <0x102>; + enable-method = "psci"; + cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>; + }; + + CPU7: cpu@103 { + device_type = "cpu"; + compatible = "arm,cortex-a7"; + reg = <0x103>; + enable-method = "psci"; + cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>; + }; +}; + +=========================================== +5 - References +=========================================== + +[1] ARM Linux Kernel documentation - CPUs bindings + Documentation/devicetree/bindings/arm/cpus.txt + +[2] ARM Linux Kernel documentation - PSCI bindings + Documentation/devicetree/bindings/arm/psci.txt + +[3] ARM Server Base System Architecture (SBSA) + http://infocenter.arm.com/help/index.jsp + +[4] ARM Architecture Reference Manuals + http://infocenter.arm.com/help/index.jsp + +[5] ePAPR standard + https://www.power.org/documentation/epapr-version-1-1/