diff mbox

[v2,2/7] crypto: arm/chacha20 - implement NEON version based on SSE3 code

Message ID 1484152915-26517-3-git-send-email-ard.biesheuvel@linaro.org
State Accepted
Commit afaf712e99a7e52e2520335ddefee6a9d84a6db5
Headers show

Commit Message

Ard Biesheuvel Jan. 11, 2017, 4:41 p.m. UTC
This is a straight port to ARM/NEON of the x86 SSE3 implementation
of the ChaCha20 stream cipher. It uses the new skcipher walksize
attribute to process the input in strides of 4x the block size.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>

---
 arch/arm/crypto/Kconfig              |   6 +
 arch/arm/crypto/Makefile             |   2 +
 arch/arm/crypto/chacha20-neon-core.S | 524 ++++++++++++++++++++
 arch/arm/crypto/chacha20-neon-glue.c | 128 +++++
 4 files changed, 660 insertions(+)

-- 
2.7.4

--
To unsubscribe from this list: send the line "unsubscribe linux-crypto" in
the body of a message to majordomo@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
diff mbox

Patch

diff --git a/arch/arm/crypto/Kconfig b/arch/arm/crypto/Kconfig
index 13f1b4c289d4..2f3339f015d3 100644
--- a/arch/arm/crypto/Kconfig
+++ b/arch/arm/crypto/Kconfig
@@ -130,4 +130,10 @@  config CRYPTO_CRC32_ARM_CE
 	depends on KERNEL_MODE_NEON && CRC32
 	select CRYPTO_HASH
 
+config CRYPTO_CHACHA20_NEON
+	tristate "NEON accelerated ChaCha20 symmetric cipher"
+	depends on KERNEL_MODE_NEON
+	select CRYPTO_BLKCIPHER
+	select CRYPTO_CHACHA20
+
 endif
diff --git a/arch/arm/crypto/Makefile b/arch/arm/crypto/Makefile
index b578a1820ab1..8d74e55eacd4 100644
--- a/arch/arm/crypto/Makefile
+++ b/arch/arm/crypto/Makefile
@@ -8,6 +8,7 @@  obj-$(CONFIG_CRYPTO_SHA1_ARM) += sha1-arm.o
 obj-$(CONFIG_CRYPTO_SHA1_ARM_NEON) += sha1-arm-neon.o
 obj-$(CONFIG_CRYPTO_SHA256_ARM) += sha256-arm.o
 obj-$(CONFIG_CRYPTO_SHA512_ARM) += sha512-arm.o
+obj-$(CONFIG_CRYPTO_CHACHA20_NEON) += chacha20-neon.o
 
 ce-obj-$(CONFIG_CRYPTO_AES_ARM_CE) += aes-arm-ce.o
 ce-obj-$(CONFIG_CRYPTO_SHA1_ARM_CE) += sha1-arm-ce.o
@@ -40,6 +41,7 @@  aes-arm-ce-y	:= aes-ce-core.o aes-ce-glue.o
 ghash-arm-ce-y	:= ghash-ce-core.o ghash-ce-glue.o
 crct10dif-arm-ce-y	:= crct10dif-ce-core.o crct10dif-ce-glue.o
 crc32-arm-ce-y:= crc32-ce-core.o crc32-ce-glue.o
+chacha20-neon-y := chacha20-neon-core.o chacha20-neon-glue.o
 
 quiet_cmd_perl = PERL    $@
       cmd_perl = $(PERL) $(<) > $(@)
diff --git a/arch/arm/crypto/chacha20-neon-core.S b/arch/arm/crypto/chacha20-neon-core.S
new file mode 100644
index 000000000000..ff1d337bdb4a
--- /dev/null
+++ b/arch/arm/crypto/chacha20-neon-core.S
@@ -0,0 +1,524 @@ 
+/*
+ * ChaCha20 256-bit cipher algorithm, RFC7539, ARM NEON functions
+ *
+ * Copyright (C) 2016 Linaro, Ltd. <ard.biesheuvel@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Based on:
+ * ChaCha20 256-bit cipher algorithm, RFC7539, x64 SSE3 functions
+ *
+ * Copyright (C) 2015 Martin Willi
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+
+#include <linux/linkage.h>
+
+	.text
+	.fpu		neon
+	.align		5
+
+ENTRY(chacha20_block_xor_neon)
+	// r0: Input state matrix, s
+	// r1: 1 data block output, o
+	// r2: 1 data block input, i
+
+	//
+	// This function encrypts one ChaCha20 block by loading the state matrix
+	// in four NEON registers. It performs matrix operation on four words in
+	// parallel, but requireds shuffling to rearrange the words after each
+	// round.
+	//
+
+	// x0..3 = s0..3
+	add		ip, r0, #0x20
+	vld1.32		{q0-q1}, [r0]
+	vld1.32		{q2-q3}, [ip]
+
+	vmov		q8, q0
+	vmov		q9, q1
+	vmov		q10, q2
+	vmov		q11, q3
+
+	mov		r3, #10
+
+.Ldoubleround:
+	// x0 += x1, x3 = rotl32(x3 ^ x0, 16)
+	vadd.i32	q0, q0, q1
+	veor		q4, q3, q0
+	vshl.u32	q3, q4, #16
+	vsri.u32	q3, q4, #16
+
+	// x2 += x3, x1 = rotl32(x1 ^ x2, 12)
+	vadd.i32	q2, q2, q3
+	veor		q4, q1, q2
+	vshl.u32	q1, q4, #12
+	vsri.u32	q1, q4, #20
+
+	// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
+	vadd.i32	q0, q0, q1
+	veor		q4, q3, q0
+	vshl.u32	q3, q4, #8
+	vsri.u32	q3, q4, #24
+
+	// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
+	vadd.i32	q2, q2, q3
+	veor		q4, q1, q2
+	vshl.u32	q1, q4, #7
+	vsri.u32	q1, q4, #25
+
+	// x1 = shuffle32(x1, MASK(0, 3, 2, 1))
+	vext.8		q1, q1, q1, #4
+	// x2 = shuffle32(x2, MASK(1, 0, 3, 2))
+	vext.8		q2, q2, q2, #8
+	// x3 = shuffle32(x3, MASK(2, 1, 0, 3))
+	vext.8		q3, q3, q3, #12
+
+	// x0 += x1, x3 = rotl32(x3 ^ x0, 16)
+	vadd.i32	q0, q0, q1
+	veor		q4, q3, q0
+	vshl.u32	q3, q4, #16
+	vsri.u32	q3, q4, #16
+
+	// x2 += x3, x1 = rotl32(x1 ^ x2, 12)
+	vadd.i32	q2, q2, q3
+	veor		q4, q1, q2
+	vshl.u32	q1, q4, #12
+	vsri.u32	q1, q4, #20
+
+	// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
+	vadd.i32	q0, q0, q1
+	veor		q4, q3, q0
+	vshl.u32	q3, q4, #8
+	vsri.u32	q3, q4, #24
+
+	// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
+	vadd.i32	q2, q2, q3
+	veor		q4, q1, q2
+	vshl.u32	q1, q4, #7
+	vsri.u32	q1, q4, #25
+
+	// x1 = shuffle32(x1, MASK(2, 1, 0, 3))
+	vext.8		q1, q1, q1, #12
+	// x2 = shuffle32(x2, MASK(1, 0, 3, 2))
+	vext.8		q2, q2, q2, #8
+	// x3 = shuffle32(x3, MASK(0, 3, 2, 1))
+	vext.8		q3, q3, q3, #4
+
+	subs		r3, r3, #1
+	bne		.Ldoubleround
+
+	add		ip, r2, #0x20
+	vld1.8		{q4-q5}, [r2]
+	vld1.8		{q6-q7}, [ip]
+
+	// o0 = i0 ^ (x0 + s0)
+	vadd.i32	q0, q0, q8
+	veor		q0, q0, q4
+
+	// o1 = i1 ^ (x1 + s1)
+	vadd.i32	q1, q1, q9
+	veor		q1, q1, q5
+
+	// o2 = i2 ^ (x2 + s2)
+	vadd.i32	q2, q2, q10
+	veor		q2, q2, q6
+
+	// o3 = i3 ^ (x3 + s3)
+	vadd.i32	q3, q3, q11
+	veor		q3, q3, q7
+
+	add		ip, r1, #0x20
+	vst1.8		{q0-q1}, [r1]
+	vst1.8		{q2-q3}, [ip]
+
+	bx		lr
+ENDPROC(chacha20_block_xor_neon)
+
+	.align		5
+ENTRY(chacha20_4block_xor_neon)
+	push		{r4-r6, lr}
+	mov		ip, sp			// preserve the stack pointer
+	sub		r3, sp, #0x20		// allocate a 32 byte buffer
+	bic		r3, r3, #0x1f		// aligned to 32 bytes
+	mov		sp, r3
+
+	// r0: Input state matrix, s
+	// r1: 4 data blocks output, o
+	// r2: 4 data blocks input, i
+
+	//
+	// This function encrypts four consecutive ChaCha20 blocks by loading
+	// the state matrix in NEON registers four times. The algorithm performs
+	// each operation on the corresponding word of each state matrix, hence
+	// requires no word shuffling. For final XORing step we transpose the
+	// matrix by interleaving 32- and then 64-bit words, which allows us to
+	// do XOR in NEON registers.
+	//
+
+	// x0..15[0-3] = s0..3[0..3]
+	add		r3, r0, #0x20
+	vld1.32		{q0-q1}, [r0]
+	vld1.32		{q2-q3}, [r3]
+
+	adr		r3, CTRINC
+	vdup.32		q15, d7[1]
+	vdup.32		q14, d7[0]
+	vld1.32		{q11}, [r3, :128]
+	vdup.32		q13, d6[1]
+	vdup.32		q12, d6[0]
+	vadd.i32	q12, q12, q11		// x12 += counter values 0-3
+	vdup.32		q11, d5[1]
+	vdup.32		q10, d5[0]
+	vdup.32		q9, d4[1]
+	vdup.32		q8, d4[0]
+	vdup.32		q7, d3[1]
+	vdup.32		q6, d3[0]
+	vdup.32		q5, d2[1]
+	vdup.32		q4, d2[0]
+	vdup.32		q3, d1[1]
+	vdup.32		q2, d1[0]
+	vdup.32		q1, d0[1]
+	vdup.32		q0, d0[0]
+
+	mov		r3, #10
+
+.Ldoubleround4:
+	// x0 += x4, x12 = rotl32(x12 ^ x0, 16)
+	// x1 += x5, x13 = rotl32(x13 ^ x1, 16)
+	// x2 += x6, x14 = rotl32(x14 ^ x2, 16)
+	// x3 += x7, x15 = rotl32(x15 ^ x3, 16)
+	vadd.i32	q0, q0, q4
+	vadd.i32	q1, q1, q5
+	vadd.i32	q2, q2, q6
+	vadd.i32	q3, q3, q7
+
+	veor		q12, q12, q0
+	veor		q13, q13, q1
+	veor		q14, q14, q2
+	veor		q15, q15, q3
+
+	vrev32.16	q12, q12
+	vrev32.16	q13, q13
+	vrev32.16	q14, q14
+	vrev32.16	q15, q15
+
+	// x8 += x12, x4 = rotl32(x4 ^ x8, 12)
+	// x9 += x13, x5 = rotl32(x5 ^ x9, 12)
+	// x10 += x14, x6 = rotl32(x6 ^ x10, 12)
+	// x11 += x15, x7 = rotl32(x7 ^ x11, 12)
+	vadd.i32	q8, q8, q12
+	vadd.i32	q9, q9, q13
+	vadd.i32	q10, q10, q14
+	vadd.i32	q11, q11, q15
+
+	vst1.32		{q8-q9}, [sp, :256]
+
+	veor		q8, q4, q8
+	veor		q9, q5, q9
+	vshl.u32	q4, q8, #12
+	vshl.u32	q5, q9, #12
+	vsri.u32	q4, q8, #20
+	vsri.u32	q5, q9, #20
+
+	veor		q8, q6, q10
+	veor		q9, q7, q11
+	vshl.u32	q6, q8, #12
+	vshl.u32	q7, q9, #12
+	vsri.u32	q6, q8, #20
+	vsri.u32	q7, q9, #20
+
+	// x0 += x4, x12 = rotl32(x12 ^ x0, 8)
+	// x1 += x5, x13 = rotl32(x13 ^ x1, 8)
+	// x2 += x6, x14 = rotl32(x14 ^ x2, 8)
+	// x3 += x7, x15 = rotl32(x15 ^ x3, 8)
+	vadd.i32	q0, q0, q4
+	vadd.i32	q1, q1, q5
+	vadd.i32	q2, q2, q6
+	vadd.i32	q3, q3, q7
+
+	veor		q8, q12, q0
+	veor		q9, q13, q1
+	vshl.u32	q12, q8, #8
+	vshl.u32	q13, q9, #8
+	vsri.u32	q12, q8, #24
+	vsri.u32	q13, q9, #24
+
+	veor		q8, q14, q2
+	veor		q9, q15, q3
+	vshl.u32	q14, q8, #8
+	vshl.u32	q15, q9, #8
+	vsri.u32	q14, q8, #24
+	vsri.u32	q15, q9, #24
+
+	vld1.32		{q8-q9}, [sp, :256]
+
+	// x8 += x12, x4 = rotl32(x4 ^ x8, 7)
+	// x9 += x13, x5 = rotl32(x5 ^ x9, 7)
+	// x10 += x14, x6 = rotl32(x6 ^ x10, 7)
+	// x11 += x15, x7 = rotl32(x7 ^ x11, 7)
+	vadd.i32	q8, q8, q12
+	vadd.i32	q9, q9, q13
+	vadd.i32	q10, q10, q14
+	vadd.i32	q11, q11, q15
+
+	vst1.32		{q8-q9}, [sp, :256]
+
+	veor		q8, q4, q8
+	veor		q9, q5, q9
+	vshl.u32	q4, q8, #7
+	vshl.u32	q5, q9, #7
+	vsri.u32	q4, q8, #25
+	vsri.u32	q5, q9, #25
+
+	veor		q8, q6, q10
+	veor		q9, q7, q11
+	vshl.u32	q6, q8, #7
+	vshl.u32	q7, q9, #7
+	vsri.u32	q6, q8, #25
+	vsri.u32	q7, q9, #25
+
+	vld1.32		{q8-q9}, [sp, :256]
+
+	// x0 += x5, x15 = rotl32(x15 ^ x0, 16)
+	// x1 += x6, x12 = rotl32(x12 ^ x1, 16)
+	// x2 += x7, x13 = rotl32(x13 ^ x2, 16)
+	// x3 += x4, x14 = rotl32(x14 ^ x3, 16)
+	vadd.i32	q0, q0, q5
+	vadd.i32	q1, q1, q6
+	vadd.i32	q2, q2, q7
+	vadd.i32	q3, q3, q4
+
+	veor		q15, q15, q0
+	veor		q12, q12, q1
+	veor		q13, q13, q2
+	veor		q14, q14, q3
+
+	vrev32.16	q15, q15
+	vrev32.16	q12, q12
+	vrev32.16	q13, q13
+	vrev32.16	q14, q14
+
+	// x10 += x15, x5 = rotl32(x5 ^ x10, 12)
+	// x11 += x12, x6 = rotl32(x6 ^ x11, 12)
+	// x8 += x13, x7 = rotl32(x7 ^ x8, 12)
+	// x9 += x14, x4 = rotl32(x4 ^ x9, 12)
+	vadd.i32	q10, q10, q15
+	vadd.i32	q11, q11, q12
+	vadd.i32	q8, q8, q13
+	vadd.i32	q9, q9, q14
+
+	vst1.32		{q8-q9}, [sp, :256]
+
+	veor		q8, q7, q8
+	veor		q9, q4, q9
+	vshl.u32	q7, q8, #12
+	vshl.u32	q4, q9, #12
+	vsri.u32	q7, q8, #20
+	vsri.u32	q4, q9, #20
+
+	veor		q8, q5, q10
+	veor		q9, q6, q11
+	vshl.u32	q5, q8, #12
+	vshl.u32	q6, q9, #12
+	vsri.u32	q5, q8, #20
+	vsri.u32	q6, q9, #20
+
+	// x0 += x5, x15 = rotl32(x15 ^ x0, 8)
+	// x1 += x6, x12 = rotl32(x12 ^ x1, 8)
+	// x2 += x7, x13 = rotl32(x13 ^ x2, 8)
+	// x3 += x4, x14 = rotl32(x14 ^ x3, 8)
+	vadd.i32	q0, q0, q5
+	vadd.i32	q1, q1, q6
+	vadd.i32	q2, q2, q7
+	vadd.i32	q3, q3, q4
+
+	veor		q8, q15, q0
+	veor		q9, q12, q1
+	vshl.u32	q15, q8, #8
+	vshl.u32	q12, q9, #8
+	vsri.u32	q15, q8, #24
+	vsri.u32	q12, q9, #24
+
+	veor		q8, q13, q2
+	veor		q9, q14, q3
+	vshl.u32	q13, q8, #8
+	vshl.u32	q14, q9, #8
+	vsri.u32	q13, q8, #24
+	vsri.u32	q14, q9, #24
+
+	vld1.32		{q8-q9}, [sp, :256]
+
+	// x10 += x15, x5 = rotl32(x5 ^ x10, 7)
+	// x11 += x12, x6 = rotl32(x6 ^ x11, 7)
+	// x8 += x13, x7 = rotl32(x7 ^ x8, 7)
+	// x9 += x14, x4 = rotl32(x4 ^ x9, 7)
+	vadd.i32	q10, q10, q15
+	vadd.i32	q11, q11, q12
+	vadd.i32	q8, q8, q13
+	vadd.i32	q9, q9, q14
+
+	vst1.32		{q8-q9}, [sp, :256]
+
+	veor		q8, q7, q8
+	veor		q9, q4, q9
+	vshl.u32	q7, q8, #7
+	vshl.u32	q4, q9, #7
+	vsri.u32	q7, q8, #25
+	vsri.u32	q4, q9, #25
+
+	veor		q8, q5, q10
+	veor		q9, q6, q11
+	vshl.u32	q5, q8, #7
+	vshl.u32	q6, q9, #7
+	vsri.u32	q5, q8, #25
+	vsri.u32	q6, q9, #25
+
+	subs		r3, r3, #1
+	beq		0f
+
+	vld1.32		{q8-q9}, [sp, :256]
+	b		.Ldoubleround4
+
+	// x0[0-3] += s0[0]
+	// x1[0-3] += s0[1]
+	// x2[0-3] += s0[2]
+	// x3[0-3] += s0[3]
+0:	ldmia		r0!, {r3-r6}
+	vdup.32		q8, r3
+	vdup.32		q9, r4
+	vadd.i32	q0, q0, q8
+	vadd.i32	q1, q1, q9
+	vdup.32		q8, r5
+	vdup.32		q9, r6
+	vadd.i32	q2, q2, q8
+	vadd.i32	q3, q3, q9
+
+	// x4[0-3] += s1[0]
+	// x5[0-3] += s1[1]
+	// x6[0-3] += s1[2]
+	// x7[0-3] += s1[3]
+	ldmia		r0!, {r3-r6}
+	vdup.32		q8, r3
+	vdup.32		q9, r4
+	vadd.i32	q4, q4, q8
+	vadd.i32	q5, q5, q9
+	vdup.32		q8, r5
+	vdup.32		q9, r6
+	vadd.i32	q6, q6, q8
+	vadd.i32	q7, q7, q9
+
+	// interleave 32-bit words in state n, n+1
+	vzip.32		q0, q1
+	vzip.32		q2, q3
+	vzip.32		q4, q5
+	vzip.32		q6, q7
+
+	// interleave 64-bit words in state n, n+2
+	vswp		d1, d4
+	vswp		d3, d6
+	vswp		d9, d12
+	vswp		d11, d14
+
+	// xor with corresponding input, write to output
+	vld1.8		{q8-q9}, [r2]!
+	veor		q8, q8, q0
+	veor		q9, q9, q4
+	vst1.8		{q8-q9}, [r1]!
+
+	vld1.32		{q8-q9}, [sp, :256]
+
+	// x8[0-3] += s2[0]
+	// x9[0-3] += s2[1]
+	// x10[0-3] += s2[2]
+	// x11[0-3] += s2[3]
+	ldmia		r0!, {r3-r6}
+	vdup.32		q0, r3
+	vdup.32		q4, r4
+	vadd.i32	q8, q8, q0
+	vadd.i32	q9, q9, q4
+	vdup.32		q0, r5
+	vdup.32		q4, r6
+	vadd.i32	q10, q10, q0
+	vadd.i32	q11, q11, q4
+
+	// x12[0-3] += s3[0]
+	// x13[0-3] += s3[1]
+	// x14[0-3] += s3[2]
+	// x15[0-3] += s3[3]
+	ldmia		r0!, {r3-r6}
+	vdup.32		q0, r3
+	vdup.32		q4, r4
+	adr		r3, CTRINC
+	vadd.i32	q12, q12, q0
+	vld1.32		{q0}, [r3, :128]
+	vadd.i32	q13, q13, q4
+	vadd.i32	q12, q12, q0		// x12 += counter values 0-3
+
+	vdup.32		q0, r5
+	vdup.32		q4, r6
+	vadd.i32	q14, q14, q0
+	vadd.i32	q15, q15, q4
+
+	// interleave 32-bit words in state n, n+1
+	vzip.32		q8, q9
+	vzip.32		q10, q11
+	vzip.32		q12, q13
+	vzip.32		q14, q15
+
+	// interleave 64-bit words in state n, n+2
+	vswp		d17, d20
+	vswp		d19, d22
+	vswp		d25, d28
+	vswp		d27, d30
+
+	vmov		q4, q1
+
+	vld1.8		{q0-q1}, [r2]!
+	veor		q0, q0, q8
+	veor		q1, q1, q12
+	vst1.8		{q0-q1}, [r1]!
+
+	vld1.8		{q0-q1}, [r2]!
+	veor		q0, q0, q2
+	veor		q1, q1, q6
+	vst1.8		{q0-q1}, [r1]!
+
+	vld1.8		{q0-q1}, [r2]!
+	veor		q0, q0, q10
+	veor		q1, q1, q14
+	vst1.8		{q0-q1}, [r1]!
+
+	vld1.8		{q0-q1}, [r2]!
+	veor		q0, q0, q4
+	veor		q1, q1, q5
+	vst1.8		{q0-q1}, [r1]!
+
+	vld1.8		{q0-q1}, [r2]!
+	veor		q0, q0, q9
+	veor		q1, q1, q13
+	vst1.8		{q0-q1}, [r1]!
+
+	vld1.8		{q0-q1}, [r2]!
+	veor		q0, q0, q3
+	veor		q1, q1, q7
+	vst1.8		{q0-q1}, [r1]!
+
+	vld1.8		{q0-q1}, [r2]
+	veor		q0, q0, q11
+	veor		q1, q1, q15
+	vst1.8		{q0-q1}, [r1]
+
+	mov		sp, ip
+	pop		{r4-r6, pc}
+ENDPROC(chacha20_4block_xor_neon)
+
+	.align		4
+CTRINC:	.word		0, 1, 2, 3
+
diff --git a/arch/arm/crypto/chacha20-neon-glue.c b/arch/arm/crypto/chacha20-neon-glue.c
new file mode 100644
index 000000000000..592f75ae4fa1
--- /dev/null
+++ b/arch/arm/crypto/chacha20-neon-glue.c
@@ -0,0 +1,128 @@ 
+/*
+ * ChaCha20 256-bit cipher algorithm, RFC7539, ARM NEON functions
+ *
+ * Copyright (C) 2016 Linaro, Ltd. <ard.biesheuvel@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Based on:
+ * ChaCha20 256-bit cipher algorithm, RFC7539, SIMD glue code
+ *
+ * Copyright (C) 2015 Martin Willi
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+
+#include <crypto/algapi.h>
+#include <crypto/chacha20.h>
+#include <crypto/internal/skcipher.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include <asm/hwcap.h>
+#include <asm/neon.h>
+#include <asm/simd.h>
+
+asmlinkage void chacha20_block_xor_neon(u32 *state, u8 *dst, const u8 *src);
+asmlinkage void chacha20_4block_xor_neon(u32 *state, u8 *dst, const u8 *src);
+
+static void chacha20_doneon(u32 *state, u8 *dst, const u8 *src,
+			    unsigned int bytes)
+{
+	u8 buf[CHACHA20_BLOCK_SIZE];
+
+	while (bytes >= CHACHA20_BLOCK_SIZE * 4) {
+		chacha20_4block_xor_neon(state, dst, src);
+		bytes -= CHACHA20_BLOCK_SIZE * 4;
+		src += CHACHA20_BLOCK_SIZE * 4;
+		dst += CHACHA20_BLOCK_SIZE * 4;
+		state[12] += 4;
+	}
+	while (bytes >= CHACHA20_BLOCK_SIZE) {
+		chacha20_block_xor_neon(state, dst, src);
+		bytes -= CHACHA20_BLOCK_SIZE;
+		src += CHACHA20_BLOCK_SIZE;
+		dst += CHACHA20_BLOCK_SIZE;
+		state[12]++;
+	}
+	if (bytes) {
+		memcpy(buf, src, bytes);
+		chacha20_block_xor_neon(state, buf, buf);
+		memcpy(dst, buf, bytes);
+	}
+}
+
+static int chacha20_neon(struct skcipher_request *req)
+{
+	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+	struct chacha20_ctx *ctx = crypto_skcipher_ctx(tfm);
+	struct skcipher_walk walk;
+	u32 state[16];
+	int err;
+
+	if (req->cryptlen <= CHACHA20_BLOCK_SIZE || !may_use_simd())
+		return crypto_chacha20_crypt(req);
+
+	err = skcipher_walk_virt(&walk, req, true);
+
+	crypto_chacha20_init(state, ctx, walk.iv);
+
+	kernel_neon_begin();
+	while (walk.nbytes > 0) {
+		unsigned int nbytes = walk.nbytes;
+
+		if (nbytes < walk.total)
+			nbytes = round_down(nbytes, walk.stride);
+
+		chacha20_doneon(state, walk.dst.virt.addr, walk.src.virt.addr,
+				nbytes);
+		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
+	}
+	kernel_neon_end();
+
+	return err;
+}
+
+static struct skcipher_alg alg = {
+	.base.cra_name		= "chacha20",
+	.base.cra_driver_name	= "chacha20-neon",
+	.base.cra_priority	= 300,
+	.base.cra_blocksize	= 1,
+	.base.cra_ctxsize	= sizeof(struct chacha20_ctx),
+	.base.cra_alignmask	= 1,
+	.base.cra_module	= THIS_MODULE,
+
+	.min_keysize		= CHACHA20_KEY_SIZE,
+	.max_keysize		= CHACHA20_KEY_SIZE,
+	.ivsize			= CHACHA20_IV_SIZE,
+	.chunksize		= CHACHA20_BLOCK_SIZE,
+	.walksize		= 4 * CHACHA20_BLOCK_SIZE,
+	.setkey			= crypto_chacha20_setkey,
+	.encrypt		= chacha20_neon,
+	.decrypt		= chacha20_neon,
+};
+
+static int __init chacha20_simd_mod_init(void)
+{
+	if (!(elf_hwcap & HWCAP_NEON))
+		return -ENODEV;
+
+	return crypto_register_skcipher(&alg);
+}
+
+static void __exit chacha20_simd_mod_fini(void)
+{
+	crypto_unregister_skcipher(&alg);
+}
+
+module_init(chacha20_simd_mod_init);
+module_exit(chacha20_simd_mod_fini);
+
+MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS_CRYPTO("chacha20");