diff mbox

[09/10] docs: sphinxify kmemcheck.txt and move to dev-tools

Message ID 20160808233502.16950-10-corbet@lwn.net
State Accepted
Commit 9c296b46c67ed323538bca80a8be1f0b10e570a0
Headers show

Commit Message

Jonathan Corbet Aug. 8, 2016, 11:35 p.m. UTC
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>

---
 Documentation/dev-tools/kmemcheck.rst | 733 +++++++++++++++++++++++++++++++++
 Documentation/dev-tools/tools.rst     |   1 +
 Documentation/kmemcheck.txt           | 754 ----------------------------------
 MAINTAINERS                           |   2 +-
 4 files changed, 735 insertions(+), 755 deletions(-)
 create mode 100644 Documentation/dev-tools/kmemcheck.rst
 delete mode 100644 Documentation/kmemcheck.txt

-- 
2.9.2
diff mbox

Patch

diff --git a/Documentation/dev-tools/kmemcheck.rst b/Documentation/dev-tools/kmemcheck.rst
new file mode 100644
index 0000000..778f515
--- /dev/null
+++ b/Documentation/dev-tools/kmemcheck.rst
@@ -0,0 +1,733 @@ 
+Getting started with kmemcheck
+==============================
+
+Vegard Nossum <vegardno@ifi.uio.no>
+
+
+Introduction
+------------
+
+kmemcheck is a debugging feature for the Linux Kernel. More specifically, it
+is a dynamic checker that detects and warns about some uses of uninitialized
+memory.
+
+Userspace programmers might be familiar with Valgrind's memcheck. The main
+difference between memcheck and kmemcheck is that memcheck works for userspace
+programs only, and kmemcheck works for the kernel only. The implementations
+are of course vastly different. Because of this, kmemcheck is not as accurate
+as memcheck, but it turns out to be good enough in practice to discover real
+programmer errors that the compiler is not able to find through static
+analysis.
+
+Enabling kmemcheck on a kernel will probably slow it down to the extent that
+the machine will not be usable for normal workloads such as e.g. an
+interactive desktop. kmemcheck will also cause the kernel to use about twice
+as much memory as normal. For this reason, kmemcheck is strictly a debugging
+feature.
+
+
+Downloading
+-----------
+
+As of version 2.6.31-rc1, kmemcheck is included in the mainline kernel.
+
+
+Configuring and compiling
+-------------------------
+
+kmemcheck only works for the x86 (both 32- and 64-bit) platform. A number of
+configuration variables must have specific settings in order for the kmemcheck
+menu to even appear in "menuconfig". These are:
+
+- ``CONFIG_CC_OPTIMIZE_FOR_SIZE=n``
+	This option is located under "General setup" / "Optimize for size".
+
+	Without this, gcc will use certain optimizations that usually lead to
+	false positive warnings from kmemcheck. An example of this is a 16-bit
+	field in a struct, where gcc may load 32 bits, then discard the upper
+	16 bits. kmemcheck sees only the 32-bit load, and may trigger a
+	warning for the upper 16 bits (if they're uninitialized).
+
+- ``CONFIG_SLAB=y`` or ``CONFIG_SLUB=y``
+	This option is located under "General setup" / "Choose SLAB
+	allocator".
+
+- ``CONFIG_FUNCTION_TRACER=n``
+	This option is located under "Kernel hacking" / "Tracers" / "Kernel
+	Function Tracer"
+
+	When function tracing is compiled in, gcc emits a call to another
+	function at the beginning of every function. This means that when the
+	page fault handler is called, the ftrace framework will be called
+	before kmemcheck has had a chance to handle the fault. If ftrace then
+	modifies memory that was tracked by kmemcheck, the result is an
+	endless recursive page fault.
+
+- ``CONFIG_DEBUG_PAGEALLOC=n``
+	This option is located under "Kernel hacking" / "Memory Debugging"
+	/ "Debug page memory allocations".
+
+In addition, I highly recommend turning on ``CONFIG_DEBUG_INFO=y``. This is also
+located under "Kernel hacking". With this, you will be able to get line number
+information from the kmemcheck warnings, which is extremely valuable in
+debugging a problem. This option is not mandatory, however, because it slows
+down the compilation process and produces a much bigger kernel image.
+
+Now the kmemcheck menu should be visible (under "Kernel hacking" / "Memory
+Debugging" / "kmemcheck: trap use of uninitialized memory"). Here follows
+a description of the kmemcheck configuration variables:
+
+- ``CONFIG_KMEMCHECK``
+	This must be enabled in order to use kmemcheck at all...
+
+- ``CONFIG_KMEMCHECK_``[``DISABLED`` | ``ENABLED`` | ``ONESHOT``]``_BY_DEFAULT``
+	This option controls the status of kmemcheck at boot-time. "Enabled"
+	will enable kmemcheck right from the start, "disabled" will boot the
+	kernel as normal (but with the kmemcheck code compiled in, so it can
+	be enabled at run-time after the kernel has booted), and "one-shot" is
+	a special mode which will turn kmemcheck off automatically after
+	detecting the first use of uninitialized memory.
+
+	If you are using kmemcheck to actively debug a problem, then you
+	probably want to choose "enabled" here.
+
+	The one-shot mode is mostly useful in automated test setups because it
+	can prevent floods of warnings and increase the chances of the machine
+	surviving in case something is really wrong. In other cases, the one-
+	shot mode could actually be counter-productive because it would turn
+	itself off at the very first error -- in the case of a false positive
+	too -- and this would come in the way of debugging the specific
+	problem you were interested in.
+
+	If you would like to use your kernel as normal, but with a chance to
+	enable kmemcheck in case of some problem, it might be a good idea to
+	choose "disabled" here. When kmemcheck is disabled, most of the run-
+	time overhead is not incurred, and the kernel will be almost as fast
+	as normal.
+
+- ``CONFIG_KMEMCHECK_QUEUE_SIZE``
+	Select the maximum number of error reports to store in an internal
+	(fixed-size) buffer. Since errors can occur virtually anywhere and in
+	any context, we need a temporary storage area which is guaranteed not
+	to generate any other page faults when accessed. The queue will be
+	emptied as soon as a tasklet may be scheduled. If the queue is full,
+	new error reports will be lost.
+
+	The default value of 64 is probably fine. If some code produces more
+	than 64 errors within an irqs-off section, then the code is likely to
+	produce many, many more, too, and these additional reports seldom give
+	any more information (the first report is usually the most valuable
+	anyway).
+
+	This number might have to be adjusted if you are not using serial
+	console or similar to capture the kernel log. If you are using the
+	"dmesg" command to save the log, then getting a lot of kmemcheck
+	warnings might overflow the kernel log itself, and the earlier reports
+	will get lost in that way instead. Try setting this to 10 or so on
+	such a setup.
+
+- ``CONFIG_KMEMCHECK_SHADOW_COPY_SHIFT``
+	Select the number of shadow bytes to save along with each entry of the
+	error-report queue. These bytes indicate what parts of an allocation
+	are initialized, uninitialized, etc. and will be displayed when an
+	error is detected to help the debugging of a particular problem.
+
+	The number entered here is actually the logarithm of the number of
+	bytes that will be saved. So if you pick for example 5 here, kmemcheck
+	will save 2^5 = 32 bytes.
+
+	The default value should be fine for debugging most problems. It also
+	fits nicely within 80 columns.
+
+- ``CONFIG_KMEMCHECK_PARTIAL_OK``
+	This option (when enabled) works around certain GCC optimizations that
+	produce 32-bit reads from 16-bit variables where the upper 16 bits are
+	thrown away afterwards.
+
+	The default value (enabled) is recommended. This may of course hide
+	some real errors, but disabling it would probably produce a lot of
+	false positives.
+
+- ``CONFIG_KMEMCHECK_BITOPS_OK``
+	This option silences warnings that would be generated for bit-field
+	accesses where not all the bits are initialized at the same time. This
+	may also hide some real bugs.
+
+	This option is probably obsolete, or it should be replaced with
+	the kmemcheck-/bitfield-annotations for the code in question. The
+	default value is therefore fine.
+
+Now compile the kernel as usual.
+
+
+How to use
+----------
+
+Booting
+~~~~~~~
+
+First some information about the command-line options. There is only one
+option specific to kmemcheck, and this is called "kmemcheck". It can be used
+to override the default mode as chosen by the ``CONFIG_KMEMCHECK_*_BY_DEFAULT``
+option. Its possible settings are:
+
+- ``kmemcheck=0`` (disabled)
+- ``kmemcheck=1`` (enabled)
+- ``kmemcheck=2`` (one-shot mode)
+
+If SLUB debugging has been enabled in the kernel, it may take precedence over
+kmemcheck in such a way that the slab caches which are under SLUB debugging
+will not be tracked by kmemcheck. In order to ensure that this doesn't happen
+(even though it shouldn't by default), use SLUB's boot option ``slub_debug``,
+like this: ``slub_debug=-``
+
+In fact, this option may also be used for fine-grained control over SLUB vs.
+kmemcheck. For example, if the command line includes
+``kmemcheck=1 slub_debug=,dentry``, then SLUB debugging will be used only
+for the "dentry" slab cache, and with kmemcheck tracking all the other
+caches. This is advanced usage, however, and is not generally recommended.
+
+
+Run-time enable/disable
+~~~~~~~~~~~~~~~~~~~~~~~
+
+When the kernel has booted, it is possible to enable or disable kmemcheck at
+run-time. WARNING: This feature is still experimental and may cause false
+positive warnings to appear. Therefore, try not to use this. If you find that
+it doesn't work properly (e.g. you see an unreasonable amount of warnings), I
+will be happy to take bug reports.
+
+Use the file ``/proc/sys/kernel/kmemcheck`` for this purpose, e.g.::
+
+	$ echo 0 > /proc/sys/kernel/kmemcheck # disables kmemcheck
+
+The numbers are the same as for the ``kmemcheck=`` command-line option.
+
+
+Debugging
+~~~~~~~~~
+
+A typical report will look something like this::
+
+    WARNING: kmemcheck: Caught 32-bit read from uninitialized memory (ffff88003e4a2024)
+    80000000000000000000000000000000000000000088ffff0000000000000000
+     i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
+             ^
+
+    Pid: 1856, comm: ntpdate Not tainted 2.6.29-rc5 #264 945P-A
+    RIP: 0010:[<ffffffff8104ede8>]  [<ffffffff8104ede8>] __dequeue_signal+0xc8/0x190
+    RSP: 0018:ffff88003cdf7d98  EFLAGS: 00210002
+    RAX: 0000000000000030 RBX: ffff88003d4ea968 RCX: 0000000000000009
+    RDX: ffff88003e5d6018 RSI: ffff88003e5d6024 RDI: ffff88003cdf7e84
+    RBP: ffff88003cdf7db8 R08: ffff88003e5d6000 R09: 0000000000000000
+    R10: 0000000000000080 R11: 0000000000000000 R12: 000000000000000e
+    R13: ffff88003cdf7e78 R14: ffff88003d530710 R15: ffff88003d5a98c8
+    FS:  0000000000000000(0000) GS:ffff880001982000(0063) knlGS:00000
+    CS:  0010 DS: 002b ES: 002b CR0: 0000000080050033
+    CR2: ffff88003f806ea0 CR3: 000000003c036000 CR4: 00000000000006a0
+    DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
+    DR3: 0000000000000000 DR6: 00000000ffff4ff0 DR7: 0000000000000400
+     [<ffffffff8104f04e>] dequeue_signal+0x8e/0x170
+     [<ffffffff81050bd8>] get_signal_to_deliver+0x98/0x390
+     [<ffffffff8100b87d>] do_notify_resume+0xad/0x7d0
+     [<ffffffff8100c7b5>] int_signal+0x12/0x17
+     [<ffffffffffffffff>] 0xffffffffffffffff
+
+The single most valuable information in this report is the RIP (or EIP on 32-
+bit) value. This will help us pinpoint exactly which instruction that caused
+the warning.
+
+If your kernel was compiled with ``CONFIG_DEBUG_INFO=y``, then all we have to do
+is give this address to the addr2line program, like this::
+
+	$ addr2line -e vmlinux -i ffffffff8104ede8
+	arch/x86/include/asm/string_64.h:12
+	include/asm-generic/siginfo.h:287
+	kernel/signal.c:380
+	kernel/signal.c:410
+
+The "``-e vmlinux``" tells addr2line which file to look in. **IMPORTANT:**
+This must be the vmlinux of the kernel that produced the warning in the
+first place! If not, the line number information will almost certainly be
+wrong.
+
+The "``-i``" tells addr2line to also print the line numbers of inlined
+functions.  In this case, the flag was very important, because otherwise,
+it would only have printed the first line, which is just a call to
+``memcpy()``, which could be called from a thousand places in the kernel, and
+is therefore not very useful.  These inlined functions would not show up in
+the stack trace above, simply because the kernel doesn't load the extra
+debugging information. This technique can of course be used with ordinary
+kernel oopses as well.
+
+In this case, it's the caller of ``memcpy()`` that is interesting, and it can be
+found in ``include/asm-generic/siginfo.h``, line 287::
+
+    281 static inline void copy_siginfo(struct siginfo *to, struct siginfo *from)
+    282 {
+    283         if (from->si_code < 0)
+    284                 memcpy(to, from, sizeof(*to));
+    285         else
+    286                 /* _sigchld is currently the largest know union member */
+    287                 memcpy(to, from, __ARCH_SI_PREAMBLE_SIZE + sizeof(from->_sifields._sigchld));
+    288 }
+
+Since this was a read (kmemcheck usually warns about reads only, though it can
+warn about writes to unallocated or freed memory as well), it was probably the
+"from" argument which contained some uninitialized bytes. Following the chain
+of calls, we move upwards to see where "from" was allocated or initialized,
+``kernel/signal.c``, line 380::
+
+    359 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
+    360 {
+    ...
+    367         list_for_each_entry(q, &list->list, list) {
+    368                 if (q->info.si_signo == sig) {
+    369                         if (first)
+    370                                 goto still_pending;
+    371                         first = q;
+    ...
+    377         if (first) {
+    378 still_pending:
+    379                 list_del_init(&first->list);
+    380                 copy_siginfo(info, &first->info);
+    381                 __sigqueue_free(first);
+    ...
+    392         }
+    393 }
+
+Here, it is ``&first->info`` that is being passed on to ``copy_siginfo()``. The
+variable ``first`` was found on a list -- passed in as the second argument to
+``collect_signal()``. We  continue our journey through the stack, to figure out
+where the item on "list" was allocated or initialized. We move to line 410::
+
+    395 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
+    396                         siginfo_t *info)
+    397 {
+    ...
+    410                 collect_signal(sig, pending, info);
+    ...
+    414 }
+
+Now we need to follow the ``pending`` pointer, since that is being passed on to
+``collect_signal()`` as ``list``. At this point, we've run out of lines from the
+"addr2line" output. Not to worry, we just paste the next addresses from the
+kmemcheck stack dump, i.e.::
+
+     [<ffffffff8104f04e>] dequeue_signal+0x8e/0x170
+     [<ffffffff81050bd8>] get_signal_to_deliver+0x98/0x390
+     [<ffffffff8100b87d>] do_notify_resume+0xad/0x7d0
+     [<ffffffff8100c7b5>] int_signal+0x12/0x17
+
+    	$ addr2line -e vmlinux -i ffffffff8104f04e ffffffff81050bd8 \
+    		ffffffff8100b87d ffffffff8100c7b5
+    	kernel/signal.c:446
+    	kernel/signal.c:1806
+    	arch/x86/kernel/signal.c:805
+    	arch/x86/kernel/signal.c:871
+    	arch/x86/kernel/entry_64.S:694
+
+Remember that since these addresses were found on the stack and not as the
+RIP value, they actually point to the _next_ instruction (they are return
+addresses). This becomes obvious when we look at the code for line 446::
+
+    422 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
+    423 {
+    ...
+    431                 signr = __dequeue_signal(&tsk->signal->shared_pending,
+    432                                          mask, info);
+    433                 /*
+    434                  * itimer signal ?
+    435                  *
+    436                  * itimers are process shared and we restart periodic
+    437                  * itimers in the signal delivery path to prevent DoS
+    438                  * attacks in the high resolution timer case. This is
+    439                  * compliant with the old way of self restarting
+    440                  * itimers, as the SIGALRM is a legacy signal and only
+    441                  * queued once. Changing the restart behaviour to
+    442                  * restart the timer in the signal dequeue path is
+    443                  * reducing the timer noise on heavy loaded !highres
+    444                  * systems too.
+    445                  */
+    446                 if (unlikely(signr == SIGALRM)) {
+    ...
+    489 }
+
+So instead of looking at 446, we should be looking at 431, which is the line
+that executes just before 446. Here we see that what we are looking for is
+``&tsk->signal->shared_pending``.
+
+Our next task is now to figure out which function that puts items on this
+``shared_pending`` list. A crude, but efficient tool, is ``git grep``::
+
+	$ git grep -n 'shared_pending' kernel/
+	...
+	kernel/signal.c:828:    pending = group ? &t->signal->shared_pending : &t->pending;
+	kernel/signal.c:1339:   pending = group ? &t->signal->shared_pending : &t->pending;
+	...
+
+There were more results, but none of them were related to list operations,
+and these were the only assignments. We inspect the line numbers more closely
+and find that this is indeed where items are being added to the list::
+
+    816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
+    817                         int group)
+    818 {
+    ...
+    828         pending = group ? &t->signal->shared_pending : &t->pending;
+    ...
+    851         q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
+    852                                              (is_si_special(info) ||
+    853                                               info->si_code >= 0)));
+    854         if (q) {
+    855                 list_add_tail(&q->list, &pending->list);
+    ...
+    890 }
+
+and::
+
+    1309 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
+    1310 {
+    ....
+    1339         pending = group ? &t->signal->shared_pending : &t->pending;
+    1340         list_add_tail(&q->list, &pending->list);
+    ....
+    1347 }
+
+In the first case, the list element we are looking for, ``q``, is being
+returned from the function ``__sigqueue_alloc()``, which looks like an
+allocation function.  Let's take a look at it::
+
+    187 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
+    188                                          int override_rlimit)
+    189 {
+    190         struct sigqueue *q = NULL;
+    191         struct user_struct *user;
+    192
+    193         /*
+    194          * We won't get problems with the target's UID changing under us
+    195          * because changing it requires RCU be used, and if t != current, the
+    196          * caller must be holding the RCU readlock (by way of a spinlock) and
+    197          * we use RCU protection here
+    198          */
+    199         user = get_uid(__task_cred(t)->user);
+    200         atomic_inc(&user->sigpending);
+    201         if (override_rlimit ||
+    202             atomic_read(&user->sigpending) <=
+    203                         t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
+    204                 q = kmem_cache_alloc(sigqueue_cachep, flags);
+    205         if (unlikely(q == NULL)) {
+    206                 atomic_dec(&user->sigpending);
+    207                 free_uid(user);
+    208         } else {
+    209                 INIT_LIST_HEAD(&q->list);
+    210                 q->flags = 0;
+    211                 q->user = user;
+    212         }
+    213
+    214         return q;
+    215 }
+
+We see that this function initializes ``q->list``, ``q->flags``, and
+``q->user``. It seems that now is the time to look at the definition of
+``struct sigqueue``, e.g.::
+
+    14 struct sigqueue {
+    15         struct list_head list;
+    16         int flags;
+    17         siginfo_t info;
+    18         struct user_struct *user;
+    19 };
+
+And, you might remember, it was a ``memcpy()`` on ``&first->info`` that
+caused the warning, so this makes perfect sense. It also seems reasonable
+to assume that it is the caller of ``__sigqueue_alloc()`` that has the
+responsibility of filling out (initializing) this member.
+
+But just which fields of the struct were uninitialized? Let's look at
+kmemcheck's report again::
+
+    WARNING: kmemcheck: Caught 32-bit read from uninitialized memory (ffff88003e4a2024)
+    80000000000000000000000000000000000000000088ffff0000000000000000
+     i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
+             ^
+
+These first two lines are the memory dump of the memory object itself, and
+the shadow bytemap, respectively. The memory object itself is in this case
+``&first->info``. Just beware that the start of this dump is NOT the start
+of the object itself! The position of the caret (^) corresponds with the
+address of the read (ffff88003e4a2024).
+
+The shadow bytemap dump legend is as follows:
+
+- i: initialized
+- u: uninitialized
+- a: unallocated (memory has been allocated by the slab layer, but has not
+  yet been handed off to anybody)
+- f: freed (memory has been allocated by the slab layer, but has been freed
+  by the previous owner)
+
+In order to figure out where (relative to the start of the object) the
+uninitialized memory was located, we have to look at the disassembly. For
+that, we'll need the RIP address again::
+
+    RIP: 0010:[<ffffffff8104ede8>]  [<ffffffff8104ede8>] __dequeue_signal+0xc8/0x190
+
+	$ objdump -d --no-show-raw-insn vmlinux | grep -C 8 ffffffff8104ede8:
+	ffffffff8104edc8:       mov    %r8,0x8(%r8)
+	ffffffff8104edcc:       test   %r10d,%r10d
+	ffffffff8104edcf:       js     ffffffff8104ee88 <__dequeue_signal+0x168>
+	ffffffff8104edd5:       mov    %rax,%rdx
+	ffffffff8104edd8:       mov    $0xc,%ecx
+	ffffffff8104eddd:       mov    %r13,%rdi
+	ffffffff8104ede0:       mov    $0x30,%eax
+	ffffffff8104ede5:       mov    %rdx,%rsi
+	ffffffff8104ede8:       rep movsl %ds:(%rsi),%es:(%rdi)
+	ffffffff8104edea:       test   $0x2,%al
+	ffffffff8104edec:       je     ffffffff8104edf0 <__dequeue_signal+0xd0>
+	ffffffff8104edee:       movsw  %ds:(%rsi),%es:(%rdi)
+	ffffffff8104edf0:       test   $0x1,%al
+	ffffffff8104edf2:       je     ffffffff8104edf5 <__dequeue_signal+0xd5>
+	ffffffff8104edf4:       movsb  %ds:(%rsi),%es:(%rdi)
+	ffffffff8104edf5:       mov    %r8,%rdi
+	ffffffff8104edf8:       callq  ffffffff8104de60 <__sigqueue_free>
+
+As expected, it's the "``rep movsl``" instruction from the ``memcpy()``
+that causes the warning. We know about ``REP MOVSL`` that it uses the register
+``RCX`` to count the number of remaining iterations. By taking a look at the
+register dump again (from the kmemcheck report), we can figure out how many
+bytes were left to copy::
+
+    RAX: 0000000000000030 RBX: ffff88003d4ea968 RCX: 0000000000000009
+
+By looking at the disassembly, we also see that ``%ecx`` is being loaded
+with the value ``$0xc`` just before (ffffffff8104edd8), so we are very
+lucky. Keep in mind that this is the number of iterations, not bytes. And
+since this is a "long" operation, we need to multiply by 4 to get the
+number of bytes. So this means that the uninitialized value was encountered
+at 4 * (0xc - 0x9) = 12 bytes from the start of the object.
+
+We can now try to figure out which field of the "``struct siginfo``" that
+was not initialized. This is the beginning of the struct::
+
+    40 typedef struct siginfo {
+    41         int si_signo;
+    42         int si_errno;
+    43         int si_code;
+    44
+    45         union {
+    ..
+    92         } _sifields;
+    93 } siginfo_t;
+
+On 64-bit, the int is 4 bytes long, so it must the union member that has
+not been initialized. We can verify this using gdb::
+
+	$ gdb vmlinux
+	...
+	(gdb) p &((struct siginfo *) 0)->_sifields
+	$1 = (union {...} *) 0x10
+
+Actually, it seems that the union member is located at offset 0x10 -- which
+means that gcc has inserted 4 bytes of padding between the members ``si_code``
+and ``_sifields``. We can now get a fuller picture of the memory dump::
+
+	         _----------------------------=> si_code
+	        /        _--------------------=> (padding)
+	       |        /        _------------=> _sifields(._kill._pid)
+	       |       |        /        _----=> _sifields(._kill._uid)
+	       |       |       |        /
+	-------|-------|-------|-------|
+	80000000000000000000000000000000000000000088ffff0000000000000000
+	 i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
+
+This allows us to realize another important fact: ``si_code`` contains the
+value 0x80. Remember that x86 is little endian, so the first 4 bytes
+"80000000" are really the number 0x00000080. With a bit of research, we
+find that this is actually the constant ``SI_KERNEL`` defined in
+``include/asm-generic/siginfo.h``::
+
+    144 #define SI_KERNEL       0x80            /* sent by the kernel from somewhere     */
+
+This macro is used in exactly one place in the x86 kernel: In ``send_signal()``
+in ``kernel/signal.c``::
+
+    816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
+    817                         int group)
+    818 {
+    ...
+    828         pending = group ? &t->signal->shared_pending : &t->pending;
+    ...
+    851         q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
+    852                                              (is_si_special(info) ||
+    853                                               info->si_code >= 0)));
+    854         if (q) {
+    855                 list_add_tail(&q->list, &pending->list);
+    856                 switch ((unsigned long) info) {
+    ...
+    865                 case (unsigned long) SEND_SIG_PRIV:
+    866                         q->info.si_signo = sig;
+    867                         q->info.si_errno = 0;
+    868                         q->info.si_code = SI_KERNEL;
+    869                         q->info.si_pid = 0;
+    870                         q->info.si_uid = 0;
+    871                         break;
+    ...
+    890 }
+
+Not only does this match with the ``.si_code`` member, it also matches the place
+we found earlier when looking for where siginfo_t objects are enqueued on the
+``shared_pending`` list.
+
+So to sum up: It seems that it is the padding introduced by the compiler
+between two struct fields that is uninitialized, and this gets reported when
+we do a ``memcpy()`` on the struct. This means that we have identified a false
+positive warning.
+
+Normally, kmemcheck will not report uninitialized accesses in ``memcpy()`` calls
+when both the source and destination addresses are tracked. (Instead, we copy
+the shadow bytemap as well). In this case, the destination address clearly
+was not tracked. We can dig a little deeper into the stack trace from above::
+
+	arch/x86/kernel/signal.c:805
+	arch/x86/kernel/signal.c:871
+	arch/x86/kernel/entry_64.S:694
+
+And we clearly see that the destination siginfo object is located on the
+stack::
+
+    782 static void do_signal(struct pt_regs *regs)
+    783 {
+    784         struct k_sigaction ka;
+    785         siginfo_t info;
+    ...
+    804         signr = get_signal_to_deliver(&info, &ka, regs, NULL);
+    ...
+    854 }
+
+And this ``&info`` is what eventually gets passed to ``copy_siginfo()`` as the
+destination argument.
+
+Now, even though we didn't find an actual error here, the example is still a
+good one, because it shows how one would go about to find out what the report
+was all about.
+
+
+Annotating false positives
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+There are a few different ways to make annotations in the source code that
+will keep kmemcheck from checking and reporting certain allocations. Here
+they are:
+
+- ``__GFP_NOTRACK_FALSE_POSITIVE``
+        This flag can be passed to ``kmalloc()`` or ``kmem_cache_alloc()``
+	(therefore also to other functions that end up calling one of
+	these) to indicate that the allocation should not be tracked
+	because it would lead to a false positive report. This is a "big
+	hammer" way of silencing kmemcheck; after all, even if the false
+	positive pertains to particular field in a struct, for example, we
+	will now lose the ability to find (real) errors in other parts of
+	the same struct.
+
+	Example::
+
+	    /* No warnings will ever trigger on accessing any part of x */
+	    x = kmalloc(sizeof *x, GFP_KERNEL | __GFP_NOTRACK_FALSE_POSITIVE);
+
+- ``kmemcheck_bitfield_begin(name)``/``kmemcheck_bitfield_end(name)`` and
+	``kmemcheck_annotate_bitfield(ptr, name)``
+	The first two of these three macros can be used inside struct
+	definitions to signal, respectively, the beginning and end of a
+	bitfield. Additionally, this will assign the bitfield a name, which
+	is given as an argument to the macros.
+
+	Having used these markers, one can later use
+	kmemcheck_annotate_bitfield() at the point of allocation, to indicate
+	which parts of the allocation is part of a bitfield.
+
+	Example::
+
+	    struct foo {
+		int x;
+
+		kmemcheck_bitfield_begin(flags);
+		int flag_a:1;
+		int flag_b:1;
+		kmemcheck_bitfield_end(flags);
+
+		int y;
+	    };
+
+	    struct foo *x = kmalloc(sizeof *x);
+
+	    /* No warnings will trigger on accessing the bitfield of x */
+	    kmemcheck_annotate_bitfield(x, flags);
+
+	Note that ``kmemcheck_annotate_bitfield()`` can be used even before the
+	return value of ``kmalloc()`` is checked -- in other words, passing NULL
+	as the first argument is legal (and will do nothing).
+
+
+Reporting errors
+----------------
+
+As we have seen, kmemcheck will produce false positive reports. Therefore, it
+is not very wise to blindly post kmemcheck warnings to mailing lists and
+maintainers. Instead, I encourage maintainers and developers to find errors
+in their own code. If you get a warning, you can try to work around it, try
+to figure out if it's a real error or not, or simply ignore it. Most
+developers know their own code and will quickly and efficiently determine the
+root cause of a kmemcheck report. This is therefore also the most efficient
+way to work with kmemcheck.
+
+That said, we (the kmemcheck maintainers) will always be on the lookout for
+false positives that we can annotate and silence. So whatever you find,
+please drop us a note privately! Kernel configs and steps to reproduce (if
+available) are of course a great help too.
+
+Happy hacking!
+
+
+Technical description
+---------------------
+
+kmemcheck works by marking memory pages non-present. This means that whenever
+somebody attempts to access the page, a page fault is generated. The page
+fault handler notices that the page was in fact only hidden, and so it calls
+on the kmemcheck code to make further investigations.
+
+When the investigations are completed, kmemcheck "shows" the page by marking
+it present (as it would be under normal circumstances). This way, the
+interrupted code can continue as usual.
+
+But after the instruction has been executed, we should hide the page again, so
+that we can catch the next access too! Now kmemcheck makes use of a debugging
+feature of the processor, namely single-stepping. When the processor has
+finished the one instruction that generated the memory access, a debug
+exception is raised. From here, we simply hide the page again and continue
+execution, this time with the single-stepping feature turned off.
+
+kmemcheck requires some assistance from the memory allocator in order to work.
+The memory allocator needs to
+
+  1. Tell kmemcheck about newly allocated pages and pages that are about to
+     be freed. This allows kmemcheck to set up and tear down the shadow memory
+     for the pages in question. The shadow memory stores the status of each
+     byte in the allocation proper, e.g. whether it is initialized or
+     uninitialized.
+
+  2. Tell kmemcheck which parts of memory should be marked uninitialized.
+     There are actually a few more states, such as "not yet allocated" and
+     "recently freed".
+
+If a slab cache is set up using the SLAB_NOTRACK flag, it will never return
+memory that can take page faults because of kmemcheck.
+
+If a slab cache is NOT set up using the SLAB_NOTRACK flag, callers can still
+request memory with the __GFP_NOTRACK or __GFP_NOTRACK_FALSE_POSITIVE flags.
+This does not prevent the page faults from occurring, however, but marks the
+object in question as being initialized so that no warnings will ever be
+produced for this object.
+
+Currently, the SLAB and SLUB allocators are supported by kmemcheck.
diff --git a/Documentation/dev-tools/tools.rst b/Documentation/dev-tools/tools.rst
index 3b6382a..43f7dee 100644
--- a/Documentation/dev-tools/tools.rst
+++ b/Documentation/dev-tools/tools.rst
@@ -21,3 +21,4 @@  whole; patches welcome!
    kasan
    ubsan
    kmemleak
+   kmemcheck
diff --git a/Documentation/kmemcheck.txt b/Documentation/kmemcheck.txt
deleted file mode 100644
index 80aae85..0000000
--- a/Documentation/kmemcheck.txt
+++ /dev/null
@@ -1,754 +0,0 @@ 
-GETTING STARTED WITH KMEMCHECK
-==============================
-
-Vegard Nossum <vegardno@ifi.uio.no>
-
-
-Contents
-========
-0. Introduction
-1. Downloading
-2. Configuring and compiling
-3. How to use
-3.1. Booting
-3.2. Run-time enable/disable
-3.3. Debugging
-3.4. Annotating false positives
-4. Reporting errors
-5. Technical description
-
-
-0. Introduction
-===============
-
-kmemcheck is a debugging feature for the Linux Kernel. More specifically, it
-is a dynamic checker that detects and warns about some uses of uninitialized
-memory.
-
-Userspace programmers might be familiar with Valgrind's memcheck. The main
-difference between memcheck and kmemcheck is that memcheck works for userspace
-programs only, and kmemcheck works for the kernel only. The implementations
-are of course vastly different. Because of this, kmemcheck is not as accurate
-as memcheck, but it turns out to be good enough in practice to discover real
-programmer errors that the compiler is not able to find through static
-analysis.
-
-Enabling kmemcheck on a kernel will probably slow it down to the extent that
-the machine will not be usable for normal workloads such as e.g. an
-interactive desktop. kmemcheck will also cause the kernel to use about twice
-as much memory as normal. For this reason, kmemcheck is strictly a debugging
-feature.
-
-
-1. Downloading
-==============
-
-As of version 2.6.31-rc1, kmemcheck is included in the mainline kernel.
-
-
-2. Configuring and compiling
-============================
-
-kmemcheck only works for the x86 (both 32- and 64-bit) platform. A number of
-configuration variables must have specific settings in order for the kmemcheck
-menu to even appear in "menuconfig". These are:
-
-  o CONFIG_CC_OPTIMIZE_FOR_SIZE=n
-
-	This option is located under "General setup" / "Optimize for size".
-
-	Without this, gcc will use certain optimizations that usually lead to
-	false positive warnings from kmemcheck. An example of this is a 16-bit
-	field in a struct, where gcc may load 32 bits, then discard the upper
-	16 bits. kmemcheck sees only the 32-bit load, and may trigger a
-	warning for the upper 16 bits (if they're uninitialized).
-
-  o CONFIG_SLAB=y or CONFIG_SLUB=y
-
-	This option is located under "General setup" / "Choose SLAB
-	allocator".
-
-  o CONFIG_FUNCTION_TRACER=n
-
-	This option is located under "Kernel hacking" / "Tracers" / "Kernel
-	Function Tracer"
-
-	When function tracing is compiled in, gcc emits a call to another
-	function at the beginning of every function. This means that when the
-	page fault handler is called, the ftrace framework will be called
-	before kmemcheck has had a chance to handle the fault. If ftrace then
-	modifies memory that was tracked by kmemcheck, the result is an
-	endless recursive page fault.
-
-  o CONFIG_DEBUG_PAGEALLOC=n
-
-	This option is located under "Kernel hacking" / "Memory Debugging"
-	 / "Debug page memory allocations".
-
-In addition, I highly recommend turning on CONFIG_DEBUG_INFO=y. This is also
-located under "Kernel hacking". With this, you will be able to get line number
-information from the kmemcheck warnings, which is extremely valuable in
-debugging a problem. This option is not mandatory, however, because it slows
-down the compilation process and produces a much bigger kernel image.
-
-Now the kmemcheck menu should be visible (under "Kernel hacking" / "Memory
-Debugging" / "kmemcheck: trap use of uninitialized memory"). Here follows
-a description of the kmemcheck configuration variables:
-
-  o CONFIG_KMEMCHECK
-
-	This must be enabled in order to use kmemcheck at all...
-
-  o CONFIG_KMEMCHECK_[DISABLED | ENABLED | ONESHOT]_BY_DEFAULT
-
-	This option controls the status of kmemcheck at boot-time. "Enabled"
-	will enable kmemcheck right from the start, "disabled" will boot the
-	kernel as normal (but with the kmemcheck code compiled in, so it can
-	be enabled at run-time after the kernel has booted), and "one-shot" is
-	a special mode which will turn kmemcheck off automatically after
-	detecting the first use of uninitialized memory.
-
-	If you are using kmemcheck to actively debug a problem, then you
-	probably want to choose "enabled" here.
-
-	The one-shot mode is mostly useful in automated test setups because it
-	can prevent floods of warnings and increase the chances of the machine
-	surviving in case something is really wrong. In other cases, the one-
-	shot mode could actually be counter-productive because it would turn
-	itself off at the very first error -- in the case of a false positive
-	too -- and this would come in the way of debugging the specific
-	problem you were interested in.
-
-	If you would like to use your kernel as normal, but with a chance to
-	enable kmemcheck in case of some problem, it might be a good idea to
-	choose "disabled" here. When kmemcheck is disabled, most of the run-
-	time overhead is not incurred, and the kernel will be almost as fast
-	as normal.
-
-  o CONFIG_KMEMCHECK_QUEUE_SIZE
-
-	Select the maximum number of error reports to store in an internal
-	(fixed-size) buffer. Since errors can occur virtually anywhere and in
-	any context, we need a temporary storage area which is guaranteed not
-	to generate any other page faults when accessed. The queue will be
-	emptied as soon as a tasklet may be scheduled. If the queue is full,
-	new error reports will be lost.
-
-	The default value of 64 is probably fine. If some code produces more
-	than 64 errors within an irqs-off section, then the code is likely to
-	produce many, many more, too, and these additional reports seldom give
-	any more information (the first report is usually the most valuable
-	anyway).
-
-	This number might have to be adjusted if you are not using serial
-	console or similar to capture the kernel log. If you are using the
-	"dmesg" command to save the log, then getting a lot of kmemcheck
-	warnings might overflow the kernel log itself, and the earlier reports
-	will get lost in that way instead. Try setting this to 10 or so on
-	such a setup.
-
-  o CONFIG_KMEMCHECK_SHADOW_COPY_SHIFT
-
-	Select the number of shadow bytes to save along with each entry of the
-	error-report queue. These bytes indicate what parts of an allocation
-	are initialized, uninitialized, etc. and will be displayed when an
-	error is detected to help the debugging of a particular problem.
-
-	The number entered here is actually the logarithm of the number of
-	bytes that will be saved. So if you pick for example 5 here, kmemcheck
-	will save 2^5 = 32 bytes.
-
-	The default value should be fine for debugging most problems. It also
-	fits nicely within 80 columns.
-
-  o CONFIG_KMEMCHECK_PARTIAL_OK
-
-	This option (when enabled) works around certain GCC optimizations that
-	produce 32-bit reads from 16-bit variables where the upper 16 bits are
-	thrown away afterwards.
-
-	The default value (enabled) is recommended. This may of course hide
-	some real errors, but disabling it would probably produce a lot of
-	false positives.
-
-  o CONFIG_KMEMCHECK_BITOPS_OK
-
-	This option silences warnings that would be generated for bit-field
-	accesses where not all the bits are initialized at the same time. This
-	may also hide some real bugs.
-
-	This option is probably obsolete, or it should be replaced with
-	the kmemcheck-/bitfield-annotations for the code in question. The
-	default value is therefore fine.
-
-Now compile the kernel as usual.
-
-
-3. How to use
-=============
-
-3.1. Booting
-============
-
-First some information about the command-line options. There is only one
-option specific to kmemcheck, and this is called "kmemcheck". It can be used
-to override the default mode as chosen by the CONFIG_KMEMCHECK_*_BY_DEFAULT
-option. Its possible settings are:
-
-  o kmemcheck=0 (disabled)
-  o kmemcheck=1 (enabled)
-  o kmemcheck=2 (one-shot mode)
-
-If SLUB debugging has been enabled in the kernel, it may take precedence over
-kmemcheck in such a way that the slab caches which are under SLUB debugging
-will not be tracked by kmemcheck. In order to ensure that this doesn't happen
-(even though it shouldn't by default), use SLUB's boot option "slub_debug",
-like this: slub_debug=-
-
-In fact, this option may also be used for fine-grained control over SLUB vs.
-kmemcheck. For example, if the command line includes "kmemcheck=1
-slub_debug=,dentry", then SLUB debugging will be used only for the "dentry"
-slab cache, and with kmemcheck tracking all the other caches. This is advanced
-usage, however, and is not generally recommended.
-
-
-3.2. Run-time enable/disable
-============================
-
-When the kernel has booted, it is possible to enable or disable kmemcheck at
-run-time. WARNING: This feature is still experimental and may cause false
-positive warnings to appear. Therefore, try not to use this. If you find that
-it doesn't work properly (e.g. you see an unreasonable amount of warnings), I
-will be happy to take bug reports.
-
-Use the file /proc/sys/kernel/kmemcheck for this purpose, e.g.:
-
-	$ echo 0 > /proc/sys/kernel/kmemcheck # disables kmemcheck
-
-The numbers are the same as for the kmemcheck= command-line option.
-
-
-3.3. Debugging
-==============
-
-A typical report will look something like this:
-
-WARNING: kmemcheck: Caught 32-bit read from uninitialized memory (ffff88003e4a2024)
-80000000000000000000000000000000000000000088ffff0000000000000000
- i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
-         ^
-
-Pid: 1856, comm: ntpdate Not tainted 2.6.29-rc5 #264 945P-A
-RIP: 0010:[<ffffffff8104ede8>]  [<ffffffff8104ede8>] __dequeue_signal+0xc8/0x190
-RSP: 0018:ffff88003cdf7d98  EFLAGS: 00210002
-RAX: 0000000000000030 RBX: ffff88003d4ea968 RCX: 0000000000000009
-RDX: ffff88003e5d6018 RSI: ffff88003e5d6024 RDI: ffff88003cdf7e84
-RBP: ffff88003cdf7db8 R08: ffff88003e5d6000 R09: 0000000000000000
-R10: 0000000000000080 R11: 0000000000000000 R12: 000000000000000e
-R13: ffff88003cdf7e78 R14: ffff88003d530710 R15: ffff88003d5a98c8
-FS:  0000000000000000(0000) GS:ffff880001982000(0063) knlGS:00000
-CS:  0010 DS: 002b ES: 002b CR0: 0000000080050033
-CR2: ffff88003f806ea0 CR3: 000000003c036000 CR4: 00000000000006a0
-DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
-DR3: 0000000000000000 DR6: 00000000ffff4ff0 DR7: 0000000000000400
- [<ffffffff8104f04e>] dequeue_signal+0x8e/0x170
- [<ffffffff81050bd8>] get_signal_to_deliver+0x98/0x390
- [<ffffffff8100b87d>] do_notify_resume+0xad/0x7d0
- [<ffffffff8100c7b5>] int_signal+0x12/0x17
- [<ffffffffffffffff>] 0xffffffffffffffff
-
-The single most valuable information in this report is the RIP (or EIP on 32-
-bit) value. This will help us pinpoint exactly which instruction that caused
-the warning.
-
-If your kernel was compiled with CONFIG_DEBUG_INFO=y, then all we have to do
-is give this address to the addr2line program, like this:
-
-	$ addr2line -e vmlinux -i ffffffff8104ede8
-	arch/x86/include/asm/string_64.h:12
-	include/asm-generic/siginfo.h:287
-	kernel/signal.c:380
-	kernel/signal.c:410
-
-The "-e vmlinux" tells addr2line which file to look in. IMPORTANT: This must
-be the vmlinux of the kernel that produced the warning in the first place! If
-not, the line number information will almost certainly be wrong.
-
-The "-i" tells addr2line to also print the line numbers of inlined functions.
-In this case, the flag was very important, because otherwise, it would only
-have printed the first line, which is just a call to memcpy(), which could be
-called from a thousand places in the kernel, and is therefore not very useful.
-These inlined functions would not show up in the stack trace above, simply
-because the kernel doesn't load the extra debugging information. This
-technique can of course be used with ordinary kernel oopses as well.
-
-In this case, it's the caller of memcpy() that is interesting, and it can be
-found in include/asm-generic/siginfo.h, line 287:
-
-281 static inline void copy_siginfo(struct siginfo *to, struct siginfo *from)
-282 {
-283         if (from->si_code < 0)
-284                 memcpy(to, from, sizeof(*to));
-285         else
-286                 /* _sigchld is currently the largest know union member */
-287                 memcpy(to, from, __ARCH_SI_PREAMBLE_SIZE + sizeof(from->_sifields._sigchld));
-288 }
-
-Since this was a read (kmemcheck usually warns about reads only, though it can
-warn about writes to unallocated or freed memory as well), it was probably the
-"from" argument which contained some uninitialized bytes. Following the chain
-of calls, we move upwards to see where "from" was allocated or initialized,
-kernel/signal.c, line 380:
-
-359 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
-360 {
-...
-367         list_for_each_entry(q, &list->list, list) {
-368                 if (q->info.si_signo == sig) {
-369                         if (first)
-370                                 goto still_pending;
-371                         first = q;
-...
-377         if (first) {
-378 still_pending:
-379                 list_del_init(&first->list);
-380                 copy_siginfo(info, &first->info);
-381                 __sigqueue_free(first);
-...
-392         }
-393 }
-
-Here, it is &first->info that is being passed on to copy_siginfo(). The
-variable "first" was found on a list -- passed in as the second argument to
-collect_signal(). We  continue our journey through the stack, to figure out
-where the item on "list" was allocated or initialized. We move to line 410:
-
-395 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
-396                         siginfo_t *info)
-397 {
-...
-410                 collect_signal(sig, pending, info);
-...
-414 }
-
-Now we need to follow the "pending" pointer, since that is being passed on to
-collect_signal() as "list". At this point, we've run out of lines from the
-"addr2line" output. Not to worry, we just paste the next addresses from the
-kmemcheck stack dump, i.e.:
-
- [<ffffffff8104f04e>] dequeue_signal+0x8e/0x170
- [<ffffffff81050bd8>] get_signal_to_deliver+0x98/0x390
- [<ffffffff8100b87d>] do_notify_resume+0xad/0x7d0
- [<ffffffff8100c7b5>] int_signal+0x12/0x17
-
-	$ addr2line -e vmlinux -i ffffffff8104f04e ffffffff81050bd8 \
-		ffffffff8100b87d ffffffff8100c7b5
-	kernel/signal.c:446
-	kernel/signal.c:1806
-	arch/x86/kernel/signal.c:805
-	arch/x86/kernel/signal.c:871
-	arch/x86/kernel/entry_64.S:694
-
-Remember that since these addresses were found on the stack and not as the
-RIP value, they actually point to the _next_ instruction (they are return
-addresses). This becomes obvious when we look at the code for line 446:
-
-422 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
-423 {
-...
-431                 signr = __dequeue_signal(&tsk->signal->shared_pending,
-432                                          mask, info);
-433                 /*
-434                  * itimer signal ?
-435                  *
-436                  * itimers are process shared and we restart periodic
-437                  * itimers in the signal delivery path to prevent DoS
-438                  * attacks in the high resolution timer case. This is
-439                  * compliant with the old way of self restarting
-440                  * itimers, as the SIGALRM is a legacy signal and only
-441                  * queued once. Changing the restart behaviour to
-442                  * restart the timer in the signal dequeue path is
-443                  * reducing the timer noise on heavy loaded !highres
-444                  * systems too.
-445                  */
-446                 if (unlikely(signr == SIGALRM)) {
-...
-489 }
-
-So instead of looking at 446, we should be looking at 431, which is the line
-that executes just before 446. Here we see that what we are looking for is
-&tsk->signal->shared_pending.
-
-Our next task is now to figure out which function that puts items on this
-"shared_pending" list. A crude, but efficient tool, is git grep:
-
-	$ git grep -n 'shared_pending' kernel/
-	...
-	kernel/signal.c:828:    pending = group ? &t->signal->shared_pending : &t->pending;
-	kernel/signal.c:1339:   pending = group ? &t->signal->shared_pending : &t->pending;
-	...
-
-There were more results, but none of them were related to list operations,
-and these were the only assignments. We inspect the line numbers more closely
-and find that this is indeed where items are being added to the list:
-
-816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
-817                         int group)
-818 {
-...
-828         pending = group ? &t->signal->shared_pending : &t->pending;
-...
-851         q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
-852                                              (is_si_special(info) ||
-853                                               info->si_code >= 0)));
-854         if (q) {
-855                 list_add_tail(&q->list, &pending->list);
-...
-890 }
-
-and:
-
-1309 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
-1310 {
-....
-1339         pending = group ? &t->signal->shared_pending : &t->pending;
-1340         list_add_tail(&q->list, &pending->list);
-....
-1347 }
-
-In the first case, the list element we are looking for, "q", is being returned
-from the function __sigqueue_alloc(), which looks like an allocation function.
-Let's take a look at it:
-
-187 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
-188                                          int override_rlimit)
-189 {
-190         struct sigqueue *q = NULL;
-191         struct user_struct *user;
-192 
-193         /*
-194          * We won't get problems with the target's UID changing under us
-195          * because changing it requires RCU be used, and if t != current, the
-196          * caller must be holding the RCU readlock (by way of a spinlock) and
-197          * we use RCU protection here
-198          */
-199         user = get_uid(__task_cred(t)->user);
-200         atomic_inc(&user->sigpending);
-201         if (override_rlimit ||
-202             atomic_read(&user->sigpending) <=
-203                         t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
-204                 q = kmem_cache_alloc(sigqueue_cachep, flags);
-205         if (unlikely(q == NULL)) {
-206                 atomic_dec(&user->sigpending);
-207                 free_uid(user);
-208         } else {
-209                 INIT_LIST_HEAD(&q->list);
-210                 q->flags = 0;
-211                 q->user = user;
-212         }
-213 
-214         return q;
-215 }
-
-We see that this function initializes q->list, q->flags, and q->user. It seems
-that now is the time to look at the definition of "struct sigqueue", e.g.:
-
-14 struct sigqueue {
-15         struct list_head list;
-16         int flags;
-17         siginfo_t info;
-18         struct user_struct *user;
-19 };
-
-And, you might remember, it was a memcpy() on &first->info that caused the
-warning, so this makes perfect sense. It also seems reasonable to assume that
-it is the caller of __sigqueue_alloc() that has the responsibility of filling
-out (initializing) this member.
-
-But just which fields of the struct were uninitialized? Let's look at
-kmemcheck's report again:
-
-WARNING: kmemcheck: Caught 32-bit read from uninitialized memory (ffff88003e4a2024)
-80000000000000000000000000000000000000000088ffff0000000000000000
- i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
-         ^
-
-These first two lines are the memory dump of the memory object itself, and the
-shadow bytemap, respectively. The memory object itself is in this case
-&first->info. Just beware that the start of this dump is NOT the start of the
-object itself! The position of the caret (^) corresponds with the address of
-the read (ffff88003e4a2024).
-
-The shadow bytemap dump legend is as follows:
-
-  i - initialized
-  u - uninitialized
-  a - unallocated (memory has been allocated by the slab layer, but has not
-      yet been handed off to anybody)
-  f - freed (memory has been allocated by the slab layer, but has been freed
-      by the previous owner)
-
-In order to figure out where (relative to the start of the object) the
-uninitialized memory was located, we have to look at the disassembly. For
-that, we'll need the RIP address again:
-
-RIP: 0010:[<ffffffff8104ede8>]  [<ffffffff8104ede8>] __dequeue_signal+0xc8/0x190
-
-	$ objdump -d --no-show-raw-insn vmlinux | grep -C 8 ffffffff8104ede8:
-	ffffffff8104edc8:       mov    %r8,0x8(%r8)
-	ffffffff8104edcc:       test   %r10d,%r10d
-	ffffffff8104edcf:       js     ffffffff8104ee88 <__dequeue_signal+0x168>
-	ffffffff8104edd5:       mov    %rax,%rdx
-	ffffffff8104edd8:       mov    $0xc,%ecx
-	ffffffff8104eddd:       mov    %r13,%rdi
-	ffffffff8104ede0:       mov    $0x30,%eax
-	ffffffff8104ede5:       mov    %rdx,%rsi
-	ffffffff8104ede8:       rep movsl %ds:(%rsi),%es:(%rdi)
-	ffffffff8104edea:       test   $0x2,%al
-	ffffffff8104edec:       je     ffffffff8104edf0 <__dequeue_signal+0xd0>
-	ffffffff8104edee:       movsw  %ds:(%rsi),%es:(%rdi)
-	ffffffff8104edf0:       test   $0x1,%al
-	ffffffff8104edf2:       je     ffffffff8104edf5 <__dequeue_signal+0xd5>
-	ffffffff8104edf4:       movsb  %ds:(%rsi),%es:(%rdi)
-	ffffffff8104edf5:       mov    %r8,%rdi
-	ffffffff8104edf8:       callq  ffffffff8104de60 <__sigqueue_free>
-
-As expected, it's the "rep movsl" instruction from the memcpy() that causes
-the warning. We know about REP MOVSL that it uses the register RCX to count
-the number of remaining iterations. By taking a look at the register dump
-again (from the kmemcheck report), we can figure out how many bytes were left
-to copy:
-
-RAX: 0000000000000030 RBX: ffff88003d4ea968 RCX: 0000000000000009
-
-By looking at the disassembly, we also see that %ecx is being loaded with the
-value $0xc just before (ffffffff8104edd8), so we are very lucky. Keep in mind
-that this is the number of iterations, not bytes. And since this is a "long"
-operation, we need to multiply by 4 to get the number of bytes. So this means
-that the uninitialized value was encountered at 4 * (0xc - 0x9) = 12 bytes
-from the start of the object.
-
-We can now try to figure out which field of the "struct siginfo" that was not
-initialized. This is the beginning of the struct:
-
-40 typedef struct siginfo {
-41         int si_signo;
-42         int si_errno;
-43         int si_code;
-44                 
-45         union {
-..
-92         } _sifields;
-93 } siginfo_t;
-
-On 64-bit, the int is 4 bytes long, so it must the union member that has
-not been initialized. We can verify this using gdb:
-
-	$ gdb vmlinux
-	...
-	(gdb) p &((struct siginfo *) 0)->_sifields
-	$1 = (union {...} *) 0x10
-
-Actually, it seems that the union member is located at offset 0x10 -- which
-means that gcc has inserted 4 bytes of padding between the members si_code
-and _sifields. We can now get a fuller picture of the memory dump:
-
-         _----------------------------=> si_code
-        /        _--------------------=> (padding)
-       |        /        _------------=> _sifields(._kill._pid)
-       |       |        /        _----=> _sifields(._kill._uid)
-       |       |       |        / 
--------|-------|-------|-------|
-80000000000000000000000000000000000000000088ffff0000000000000000
- i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
-
-This allows us to realize another important fact: si_code contains the value
-0x80. Remember that x86 is little endian, so the first 4 bytes "80000000" are
-really the number 0x00000080. With a bit of research, we find that this is
-actually the constant SI_KERNEL defined in include/asm-generic/siginfo.h:
-
-144 #define SI_KERNEL       0x80            /* sent by the kernel from somewhere     */
-
-This macro is used in exactly one place in the x86 kernel: In send_signal()
-in kernel/signal.c:
-
-816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
-817                         int group)
-818 {
-...
-828         pending = group ? &t->signal->shared_pending : &t->pending;
-...
-851         q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
-852                                              (is_si_special(info) ||
-853                                               info->si_code >= 0)));
-854         if (q) {
-855                 list_add_tail(&q->list, &pending->list);
-856                 switch ((unsigned long) info) {
-...
-865                 case (unsigned long) SEND_SIG_PRIV:
-866                         q->info.si_signo = sig;
-867                         q->info.si_errno = 0;
-868                         q->info.si_code = SI_KERNEL;
-869                         q->info.si_pid = 0;
-870                         q->info.si_uid = 0;
-871                         break;
-...
-890 }
-
-Not only does this match with the .si_code member, it also matches the place
-we found earlier when looking for where siginfo_t objects are enqueued on the
-"shared_pending" list.
-
-So to sum up: It seems that it is the padding introduced by the compiler
-between two struct fields that is uninitialized, and this gets reported when
-we do a memcpy() on the struct. This means that we have identified a false
-positive warning.
-
-Normally, kmemcheck will not report uninitialized accesses in memcpy() calls
-when both the source and destination addresses are tracked. (Instead, we copy
-the shadow bytemap as well). In this case, the destination address clearly
-was not tracked. We can dig a little deeper into the stack trace from above:
-
-	arch/x86/kernel/signal.c:805
-	arch/x86/kernel/signal.c:871
-	arch/x86/kernel/entry_64.S:694
-
-And we clearly see that the destination siginfo object is located on the
-stack:
-
-782 static void do_signal(struct pt_regs *regs)
-783 {
-784         struct k_sigaction ka;
-785         siginfo_t info;
-...
-804         signr = get_signal_to_deliver(&info, &ka, regs, NULL);
-...
-854 }
-
-And this &info is what eventually gets passed to copy_siginfo() as the
-destination argument.
-
-Now, even though we didn't find an actual error here, the example is still a
-good one, because it shows how one would go about to find out what the report
-was all about.
-
-
-3.4. Annotating false positives
-===============================
-
-There are a few different ways to make annotations in the source code that
-will keep kmemcheck from checking and reporting certain allocations. Here
-they are:
-
-  o __GFP_NOTRACK_FALSE_POSITIVE
-
-	This flag can be passed to kmalloc() or kmem_cache_alloc() (therefore
-	also to other functions that end up calling one of these) to indicate
-	that the allocation should not be tracked because it would lead to
-	a false positive report. This is a "big hammer" way of silencing
-	kmemcheck; after all, even if the false positive pertains to 
-	particular field in a struct, for example, we will now lose the
-	ability to find (real) errors in other parts of the same struct.
-
-	Example:
-
-	    /* No warnings will ever trigger on accessing any part of x */
-	    x = kmalloc(sizeof *x, GFP_KERNEL | __GFP_NOTRACK_FALSE_POSITIVE);
-
-  o kmemcheck_bitfield_begin(name)/kmemcheck_bitfield_end(name) and
-	kmemcheck_annotate_bitfield(ptr, name)
-
-	The first two of these three macros can be used inside struct
-	definitions to signal, respectively, the beginning and end of a
-	bitfield. Additionally, this will assign the bitfield a name, which
-	is given as an argument to the macros.
-
-	Having used these markers, one can later use
-	kmemcheck_annotate_bitfield() at the point of allocation, to indicate
-	which parts of the allocation is part of a bitfield.
-
-	Example:
-
-	    struct foo {
-		int x;
-
-		kmemcheck_bitfield_begin(flags);
-		int flag_a:1;
-		int flag_b:1;
-		kmemcheck_bitfield_end(flags);
-
-		int y;
-	    };
-
-	    struct foo *x = kmalloc(sizeof *x);
-
-	    /* No warnings will trigger on accessing the bitfield of x */
-	    kmemcheck_annotate_bitfield(x, flags);
-
-	Note that kmemcheck_annotate_bitfield() can be used even before the
-	return value of kmalloc() is checked -- in other words, passing NULL
-	as the first argument is legal (and will do nothing).
-
-
-4. Reporting errors
-===================
-
-As we have seen, kmemcheck will produce false positive reports. Therefore, it
-is not very wise to blindly post kmemcheck warnings to mailing lists and
-maintainers. Instead, I encourage maintainers and developers to find errors
-in their own code. If you get a warning, you can try to work around it, try
-to figure out if it's a real error or not, or simply ignore it. Most
-developers know their own code and will quickly and efficiently determine the
-root cause of a kmemcheck report. This is therefore also the most efficient
-way to work with kmemcheck.
-
-That said, we (the kmemcheck maintainers) will always be on the lookout for
-false positives that we can annotate and silence. So whatever you find,
-please drop us a note privately! Kernel configs and steps to reproduce (if
-available) are of course a great help too.
-
-Happy hacking!
-
-
-5. Technical description
-========================
-
-kmemcheck works by marking memory pages non-present. This means that whenever
-somebody attempts to access the page, a page fault is generated. The page
-fault handler notices that the page was in fact only hidden, and so it calls
-on the kmemcheck code to make further investigations.
-
-When the investigations are completed, kmemcheck "shows" the page by marking
-it present (as it would be under normal circumstances). This way, the
-interrupted code can continue as usual.
-
-But after the instruction has been executed, we should hide the page again, so
-that we can catch the next access too! Now kmemcheck makes use of a debugging
-feature of the processor, namely single-stepping. When the processor has
-finished the one instruction that generated the memory access, a debug
-exception is raised. From here, we simply hide the page again and continue
-execution, this time with the single-stepping feature turned off.
-
-kmemcheck requires some assistance from the memory allocator in order to work.
-The memory allocator needs to
-
-  1. Tell kmemcheck about newly allocated pages and pages that are about to
-     be freed. This allows kmemcheck to set up and tear down the shadow memory
-     for the pages in question. The shadow memory stores the status of each
-     byte in the allocation proper, e.g. whether it is initialized or
-     uninitialized.
-
-  2. Tell kmemcheck which parts of memory should be marked uninitialized.
-     There are actually a few more states, such as "not yet allocated" and
-     "recently freed".
-
-If a slab cache is set up using the SLAB_NOTRACK flag, it will never return
-memory that can take page faults because of kmemcheck.
-
-If a slab cache is NOT set up using the SLAB_NOTRACK flag, callers can still
-request memory with the __GFP_NOTRACK or __GFP_NOTRACK_FALSE_POSITIVE flags.
-This does not prevent the page faults from occurring, however, but marks the
-object in question as being initialized so that no warnings will ever be
-produced for this object.
-
-Currently, the SLAB and SLUB allocators are supported by kmemcheck.
diff --git a/MAINTAINERS b/MAINTAINERS
index b235e0d..8107235 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -6803,7 +6803,7 @@  KMEMCHECK
 M:	Vegard Nossum <vegardno@ifi.uio.no>
 M:	Pekka Enberg <penberg@kernel.org>
 S:	Maintained
-F:	Documentation/kmemcheck.txt
+F:	Documentation/dev-tools/kmemcheck.rst
 F:	arch/x86/include/asm/kmemcheck.h
 F:	arch/x86/mm/kmemcheck/
 F:	include/linux/kmemcheck.h