@@ -513,6 +513,9 @@ vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_mi
vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
enum kvm_mem_region_type type);
+vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
+vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
+ uint32_t data_memslot);
vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
enum kvm_mem_region_type type);
@@ -1371,6 +1371,58 @@ vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
return vaddr_start;
}
+/*
+ * VM Virtual Address Allocate Shared/Encrypted
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * sz - Size in bytes
+ * vaddr_min - Minimum starting virtual address
+ * paddr_min - Minimum starting physical address
+ * data_memslot - memslot number to allocate in
+ * encrypt - Whether the region should be handled as encrypted
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Starting guest virtual address
+ *
+ * Allocates at least sz bytes within the virtual address space of the vm
+ * given by vm. The allocated bytes are mapped to a virtual address >=
+ * the address given by vaddr_min. Note that each allocation uses a
+ * a unique set of pages, with the minimum real allocation being at least
+ * a page.
+ */
+static vm_vaddr_t
+_vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
+ vm_paddr_t paddr_min, uint32_t data_memslot, bool encrypt)
+{
+ uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
+
+ virt_pgd_alloc(vm);
+ vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages,
+ paddr_min,
+ data_memslot, encrypt);
+
+ /*
+ * Find an unused range of virtual page addresses of at least
+ * pages in length.
+ */
+ vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
+
+ /* Map the virtual pages. */
+ for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
+ pages--, vaddr += vm->page_size, paddr += vm->page_size) {
+
+ virt_pg_map(vm, vaddr, paddr);
+
+ sparsebit_set(vm->vpages_mapped,
+ vaddr >> vm->page_shift);
+ }
+
+ return vaddr_start;
+}
+
/*
* VM Virtual Address Allocate
*
@@ -1392,7 +1444,34 @@ vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
*/
vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
{
- return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
+ return _vm_vaddr_alloc(vm, sz, vaddr_min,
+ KVM_UTIL_MIN_PFN * vm->page_size, 0,
+ vm->protected);
+}
+
+vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
+{
+ return _vm_vaddr_alloc(vm, sz, vaddr_min,
+ KVM_UTIL_MIN_PFN * vm->page_size, 0, false);
+}
+
+/**
+ * Allocate memory in @vm of size @sz in memslot with id @data_memslot,
+ * beginning with the desired address of @vaddr_min.
+ *
+ * If there isn't enough memory at @vaddr_min, find the next possible address
+ * that can meet the requested size in the given memslot.
+ *
+ * Return the address where the memory is allocated.
+ */
+vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
+ uint32_t data_memslot)
+{
+ vm_vaddr_t gva = _vm_vaddr_alloc(vm, sz, vaddr_min, (vm_paddr_t) vaddr_min,
+ data_memslot, vm->protected);
+ ASSERT_EQ(gva, addr_gva2gpa(vm, gva));
+
+ return gva;
}
/*