@@ -21,6 +21,7 @@ x86-specific Documentation
tlb
mtrr
pat
+ intel-hfi
intel-iommu
intel_txt
amd-memory-encryption
new file mode 100644
@@ -0,0 +1,72 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============================================================
+Hardware-Feedback Interface for scheduling on Intel Hardware
+============================================================
+
+Overview
+--------
+
+Intel has described the Hardware Feedback Interface (HFI) in the Intel 64 and
+IA-32 Architectures Software Developer's Manual (Intel SDM) Volume 3 Section
+14.6 [1]_.
+
+The HFI gives the operating system a performance and energy efficiency
+capability data for each CPU in the system. Linux can use the information from
+the HFI to influence task placement decisions.
+
+The Hardware Feedback Interface
+-------------------------------
+
+The Hardware Feedback Interface provides to the operating system information
+about the performance and energy efficiency of each CPU in the system. Each
+capability is given as a unit-less quantity in the range [0-255]. Higher values
+indicate higher capability. Energy efficiency and performance are reported in
+separate capabilities. Even though on some systems these two metrics may be
+related, they are specified as independent capabilities in the Intel SDM.
+
+These capabilities may change at runtime as a result of changes in the
+operating conditions of the system or the action of external factors. The rate
+at which these capabilities are updated is specific to each processor model. On
+some models, capabilities are set at boot time and never change. On others,
+capabilities may change every tens of milliseconds. For instance, a remote
+mechanism may be used to lower Thermal Design Power. Such change can be
+reflected in the HFI. Likewise, if the system needs to be throttled due to
+excessive heat, the HFI may reflect reduced performance on specific CPUs.
+
+The kernel or a userspace policy daemon can use these capabilities to modify
+task placement decisions. For instance, if either the performance or energy
+capabilities of a given logical processor becomes zero, it is an indication that
+the hardware recommends to the operating system to not schedule any tasks on
+that processor for performance or energy efficiency reasons, respectively.
+
+Implementation details for Linux
+--------------------------------
+
+The infrastructure to handle thermal event interrupts has two parts. In the
+Local Vector Table of a CPU's local APIC, there exists a register for the
+Thermal Monitor Register. This register controls how interrupts are delivered
+to a CPU when the thermal monitor generates and interrupt. Further details
+can be found in the Intel SDM Vol. 3 Section 10.5 [1]_.
+
+The thermal monitor may generate interrupts per CPU or per package. The HFI
+generates package-level interrupts. This monitor is configured and initialized
+via a set of machine-specific registers. Specifically, the HFI interrupt and
+status are controlled via designated bits in the IA32_PACKAGE_THERM_INTERRUPT
+and IA32_PACKAGE_THERM_STATUS registers, respectively. There exists one HFI
+table per package. Further details can be found in the Intel SDM Vol. 3
+Section 14.9 [1]_.
+
+The hardware issues an HFI interrupt after updating the HFI table and is ready
+for the operating system to consume it. CPUs receive such interrupt via the
+thermal entry in the Local APIC's Local Vector Table.
+
+When servicing such interrupt, the HFI driver parses the updated table and
+relays the update to userspace using the thermal notification framework. Given
+that there may be many HFI updates every second, the updates relayed to
+userspace are throttled at a rate of CONFIG_HZ jiffies.
+
+References
+----------
+
+.. [1] https://www.intel.com/sdm