new file mode 100644
@@ -0,0 +1,30 @@
+LICENCE
+=======
+
+The software in this repository is covered by the following licence.
+
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
new file mode 100644
@@ -0,0 +1,128 @@
+VIXL: AArch64 Runtime Code Generation Library Version 1.1
+=========================================================
+
+Contents:
+
+ * Requirements
+ * Overview
+ * Known limitations
+ * Usage
+
+
+Requirements
+============
+
+To build VIXL the following software is required:
+
+ 1. Python 2.7
+ 2. SCons 2.0
+ 3. GCC 4.4
+
+A 64-bit host machine is required, implementing an LP64 data model. VIXL has
+only been tested using GCC on Ubuntu systems.
+
+To run the linter stage of the tests, the following software is also required:
+
+ 1. Git
+ 2. [Google's `cpplint.py`][cpplint]
+
+Refer to the 'Usage' section for details.
+
+
+Overview
+========
+
+VIXL is made of three components.
+
+ 1. A programmatic assembler to generate A64 code at runtime. The assembler
+ abstracts some of the constraints of the A64 ISA, for example most
+ instructions support any immediate.
+ 2. A disassembler which can print any instruction emitted by the assembler.
+ 3. A simulator which can simulate any instruction emitted by the assembler.
+ The simulator allows generated code to be run on another architecture
+ without the need for a full ISA model.
+
+The VIXL git repository can be found [on GitHub][vixl]. Changes from previous
+versions of VIXL can be found in the [Changelog](doc/changelog.md).
+
+
+Known Limitations
+=================
+
+VIXL was developed to target JavaScript engines so a number of features from A64
+were deemed unnecessary:
+
+ * No Advanced SIMD support.
+ * Limited rounding mode support for floating point.
+ * No support for synchronisation instructions.
+ * Limited support for system instructions.
+ * A few miscellaneous integer and floating point instructions are missing.
+
+The VIXL simulator supports only those instructions that the VIXL assembler can
+generate. The `doc` directory contains a
+[list of supported instructions](doc/supported-instructions.md).
+
+
+Usage
+=====
+
+
+Running all Tests
+-----------------
+
+The helper script `tools/presubmit.py` will build and run every test that is
+provided with VIXL, in both release and debug mode. It is a useful script for
+verifying that all of VIXL's dependencies are in place and that VIXL is working
+as it should.
+
+By default, the `tools/presubmit.py` script runs a linter to check that the
+source code conforms with the code style guide, and to detect several common
+errors that the compiler may not warn about. This is most useful for VIXL
+developers. The linter has the following dependencies:
+
+ 1. Git must be installed, and the VIXL project must be in a valid Git
+ repository, such as one produced using `git clone`.
+ 2. `cpplint.py`, [as provided by Google][cpplint], must be available (and
+ executable) on the `PATH`. Only revision 104 has been tested with VIXL.
+
+It is possible to tell `tools/presubmit.py` to skip the linter stage by passing
+`--nolint`. This removes the dependency on `cpplint.py` and Git. The `--nolint`
+option is implied if the VIXL project is a snapshot (with no `.git` directory).
+
+
+Building and Running Specific Tests
+-----------------------------------
+
+The helper script `tools/test.py` will build and run all the tests for the
+assembler and disassembler in release mode. Add `--mode=debug` to build and run
+in debug mode. The tests can be built separately using SCons: `scons
+target=cctest`.
+
+
+Building and Running the Benchmarks
+-----------------------------------
+
+There are two very basic benchmarks provided with VIXL:
+
+ 1. bench\_dataop, emitting adds
+ 2. bench\_branch, emitting branches
+
+To build one benchmark: `scons target=bench_xxx`, then run it as
+`./bench_xxx_sim <number of iterations>`. The benchmarks do not report a
+figure; they should be timed using the `time` command.
+
+
+Getting Started
+---------------
+
+A short introduction to using VIXL can be found [here](doc/getting-started.md).
+Example source code is provided in the `examples` directory. Build this using
+`scons target=examples` from the root directory.
+
+
+
+[cpplint]: https://google-styleguide.googlecode.com/svn-history/r104/trunk/cpplint/cpplint.py
+ "Google's cpplint.py script."
+
+[vixl]: https://github.com/armvixl/vixl
+ "The VIXL repository on GitHub."
new file mode 100644
@@ -0,0 +1,12 @@
+VIXL Change Log
+===============
+
+* 1.1
+ + Improved robustness of instruction decoder and disassembler.
+ + Added support for double-to-float conversions using `fcvt`.
+ + Added support for more fixed-point to floating-point conversions (`ucvtf`
+ and `scvtf`).
+ + Added instruction statistics collection class `instrument-a64.cc`.
+
+* 1.0
+ + Initial release.
new file mode 100644
@@ -0,0 +1,1133 @@
+VIXL Supported Instruction List
+===============================
+
+This is a list of the AArch64 instructions supported by the VIXL assembler,
+disassembler and simulator. The simulator may not support all floating point
+operations to the precision required by AArch64 - please check the simulator
+source code for details.
+
+AArch64 integer instructions
+----------------------------
+
+### adc ###
+
+Add with carry bit.
+
+ void adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags)
+
+
+### add ###
+
+Add.
+
+ void add(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags)
+
+
+### adr ###
+
+Calculate the address of a PC offset.
+
+ void adr(const Register& rd, int imm21)
+
+
+### adr ###
+
+Calculate the address of a label.
+
+ void adr(const Register& rd, Label* label)
+
+
+### asr ###
+
+Arithmetic shift right.
+
+ inline void asr(const Register& rd, const Register& rn, unsigned shift)
+
+
+### asrv ###
+
+Arithmetic shift right by variable.
+
+ void asrv(const Register& rd, const Register& rn, const Register& rm)
+
+
+### b ###
+
+Branch to PC offset.
+
+ void b(int imm26, Condition cond = al)
+
+
+### b ###
+
+Branch to label.
+
+ void b(Label* label, Condition cond = al)
+
+
+### bfi ###
+
+Bitfield insert.
+
+ inline void bfi(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width)
+
+
+### bfm ###
+
+Bitfield move.
+
+ void bfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms)
+
+
+### bfxil ###
+
+Bitfield extract and insert low.
+
+ inline void bfxil(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width)
+
+
+### bic ###
+
+Bit clear (A & ~B).
+
+ void bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags)
+
+
+### bl ###
+
+Branch with link to PC offset.
+
+ void bl(int imm26)
+
+
+### bl ###
+
+Branch with link to label.
+
+ void bl(Label* label)
+
+
+### blr ###
+
+Branch with link to register.
+
+ void blr(const Register& xn)
+
+
+### br ###
+
+Branch to register.
+
+ void br(const Register& xn)
+
+
+### brk ###
+
+Monitor debug-mode breakpoint.
+
+ void brk(int code)
+
+
+### cbnz ###
+
+Compare and branch to PC offset if not zero.
+
+ void cbnz(const Register& rt, int imm19)
+
+
+### cbnz ###
+
+Compare and branch to label if not zero.
+
+ void cbnz(const Register& rt, Label* label)
+
+
+### cbz ###
+
+Compare and branch to PC offset if zero.
+
+ void cbz(const Register& rt, int imm19)
+
+
+### cbz ###
+
+Compare and branch to label if zero.
+
+ void cbz(const Register& rt, Label* label)
+
+
+### ccmn ###
+
+Conditional compare negative.
+
+ void ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond)
+
+
+### ccmp ###
+
+Conditional compare.
+
+ void ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond)
+
+
+### cinc ###
+
+Conditional increment: rd = cond ? rn + 1 : rn.
+
+ void cinc(const Register& rd, const Register& rn, Condition cond)
+
+
+### cinv ###
+
+Conditional invert: rd = cond ? ~rn : rn.
+
+ void cinv(const Register& rd, const Register& rn, Condition cond)
+
+
+### cls ###
+
+Count leading sign bits.
+
+ void cls(const Register& rd, const Register& rn)
+
+
+### clz ###
+
+Count leading zeroes.
+
+ void clz(const Register& rd, const Register& rn)
+
+
+### cmn ###
+
+Compare negative.
+
+ void cmn(const Register& rn, const Operand& operand)
+
+
+### cmp ###
+
+Compare.
+
+ void cmp(const Register& rn, const Operand& operand)
+
+
+### cneg ###
+
+Conditional negate: rd = cond ? -rn : rn.
+
+ void cneg(const Register& rd, const Register& rn, Condition cond)
+
+
+### csel ###
+
+Conditional select: rd = cond ? rn : rm.
+
+ void csel(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond)
+
+
+### cset ###
+
+Conditional set: rd = cond ? 1 : 0.
+
+ void cset(const Register& rd, Condition cond)
+
+
+### csetm ###
+
+Conditional set mask: rd = cond ? -1 : 0.
+
+ void csetm(const Register& rd, Condition cond)
+
+
+### csinc ###
+
+Conditional select increment: rd = cond ? rn : rm + 1.
+
+ void csinc(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond)
+
+
+### csinv ###
+
+Conditional select inversion: rd = cond ? rn : ~rm.
+
+ void csinv(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond)
+
+
+### csneg ###
+
+Conditional select negation: rd = cond ? rn : -rm.
+
+ void csneg(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond)
+
+
+### eon ###
+
+Bitwise enor/xnor (A ^ ~B).
+
+ void eon(const Register& rd, const Register& rn, const Operand& operand)
+
+
+### eor ###
+
+Bitwise eor/xor (A ^ B).
+
+ void eor(const Register& rd, const Register& rn, const Operand& operand)
+
+
+### extr ###
+
+Extract.
+
+ void extr(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ unsigned lsb)
+
+
+### hint ###
+
+System hint.
+
+ void hint(SystemHint code)
+
+
+### hlt ###
+
+Halting debug-mode breakpoint.
+
+ void hlt(int code)
+
+
+### ldnp ###
+
+Load integer or FP register pair, non-temporal.
+
+ void ldnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src)
+
+
+### ldp ###
+
+Load integer or FP register pair.
+
+ void ldp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src)
+
+
+### ldpsw ###
+
+Load word pair with sign extension.
+
+ void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src)
+
+
+### ldr ###
+
+Load integer or FP register.
+
+ void ldr(const CPURegister& rt, const MemOperand& src)
+
+
+### ldr ###
+
+Load literal to FP register.
+
+ void ldr(const FPRegister& ft, double imm)
+
+
+### ldr ###
+
+Load literal to register.
+
+ void ldr(const Register& rt, uint64_t imm)
+
+
+### ldrb ###
+
+Load byte.
+
+ void ldrb(const Register& rt, const MemOperand& src)
+
+
+### ldrh ###
+
+Load half-word.
+
+ void ldrh(const Register& rt, const MemOperand& src)
+
+
+### ldrsb ###
+
+Load byte with sign extension.
+
+ void ldrsb(const Register& rt, const MemOperand& src)
+
+
+### ldrsh ###
+
+Load half-word with sign extension.
+
+ void ldrsh(const Register& rt, const MemOperand& src)
+
+
+### ldrsw ###
+
+Load word with sign extension.
+
+ void ldrsw(const Register& rt, const MemOperand& src)
+
+
+### lsl ###
+
+Logical shift left.
+
+ inline void lsl(const Register& rd, const Register& rn, unsigned shift)
+
+
+### lslv ###
+
+Logical shift left by variable.
+
+ void lslv(const Register& rd, const Register& rn, const Register& rm)
+
+
+### lsr ###
+
+Logical shift right.
+
+ inline void lsr(const Register& rd, const Register& rn, unsigned shift)
+
+
+### lsrv ###
+
+Logical shift right by variable.
+
+ void lsrv(const Register& rd, const Register& rn, const Register& rm)
+
+
+### madd ###
+
+Multiply and accumulate.
+
+ void madd(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra)
+
+
+### mneg ###
+
+Negated multiply.
+
+ void mneg(const Register& rd, const Register& rn, const Register& rm)
+
+
+### mov ###
+
+Move register to register.
+
+ void mov(const Register& rd, const Register& rn)
+
+
+### movk ###
+
+Move immediate and keep.
+
+ void movk(const Register& rd, uint64_t imm, int shift = -1)
+
+
+### movn ###
+
+Move inverted immediate.
+
+ void movn(const Register& rd, uint64_t imm, int shift = -1)
+
+
+### movz ###
+
+Move immediate.
+
+ void movz(const Register& rd, uint64_t imm, int shift = -1)
+
+
+### mrs ###
+
+Move to register from system register.
+
+ void mrs(const Register& rt, SystemRegister sysreg)
+
+
+### msr ###
+
+Move from register to system register.
+
+ void msr(SystemRegister sysreg, const Register& rt)
+
+
+### msub ###
+
+Multiply and subtract.
+
+ void msub(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra)
+
+
+### mul ###
+
+Multiply.
+
+ void mul(const Register& rd, const Register& rn, const Register& rm)
+
+
+### mvn ###
+
+Move inverted operand to register.
+
+ void mvn(const Register& rd, const Operand& operand)
+
+
+### neg ###
+
+Negate.
+
+ void neg(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags)
+
+
+### ngc ###
+
+Negate with carry bit.
+
+ void ngc(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags)
+
+
+### nop ###
+
+No-op.
+
+ void nop()
+
+
+### orn ###
+
+Bitwise nor (A | ~B).
+
+ void orn(const Register& rd, const Register& rn, const Operand& operand)
+
+
+### orr ###
+
+Bitwise or (A | B).
+
+ void orr(const Register& rd, const Register& rn, const Operand& operand)
+
+
+### rbit ###
+
+Bit reverse.
+
+ void rbit(const Register& rd, const Register& rn)
+
+
+### ret ###
+
+Branch to register with return hint.
+
+ void ret(const Register& xn = lr)
+
+
+### rev ###
+
+Reverse bytes.
+
+ void rev(const Register& rd, const Register& rn)
+
+
+### rev16 ###
+
+Reverse bytes in 16-bit half words.
+
+ void rev16(const Register& rd, const Register& rn)
+
+
+### rev32 ###
+
+Reverse bytes in 32-bit words.
+
+ void rev32(const Register& rd, const Register& rn)
+
+
+### ror ###
+
+Rotate right.
+
+ inline void ror(const Register& rd, const Register& rs, unsigned shift)
+
+
+### rorv ###
+
+Rotate right by variable.
+
+ void rorv(const Register& rd, const Register& rn, const Register& rm)
+
+
+### sbc ###
+
+Subtract with carry bit.
+
+ void sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags)
+
+
+### sbfiz ###
+
+Signed bitfield insert with zero at right.
+
+ inline void sbfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width)
+
+
+### sbfm ###
+
+Signed bitfield move.
+
+ void sbfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms)
+
+
+### sbfx ###
+
+Signed bitfield extract.
+
+ inline void sbfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width)
+
+
+### scvtf ###
+
+Convert signed integer or fixed point to FP.
+
+ void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0)
+
+
+### sdiv ###
+
+Signed integer divide.
+
+ void sdiv(const Register& rd, const Register& rn, const Register& rm)
+
+
+### smaddl ###
+
+Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+
+ void smaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra)
+
+
+### smsubl ###
+
+Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+
+ void smsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra)
+
+
+### smulh ###
+
+Signed multiply high: 64 x 64 -> 64-bit <127:64>.
+
+ void smulh(const Register& xd, const Register& xn, const Register& xm)
+
+
+### smull ###
+
+Signed long multiply: 32 x 32 -> 64-bit.
+
+ void smull(const Register& rd, const Register& rn, const Register& rm)
+
+
+### stnp ###
+
+Store integer or FP register pair, non-temporal.
+
+ void stnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst)
+
+
+### stp ###
+
+Store integer or FP register pair.
+
+ void stp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst)
+
+
+### str ###
+
+Store integer or FP register.
+
+ void str(const CPURegister& rt, const MemOperand& dst)
+
+
+### strb ###
+
+Store byte.
+
+ void strb(const Register& rt, const MemOperand& dst)
+
+
+### strh ###
+
+Store half-word.
+
+ void strh(const Register& rt, const MemOperand& dst)
+
+
+### sub ###
+
+Subtract.
+
+ void sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags)
+
+
+### sxtb ###
+
+Signed extend byte.
+
+ inline void sxtb(const Register& rd, const Register& rn)
+
+
+### sxth ###
+
+Signed extend halfword.
+
+ inline void sxth(const Register& rd, const Register& rn)
+
+
+### sxtw ###
+
+Signed extend word.
+
+ inline void sxtw(const Register& rd, const Register& rn)
+
+
+### tbnz ###
+
+Test bit and branch to PC offset if not zero.
+
+ void tbnz(const Register& rt, unsigned bit_pos, int imm14)
+
+
+### tbnz ###
+
+Test bit and branch to label if not zero.
+
+ void tbnz(const Register& rt, unsigned bit_pos, Label* label)
+
+
+### tbz ###
+
+Test bit and branch to PC offset if zero.
+
+ void tbz(const Register& rt, unsigned bit_pos, int imm14)
+
+
+### tbz ###
+
+Test bit and branch to label if zero.
+
+ void tbz(const Register& rt, unsigned bit_pos, Label* label)
+
+
+### tst ###
+
+Bit test and set flags.
+
+ void tst(const Register& rn, const Operand& operand)
+
+
+### ubfiz ###
+
+Unsigned bitfield insert with zero at right.
+
+ inline void ubfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width)
+
+
+### ubfm ###
+
+Unsigned bitfield move.
+
+ void ubfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms)
+
+
+### ubfx ###
+
+Unsigned bitfield extract.
+
+ inline void ubfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width)
+
+
+### ucvtf ###
+
+Convert unsigned integer or fixed point to FP.
+
+ void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0)
+
+
+### udiv ###
+
+Unsigned integer divide.
+
+ void udiv(const Register& rd, const Register& rn, const Register& rm)
+
+
+### umaddl ###
+
+Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+
+ void umaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra)
+
+
+### umsubl ###
+
+Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+
+ void umsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra)
+
+
+### uxtb ###
+
+Unsigned extend byte.
+
+ inline void uxtb(const Register& rd, const Register& rn)
+
+
+### uxth ###
+
+Unsigned extend halfword.
+
+ inline void uxth(const Register& rd, const Register& rn)
+
+
+### uxtw ###
+
+Unsigned extend word.
+
+ inline void uxtw(const Register& rd, const Register& rn)
+
+
+
+AArch64 floating point instructions
+-----------------------------------
+
+### fabs ###
+
+FP absolute.
+
+ void fabs(const FPRegister& fd, const FPRegister& fn)
+
+
+### fadd ###
+
+FP add.
+
+ void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm)
+
+
+### fccmp ###
+
+FP conditional compare.
+
+ void fccmp(const FPRegister& fn,
+ const FPRegister& fm,
+ StatusFlags nzcv,
+ Condition cond)
+
+
+### fcmp ###
+
+FP compare immediate.
+
+ void fcmp(const FPRegister& fn, double value)
+
+
+### fcmp ###
+
+FP compare registers.
+
+ void fcmp(const FPRegister& fn, const FPRegister& fm)
+
+
+### fcsel ###
+
+FP conditional select.
+
+ void fcsel(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ Condition cond)
+
+
+### fcvt ###
+
+FP convert single to double precision.
+
+ void fcvt(const FPRegister& fd, const FPRegister& fn)
+
+
+### fcvtms ###
+
+Convert FP to signed integer (round towards -infinity).
+
+ void fcvtms(const Register& rd, const FPRegister& fn)
+
+
+### fcvtmu ###
+
+Convert FP to unsigned integer (round towards -infinity).
+
+ void fcvtmu(const Register& rd, const FPRegister& fn)
+
+
+### fcvtns ###
+
+Convert FP to signed integer (nearest with ties to even).
+
+ void fcvtns(const Register& rd, const FPRegister& fn)
+
+
+### fcvtnu ###
+
+Convert FP to unsigned integer (nearest with ties to even).
+
+ void fcvtnu(const Register& rd, const FPRegister& fn)
+
+
+### fcvtzs ###
+
+Convert FP to signed integer (round towards zero).
+
+ void fcvtzs(const Register& rd, const FPRegister& fn)
+
+
+### fcvtzu ###
+
+Convert FP to unsigned integer (round towards zero).
+
+ void fcvtzu(const Register& rd, const FPRegister& fn)
+
+
+### fdiv ###
+
+FP divide.
+
+ void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm)
+
+
+### fmax ###
+
+FP maximum.
+
+ void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm)
+
+
+### fmin ###
+
+FP minimum.
+
+ void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm)
+
+
+### fmov ###
+
+Move FP register to FP register.
+
+ void fmov(FPRegister fd, FPRegister fn)
+
+
+### fmov ###
+
+Move FP register to register.
+
+ void fmov(Register rd, FPRegister fn)
+
+
+### fmov ###
+
+Move immediate to FP register.
+
+ void fmov(FPRegister fd, double imm)
+
+
+### fmov ###
+
+Move register to FP register.
+
+ void fmov(FPRegister fd, Register rn)
+
+
+### fmsub ###
+
+FP multiply and subtract.
+
+ void fmsub(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa)
+
+
+### fmul ###
+
+FP multiply.
+
+ void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm)
+
+
+### fneg ###
+
+FP negate.
+
+ void fneg(const FPRegister& fd, const FPRegister& fn)
+
+
+### frintn ###
+
+FP round to integer (nearest with ties to even).
+
+ void frintn(const FPRegister& fd, const FPRegister& fn)
+
+
+### frintz ###
+
+FP round to integer (towards zero).
+
+ void frintz(const FPRegister& fd, const FPRegister& fn)
+
+
+### fsqrt ###
+
+FP square root.
+
+ void fsqrt(const FPRegister& fd, const FPRegister& fn)
+
+
+### fsub ###
+
+FP subtract.
+
+ void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm)
+
+
+
+Additional or pseudo instructions
+---------------------------------
+
+### bind ###
+
+Bind a label to the current PC.
+
+ void bind(Label* label)
+
+
+### dc32 ###
+
+Emit 32 bits of data into the instruction stream.
+
+ inline void dc32(uint32_t data)
+
+
+### dc64 ###
+
+Emit 64 bits of data into the instruction stream.
+
+ inline void dc64(uint64_t data)
+
+
+### dci ###
+
+Emit raw instructions into the instruction stream.
+
+ inline void dci(Instr raw_inst)
+
+
+### debug ###
+
+Debug control pseudo instruction, only supported by the debugger.
+
+ void debug(const char* message, uint32_t code, Instr params = BREAK)
+
+
+
new file mode 100644
@@ -0,0 +1,2172 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+#include <cmath>
+#include "a64/assembler-a64.h"
+
+namespace vixl {
+
+// CPURegList utilities.
+CPURegister CPURegList::PopLowestIndex() {
+ if (IsEmpty()) {
+ return NoCPUReg;
+ }
+ int index = CountTrailingZeros(list_, kRegListSizeInBits);
+ ASSERT((1 << index) & list_);
+ Remove(index);
+ return CPURegister(index, size_, type_);
+}
+
+
+CPURegister CPURegList::PopHighestIndex() {
+ ASSERT(IsValid());
+ if (IsEmpty()) {
+ return NoCPUReg;
+ }
+ int index = CountLeadingZeros(list_, kRegListSizeInBits);
+ index = kRegListSizeInBits - 1 - index;
+ ASSERT((1 << index) & list_);
+ Remove(index);
+ return CPURegister(index, size_, type_);
+}
+
+
+bool CPURegList::IsValid() const {
+ if ((type_ == CPURegister::kRegister) ||
+ (type_ == CPURegister::kFPRegister)) {
+ bool is_valid = true;
+ // Try to create a CPURegister for each element in the list.
+ for (int i = 0; i < kRegListSizeInBits; i++) {
+ if (((list_ >> i) & 1) != 0) {
+ is_valid &= CPURegister(i, size_, type_).IsValid();
+ }
+ }
+ return is_valid;
+ } else if (type_ == CPURegister::kNoRegister) {
+ // We can't use IsEmpty here because that asserts IsValid().
+ return list_ == 0;
+ } else {
+ return false;
+ }
+}
+
+
+void CPURegList::RemoveCalleeSaved() {
+ if (type() == CPURegister::kRegister) {
+ Remove(GetCalleeSaved(RegisterSizeInBits()));
+ } else if (type() == CPURegister::kFPRegister) {
+ Remove(GetCalleeSavedFP(RegisterSizeInBits()));
+ } else {
+ ASSERT(type() == CPURegister::kNoRegister);
+ ASSERT(IsEmpty());
+ // The list must already be empty, so do nothing.
+ }
+}
+
+
+CPURegList CPURegList::GetCalleeSaved(unsigned size) {
+ return CPURegList(CPURegister::kRegister, size, 19, 29);
+}
+
+
+CPURegList CPURegList::GetCalleeSavedFP(unsigned size) {
+ return CPURegList(CPURegister::kFPRegister, size, 8, 15);
+}
+
+
+CPURegList CPURegList::GetCallerSaved(unsigned size) {
+ // Registers x0-x18 and lr (x30) are caller-saved.
+ CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
+ list.Combine(lr);
+ return list;
+}
+
+
+CPURegList CPURegList::GetCallerSavedFP(unsigned size) {
+ // Registers d0-d7 and d16-d31 are caller-saved.
+ CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
+ list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
+ return list;
+}
+
+
+const CPURegList kCalleeSaved = CPURegList::GetCalleeSaved();
+const CPURegList kCalleeSavedFP = CPURegList::GetCalleeSavedFP();
+const CPURegList kCallerSaved = CPURegList::GetCallerSaved();
+const CPURegList kCallerSavedFP = CPURegList::GetCallerSavedFP();
+
+
+// Registers.
+#define WREG(n) w##n,
+const Register Register::wregisters[] = {
+REGISTER_CODE_LIST(WREG)
+};
+#undef WREG
+
+#define XREG(n) x##n,
+const Register Register::xregisters[] = {
+REGISTER_CODE_LIST(XREG)
+};
+#undef XREG
+
+#define SREG(n) s##n,
+const FPRegister FPRegister::sregisters[] = {
+REGISTER_CODE_LIST(SREG)
+};
+#undef SREG
+
+#define DREG(n) d##n,
+const FPRegister FPRegister::dregisters[] = {
+REGISTER_CODE_LIST(DREG)
+};
+#undef DREG
+
+
+const Register& Register::WRegFromCode(unsigned code) {
+ // This function returns the zero register when code = 31. The stack pointer
+ // can not be returned.
+ ASSERT(code < kNumberOfRegisters);
+ return wregisters[code];
+}
+
+
+const Register& Register::XRegFromCode(unsigned code) {
+ // This function returns the zero register when code = 31. The stack pointer
+ // can not be returned.
+ ASSERT(code < kNumberOfRegisters);
+ return xregisters[code];
+}
+
+
+const FPRegister& FPRegister::SRegFromCode(unsigned code) {
+ ASSERT(code < kNumberOfFPRegisters);
+ return sregisters[code];
+}
+
+
+const FPRegister& FPRegister::DRegFromCode(unsigned code) {
+ ASSERT(code < kNumberOfFPRegisters);
+ return dregisters[code];
+}
+
+
+const Register& CPURegister::W() const {
+ ASSERT(IsValidRegister());
+ ASSERT(Is64Bits());
+ return Register::WRegFromCode(code_);
+}
+
+
+const Register& CPURegister::X() const {
+ ASSERT(IsValidRegister());
+ ASSERT(Is32Bits());
+ return Register::XRegFromCode(code_);
+}
+
+
+const FPRegister& CPURegister::S() const {
+ ASSERT(IsValidFPRegister());
+ ASSERT(Is64Bits());
+ return FPRegister::SRegFromCode(code_);
+}
+
+
+const FPRegister& CPURegister::D() const {
+ ASSERT(IsValidFPRegister());
+ ASSERT(Is32Bits());
+ return FPRegister::DRegFromCode(code_);
+}
+
+
+// Operand.
+Operand::Operand(int64_t immediate)
+ : immediate_(immediate),
+ reg_(NoReg),
+ shift_(NO_SHIFT),
+ extend_(NO_EXTEND),
+ shift_amount_(0) {}
+
+
+Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
+ : reg_(reg),
+ shift_(shift),
+ extend_(NO_EXTEND),
+ shift_amount_(shift_amount) {
+ ASSERT(reg.Is64Bits() || (shift_amount < kWRegSize));
+ ASSERT(reg.Is32Bits() || (shift_amount < kXRegSize));
+ ASSERT(!reg.IsSP());
+}
+
+
+Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
+ : reg_(reg),
+ shift_(NO_SHIFT),
+ extend_(extend),
+ shift_amount_(shift_amount) {
+ ASSERT(reg.IsValid());
+ ASSERT(shift_amount <= 4);
+ ASSERT(!reg.IsSP());
+}
+
+
+bool Operand::IsImmediate() const {
+ return reg_.Is(NoReg);
+}
+
+
+bool Operand::IsShiftedRegister() const {
+ return reg_.IsValid() && (shift_ != NO_SHIFT);
+}
+
+
+bool Operand::IsExtendedRegister() const {
+ return reg_.IsValid() && (extend_ != NO_EXTEND);
+}
+
+
+Operand Operand::ToExtendedRegister() const {
+ ASSERT(IsShiftedRegister());
+ ASSERT((shift_ == LSL) && (shift_amount_ <= 4));
+ return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
+}
+
+
+// MemOperand
+MemOperand::MemOperand(Register base, ptrdiff_t offset, AddrMode addrmode)
+ : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode) {
+ ASSERT(base.Is64Bits() && !base.IsZero());
+}
+
+
+MemOperand::MemOperand(Register base,
+ Register regoffset,
+ Extend extend,
+ unsigned shift_amount)
+ : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
+ shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
+ ASSERT(base.Is64Bits() && !base.IsZero());
+ ASSERT(!regoffset.IsSP());
+ ASSERT((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
+}
+
+
+MemOperand::MemOperand(Register base,
+ Register regoffset,
+ Shift shift,
+ unsigned shift_amount)
+ : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
+ shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
+ ASSERT(base.Is64Bits() && !base.IsZero());
+ ASSERT(!regoffset.IsSP());
+ ASSERT(shift == LSL);
+}
+
+
+MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
+ : base_(base), regoffset_(NoReg), addrmode_(addrmode) {
+ ASSERT(base.Is64Bits() && !base.IsZero());
+
+ if (offset.IsImmediate()) {
+ offset_ = offset.immediate();
+ } else if (offset.IsShiftedRegister()) {
+ ASSERT(addrmode == Offset);
+
+ regoffset_ = offset.reg();
+ shift_= offset.shift();
+ shift_amount_ = offset.shift_amount();
+
+ extend_ = NO_EXTEND;
+ offset_ = 0;
+
+ // These assertions match those in the shifted-register constructor.
+ ASSERT(!regoffset_.IsSP());
+ ASSERT(shift_ == LSL);
+ } else {
+ ASSERT(offset.IsExtendedRegister());
+ ASSERT(addrmode == Offset);
+
+ regoffset_ = offset.reg();
+ extend_ = offset.extend();
+ shift_amount_ = offset.shift_amount();
+
+ shift_= NO_SHIFT;
+ offset_ = 0;
+
+ // These assertions match those in the extended-register constructor.
+ ASSERT(!regoffset_.IsSP());
+ ASSERT((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
+ }
+}
+
+
+bool MemOperand::IsImmediateOffset() const {
+ return (addrmode_ == Offset) && regoffset_.Is(NoReg);
+}
+
+
+bool MemOperand::IsRegisterOffset() const {
+ return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
+}
+
+
+bool MemOperand::IsPreIndex() const {
+ return addrmode_ == PreIndex;
+}
+
+
+bool MemOperand::IsPostIndex() const {
+ return addrmode_ == PostIndex;
+}
+
+
+// Assembler
+Assembler::Assembler(byte* buffer, unsigned buffer_size)
+ : buffer_size_(buffer_size), literal_pool_monitor_(0) {
+ // Assert that this is an LP64 system.
+ ASSERT(sizeof(int) == sizeof(int32_t)); // NOLINT(runtime/sizeof)
+ ASSERT(sizeof(long) == sizeof(int64_t)); // NOLINT(runtime/int)
+ ASSERT(sizeof(void *) == sizeof(int64_t)); // NOLINT(runtime/sizeof)
+ ASSERT(sizeof(1) == sizeof(int32_t)); // NOLINT(runtime/sizeof)
+ ASSERT(sizeof(1L) == sizeof(int64_t)); // NOLINT(runtime/sizeof)
+
+ buffer_ = reinterpret_cast<Instruction*>(buffer);
+ pc_ = buffer_;
+ Reset();
+}
+
+
+Assembler::~Assembler() {
+ ASSERT(finalized_ || (pc_ == buffer_));
+ ASSERT(literals_.empty());
+}
+
+
+void Assembler::Reset() {
+#ifdef DEBUG
+ ASSERT((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
+ ASSERT(literal_pool_monitor_ == 0);
+ memset(buffer_, 0, pc_ - buffer_);
+ finalized_ = false;
+#endif
+ pc_ = buffer_;
+ literals_.clear();
+ next_literal_pool_check_ = pc_ + kLiteralPoolCheckInterval;
+}
+
+
+void Assembler::FinalizeCode() {
+ EmitLiteralPool();
+#ifdef DEBUG
+ finalized_ = true;
+#endif
+}
+
+
+void Assembler::bind(Label* label) {
+ label->is_bound_ = true;
+ label->target_ = pc_;
+ while (label->IsLinked()) {
+ // Get the address of the following instruction in the chain.
+ Instruction* next_link = label->link_->ImmPCOffsetTarget();
+ // Update the instruction target.
+ label->link_->SetImmPCOffsetTarget(label->target_);
+ // Update the label's link.
+ // If the offset of the branch we just updated was 0 (kEndOfChain) we are
+ // done.
+ label->link_ = (label->link_ != next_link) ? next_link : NULL;
+ }
+}
+
+
+int Assembler::UpdateAndGetByteOffsetTo(Label* label) {
+ int offset;
+ ASSERT(sizeof(*pc_) == 1);
+ if (label->IsBound()) {
+ offset = label->target() - pc_;
+ } else if (label->IsLinked()) {
+ offset = label->link() - pc_;
+ } else {
+ offset = Label::kEndOfChain;
+ }
+ label->set_link(pc_);
+ return offset;
+}
+
+
+// Code generation.
+void Assembler::br(const Register& xn) {
+ ASSERT(xn.Is64Bits());
+ Emit(BR | Rn(xn));
+}
+
+
+void Assembler::blr(const Register& xn) {
+ ASSERT(xn.Is64Bits());
+ Emit(BLR | Rn(xn));
+}
+
+
+void Assembler::ret(const Register& xn) {
+ ASSERT(xn.Is64Bits());
+ Emit(RET | Rn(xn));
+}
+
+
+void Assembler::b(int imm26) {
+ Emit(B | ImmUncondBranch(imm26));
+}
+
+
+void Assembler::b(int imm19, Condition cond) {
+ Emit(B_cond | ImmCondBranch(imm19) | cond);
+}
+
+
+void Assembler::b(Label* label) {
+ b(UpdateAndGetInstructionOffsetTo(label));
+}
+
+
+void Assembler::b(Label* label, Condition cond) {
+ b(UpdateAndGetInstructionOffsetTo(label), cond);
+}
+
+
+void Assembler::bl(int imm26) {
+ Emit(BL | ImmUncondBranch(imm26));
+}
+
+
+void Assembler::bl(Label* label) {
+ bl(UpdateAndGetInstructionOffsetTo(label));
+}
+
+
+void Assembler::cbz(const Register& rt,
+ int imm19) {
+ Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
+}
+
+
+void Assembler::cbz(const Register& rt,
+ Label* label) {
+ cbz(rt, UpdateAndGetInstructionOffsetTo(label));
+}
+
+
+void Assembler::cbnz(const Register& rt,
+ int imm19) {
+ Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
+}
+
+
+void Assembler::cbnz(const Register& rt,
+ Label* label) {
+ cbnz(rt, UpdateAndGetInstructionOffsetTo(label));
+}
+
+
+void Assembler::tbz(const Register& rt,
+ unsigned bit_pos,
+ int imm14) {
+ ASSERT(rt.Is64Bits());
+ Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
+}
+
+
+void Assembler::tbz(const Register& rt,
+ unsigned bit_pos,
+ Label* label) {
+ tbz(rt, bit_pos, UpdateAndGetInstructionOffsetTo(label));
+}
+
+
+void Assembler::tbnz(const Register& rt,
+ unsigned bit_pos,
+ int imm14) {
+ ASSERT(rt.Is64Bits());
+ Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
+}
+
+
+void Assembler::tbnz(const Register& rt,
+ unsigned bit_pos,
+ Label* label) {
+ tbnz(rt, bit_pos, UpdateAndGetInstructionOffsetTo(label));
+}
+
+
+void Assembler::adr(const Register& rd, int imm21) {
+ ASSERT(rd.Is64Bits());
+ Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
+}
+
+
+void Assembler::adr(const Register& rd, Label* label) {
+ adr(rd, UpdateAndGetByteOffsetTo(label));
+}
+
+
+void Assembler::add(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ AddSub(rd, rn, operand, S, ADD);
+}
+
+
+void Assembler::cmn(const Register& rn,
+ const Operand& operand) {
+ Register zr = AppropriateZeroRegFor(rn);
+ add(zr, rn, operand, SetFlags);
+}
+
+
+void Assembler::sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ AddSub(rd, rn, operand, S, SUB);
+}
+
+
+void Assembler::cmp(const Register& rn, const Operand& operand) {
+ Register zr = AppropriateZeroRegFor(rn);
+ sub(zr, rn, operand, SetFlags);
+}
+
+
+void Assembler::neg(const Register& rd, const Operand& operand, FlagsUpdate S) {
+ Register zr = AppropriateZeroRegFor(rd);
+ sub(rd, zr, operand, S);
+}
+
+
+void Assembler::adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ AddSubWithCarry(rd, rn, operand, S, ADC);
+}
+
+
+void Assembler::sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ AddSubWithCarry(rd, rn, operand, S, SBC);
+}
+
+
+void Assembler::ngc(const Register& rd, const Operand& operand, FlagsUpdate S) {
+ Register zr = AppropriateZeroRegFor(rd);
+ sbc(rd, zr, operand, S);
+}
+
+
+// Logical instructions.
+void Assembler::and_(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ Logical(rd, rn, operand, (S == SetFlags) ? ANDS : AND);
+}
+
+
+void Assembler::tst(const Register& rn,
+ const Operand& operand) {
+ and_(AppropriateZeroRegFor(rn), rn, operand, SetFlags);
+}
+
+
+void Assembler::bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ Logical(rd, rn, operand, (S == SetFlags) ? BICS : BIC);
+}
+
+
+void Assembler::orr(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Logical(rd, rn, operand, ORR);
+}
+
+
+void Assembler::orn(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Logical(rd, rn, operand, ORN);
+}
+
+
+void Assembler::eor(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Logical(rd, rn, operand, EOR);
+}
+
+
+void Assembler::eon(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Logical(rd, rn, operand, EON);
+}
+
+
+void Assembler::lslv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ ASSERT(rd.size() == rn.size());
+ ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::lsrv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ ASSERT(rd.size() == rn.size());
+ ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::asrv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ ASSERT(rd.size() == rn.size());
+ ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::rorv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ ASSERT(rd.size() == rn.size());
+ ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+// Bitfield operations.
+void Assembler::bfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms) {
+ ASSERT(rd.size() == rn.size());
+ Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
+ Emit(SF(rd) | BFM | N |
+ ImmR(immr, rd.size()) | ImmS(imms, rd.size()) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::sbfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms) {
+ ASSERT(rd.size() == rn.size());
+ Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
+ Emit(SF(rd) | SBFM | N |
+ ImmR(immr, rd.size()) | ImmS(imms, rd.size()) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::ubfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms) {
+ ASSERT(rd.size() == rn.size());
+ Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
+ Emit(SF(rd) | UBFM | N |
+ ImmR(immr, rd.size()) | ImmS(imms, rd.size()) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::extr(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ unsigned lsb) {
+ ASSERT(rd.size() == rn.size());
+ ASSERT(rd.size() == rm.size());
+ Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
+ Emit(SF(rd) | EXTR | N | Rm(rm) | ImmS(lsb, rd.size()) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::csel(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ConditionalSelect(rd, rn, rm, cond, CSEL);
+}
+
+
+void Assembler::csinc(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ConditionalSelect(rd, rn, rm, cond, CSINC);
+}
+
+
+void Assembler::csinv(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ConditionalSelect(rd, rn, rm, cond, CSINV);
+}
+
+
+void Assembler::csneg(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ConditionalSelect(rd, rn, rm, cond, CSNEG);
+}
+
+
+void Assembler::cset(const Register &rd, Condition cond) {
+ ASSERT((cond != al) && (cond != nv));
+ Register zr = AppropriateZeroRegFor(rd);
+ csinc(rd, zr, zr, InvertCondition(cond));
+}
+
+
+void Assembler::csetm(const Register &rd, Condition cond) {
+ ASSERT((cond != al) && (cond != nv));
+ Register zr = AppropriateZeroRegFor(rd);
+ csinv(rd, zr, zr, InvertCondition(cond));
+}
+
+
+void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
+ ASSERT((cond != al) && (cond != nv));
+ csinc(rd, rn, rn, InvertCondition(cond));
+}
+
+
+void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
+ ASSERT((cond != al) && (cond != nv));
+ csinv(rd, rn, rn, InvertCondition(cond));
+}
+
+
+void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
+ ASSERT((cond != al) && (cond != nv));
+ csneg(rd, rn, rn, InvertCondition(cond));
+}
+
+
+void Assembler::ConditionalSelect(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond,
+ ConditionalSelectOp op) {
+ ASSERT(rd.size() == rn.size());
+ ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond) {
+ ConditionalCompare(rn, operand, nzcv, cond, CCMN);
+}
+
+
+void Assembler::ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond) {
+ ConditionalCompare(rn, operand, nzcv, cond, CCMP);
+}
+
+
+void Assembler::DataProcessing3Source(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra,
+ DataProcessing3SourceOp op) {
+ Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::mul(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ ASSERT(AreSameSizeAndType(rd, rn, rm));
+ DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MADD);
+}
+
+
+void Assembler::madd(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ DataProcessing3Source(rd, rn, rm, ra, MADD);
+}
+
+
+void Assembler::mneg(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ ASSERT(AreSameSizeAndType(rd, rn, rm));
+ DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MSUB);
+}
+
+
+void Assembler::msub(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ DataProcessing3Source(rd, rn, rm, ra, MSUB);
+}
+
+
+void Assembler::umaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ ASSERT(rd.Is64Bits() && ra.Is64Bits());
+ ASSERT(rn.Is32Bits() && rm.Is32Bits());
+ DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
+}
+
+
+void Assembler::smaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ ASSERT(rd.Is64Bits() && ra.Is64Bits());
+ ASSERT(rn.Is32Bits() && rm.Is32Bits());
+ DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
+}
+
+
+void Assembler::umsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ ASSERT(rd.Is64Bits() && ra.Is64Bits());
+ ASSERT(rn.Is32Bits() && rm.Is32Bits());
+ DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
+}
+
+
+void Assembler::smsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ ASSERT(rd.Is64Bits() && ra.Is64Bits());
+ ASSERT(rn.Is32Bits() && rm.Is32Bits());
+ DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
+}
+
+
+void Assembler::smull(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ ASSERT(rd.Is64Bits());
+ ASSERT(rn.Is32Bits() && rm.Is32Bits());
+ DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
+}
+
+
+void Assembler::sdiv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ ASSERT(rd.size() == rn.size());
+ ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::smulh(const Register& xd,
+ const Register& xn,
+ const Register& xm) {
+ ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
+ DataProcessing3Source(xd, xn, xm, xzr, SMULH_x);
+}
+
+void Assembler::udiv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ ASSERT(rd.size() == rn.size());
+ ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::rbit(const Register& rd,
+ const Register& rn) {
+ DataProcessing1Source(rd, rn, RBIT);
+}
+
+
+void Assembler::rev16(const Register& rd,
+ const Register& rn) {
+ DataProcessing1Source(rd, rn, REV16);
+}
+
+
+void Assembler::rev32(const Register& rd,
+ const Register& rn) {
+ ASSERT(rd.Is64Bits());
+ DataProcessing1Source(rd, rn, REV);
+}
+
+
+void Assembler::rev(const Register& rd,
+ const Register& rn) {
+ DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
+}
+
+
+void Assembler::clz(const Register& rd,
+ const Register& rn) {
+ DataProcessing1Source(rd, rn, CLZ);
+}
+
+
+void Assembler::cls(const Register& rd,
+ const Register& rn) {
+ DataProcessing1Source(rd, rn, CLS);
+}
+
+
+void Assembler::ldp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& src) {
+ LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
+}
+
+
+void Assembler::stp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& dst) {
+ LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
+}
+
+
+void Assembler::ldpsw(const Register& rt,
+ const Register& rt2,
+ const MemOperand& src) {
+ ASSERT(rt.Is64Bits());
+ LoadStorePair(rt, rt2, src, LDPSW_x);
+}
+
+
+void Assembler::LoadStorePair(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairOp op) {
+ // 'rt' and 'rt2' can only be aliased for stores.
+ ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
+ ASSERT(AreSameSizeAndType(rt, rt2));
+
+ Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
+ ImmLSPair(addr.offset(), CalcLSPairDataSize(op));
+
+ Instr addrmodeop;
+ if (addr.IsImmediateOffset()) {
+ addrmodeop = LoadStorePairOffsetFixed;
+ } else {
+ ASSERT(addr.offset() != 0);
+ if (addr.IsPreIndex()) {
+ addrmodeop = LoadStorePairPreIndexFixed;
+ } else {
+ ASSERT(addr.IsPostIndex());
+ addrmodeop = LoadStorePairPostIndexFixed;
+ }
+ }
+ Emit(addrmodeop | memop);
+}
+
+
+void Assembler::ldnp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& src) {
+ LoadStorePairNonTemporal(rt, rt2, src,
+ LoadPairNonTemporalOpFor(rt, rt2));
+}
+
+
+void Assembler::stnp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& dst) {
+ LoadStorePairNonTemporal(rt, rt2, dst,
+ StorePairNonTemporalOpFor(rt, rt2));
+}
+
+
+void Assembler::LoadStorePairNonTemporal(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairNonTemporalOp op) {
+ ASSERT(!rt.Is(rt2));
+ ASSERT(AreSameSizeAndType(rt, rt2));
+ ASSERT(addr.IsImmediateOffset());
+
+ LSDataSize size = CalcLSPairDataSize(
+ static_cast<LoadStorePairOp>(op & LoadStorePairMask));
+ Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
+ ImmLSPair(addr.offset(), size));
+}
+
+
+// Memory instructions.
+void Assembler::ldrb(const Register& rt, const MemOperand& src) {
+ LoadStore(rt, src, LDRB_w);
+}
+
+
+void Assembler::strb(const Register& rt, const MemOperand& dst) {
+ LoadStore(rt, dst, STRB_w);
+}
+
+
+void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
+ LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
+}
+
+
+void Assembler::ldrh(const Register& rt, const MemOperand& src) {
+ LoadStore(rt, src, LDRH_w);
+}
+
+
+void Assembler::strh(const Register& rt, const MemOperand& dst) {
+ LoadStore(rt, dst, STRH_w);
+}
+
+
+void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
+ LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
+}
+
+
+void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
+ LoadStore(rt, src, LoadOpFor(rt));
+}
+
+
+void Assembler::str(const CPURegister& rt, const MemOperand& src) {
+ LoadStore(rt, src, StoreOpFor(rt));
+}
+
+
+void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
+ ASSERT(rt.Is64Bits());
+ LoadStore(rt, src, LDRSW_x);
+}
+
+
+void Assembler::ldr(const Register& rt, uint64_t imm) {
+ LoadLiteral(rt, imm, rt.Is64Bits() ? LDR_x_lit : LDR_w_lit);
+}
+
+
+void Assembler::ldr(const FPRegister& ft, double imm) {
+ uint64_t rawbits = 0;
+ LoadLiteralOp op;
+
+ if (ft.Is64Bits()) {
+ rawbits = double_to_rawbits(imm);
+ op = LDR_d_lit;
+ } else {
+ ASSERT(ft.Is32Bits());
+ float float_imm = static_cast<float>(imm);
+ rawbits = float_to_rawbits(float_imm);
+ op = LDR_s_lit;
+ }
+
+ LoadLiteral(ft, rawbits, op);
+}
+
+
+void Assembler::mov(const Register& rd, const Register& rm) {
+ // Moves involving the stack pointer are encoded as add immediate with
+ // second operand of zero. Otherwise, orr with first operand zr is
+ // used.
+ if (rd.IsSP() || rm.IsSP()) {
+ add(rd, rm, 0);
+ } else {
+ orr(rd, AppropriateZeroRegFor(rd), rm);
+ }
+}
+
+
+void Assembler::mvn(const Register& rd, const Operand& operand) {
+ orn(rd, AppropriateZeroRegFor(rd), operand);
+}
+
+
+void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
+ ASSERT(rt.Is64Bits());
+ Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
+}
+
+
+void Assembler::msr(SystemRegister sysreg, const Register& rt) {
+ ASSERT(rt.Is64Bits());
+ Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
+}
+
+
+void Assembler::hint(SystemHint code) {
+ Emit(HINT | ImmHint(code) | Rt(xzr));
+}
+
+
+void Assembler::fmov(FPRegister fd, double imm) {
+ if (fd.Is64Bits() && IsImmFP64(imm)) {
+ Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
+ } else if (fd.Is32Bits() && IsImmFP32(imm)) {
+ Emit(FMOV_s_imm | Rd(fd) | ImmFP32(static_cast<float>(imm)));
+ } else if ((imm == 0.0) && (copysign(1.0, imm) == 1.0)) {
+ Register zr = AppropriateZeroRegFor(fd);
+ fmov(fd, zr);
+ } else {
+ ldr(fd, imm);
+ }
+}
+
+
+void Assembler::fmov(Register rd, FPRegister fn) {
+ ASSERT(rd.size() == fn.size());
+ FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
+ Emit(op | Rd(rd) | Rn(fn));
+}
+
+
+void Assembler::fmov(FPRegister fd, Register rn) {
+ ASSERT(fd.size() == rn.size());
+ FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
+ Emit(op | Rd(fd) | Rn(rn));
+}
+
+
+void Assembler::fmov(FPRegister fd, FPRegister fn) {
+ ASSERT(fd.size() == fn.size());
+ Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
+}
+
+
+void Assembler::fadd(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm) {
+ FPDataProcessing2Source(fd, fn, fm, FADD);
+}
+
+
+void Assembler::fsub(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm) {
+ FPDataProcessing2Source(fd, fn, fm, FSUB);
+}
+
+
+void Assembler::fmul(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm) {
+ FPDataProcessing2Source(fd, fn, fm, FMUL);
+}
+
+
+void Assembler::fmsub(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa) {
+ FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
+}
+
+
+void Assembler::fdiv(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm) {
+ FPDataProcessing2Source(fd, fn, fm, FDIV);
+}
+
+
+void Assembler::fmax(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm) {
+ FPDataProcessing2Source(fd, fn, fm, FMAX);
+}
+
+
+void Assembler::fmin(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm) {
+ FPDataProcessing2Source(fd, fn, fm, FMIN);
+}
+
+
+void Assembler::fabs(const FPRegister& fd,
+ const FPRegister& fn) {
+ ASSERT(fd.SizeInBits() == fn.SizeInBits());
+ FPDataProcessing1Source(fd, fn, FABS);
+}
+
+
+void Assembler::fneg(const FPRegister& fd,
+ const FPRegister& fn) {
+ ASSERT(fd.SizeInBits() == fn.SizeInBits());
+ FPDataProcessing1Source(fd, fn, FNEG);
+}
+
+
+void Assembler::fsqrt(const FPRegister& fd,
+ const FPRegister& fn) {
+ ASSERT(fd.SizeInBits() == fn.SizeInBits());
+ FPDataProcessing1Source(fd, fn, FSQRT);
+}
+
+
+void Assembler::frintn(const FPRegister& fd,
+ const FPRegister& fn) {
+ ASSERT(fd.SizeInBits() == fn.SizeInBits());
+ FPDataProcessing1Source(fd, fn, FRINTN);
+}
+
+
+void Assembler::frintz(const FPRegister& fd,
+ const FPRegister& fn) {
+ ASSERT(fd.SizeInBits() == fn.SizeInBits());
+ FPDataProcessing1Source(fd, fn, FRINTZ);
+}
+
+
+void Assembler::fcmp(const FPRegister& fn,
+ const FPRegister& fm) {
+ ASSERT(fn.size() == fm.size());
+ Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
+}
+
+
+void Assembler::fcmp(const FPRegister& fn,
+ double value) {
+ USE(value);
+ // Although the fcmp instruction can strictly only take an immediate value of
+ // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
+ // affect the result of the comparison.
+ ASSERT(value == 0.0);
+ Emit(FPType(fn) | FCMP_zero | Rn(fn));
+}
+
+
+void Assembler::fccmp(const FPRegister& fn,
+ const FPRegister& fm,
+ StatusFlags nzcv,
+ Condition cond) {
+ ASSERT(fn.size() == fm.size());
+ Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
+}
+
+
+void Assembler::fcsel(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ Condition cond) {
+ ASSERT(fd.size() == fn.size());
+ ASSERT(fd.size() == fm.size());
+ Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
+}
+
+
+void Assembler::FPConvertToInt(const Register& rd,
+ const FPRegister& fn,
+ FPIntegerConvertOp op) {
+ Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
+}
+
+
+void Assembler::fcvt(const FPRegister& fd,
+ const FPRegister& fn) {
+ if (fd.Is64Bits()) {
+ // Convert float to double.
+ ASSERT(fn.Is32Bits());
+ FPDataProcessing1Source(fd, fn, FCVT_ds);
+ } else {
+ // Convert double to float.
+ ASSERT(fn.Is64Bits());
+ FPDataProcessing1Source(fd, fn, FCVT_sd);
+ }
+}
+
+
+void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
+ FPConvertToInt(rd, fn, FCVTMU);
+}
+
+
+void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
+ FPConvertToInt(rd, fn, FCVTMS);
+}
+
+
+void Assembler::fcvtnu(const Register& rd,
+ const FPRegister& fn) {
+ FPConvertToInt(rd, fn, FCVTNU);
+}
+
+
+void Assembler::fcvtns(const Register& rd,
+ const FPRegister& fn) {
+ FPConvertToInt(rd, fn, FCVTNS);
+}
+
+
+void Assembler::fcvtzu(const Register& rd,
+ const FPRegister& fn) {
+ FPConvertToInt(rd, fn, FCVTZU);
+}
+
+
+void Assembler::fcvtzs(const Register& rd,
+ const FPRegister& fn) {
+ FPConvertToInt(rd, fn, FCVTZS);
+}
+
+
+void Assembler::scvtf(const FPRegister& fd,
+ const Register& rn,
+ unsigned fbits) {
+ if (fbits == 0) {
+ Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
+ } else {
+ Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
+ Rd(fd));
+ }
+}
+
+
+void Assembler::ucvtf(const FPRegister& fd,
+ const Register& rn,
+ unsigned fbits) {
+ if (fbits == 0) {
+ Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
+ } else {
+ Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
+ Rd(fd));
+ }
+}
+
+
+// Note:
+// Below, a difference in case for the same letter indicates a
+// negated bit.
+// If b is 1, then B is 0.
+Instr Assembler::ImmFP32(float imm) {
+ ASSERT(IsImmFP32(imm));
+ // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
+ uint32_t bits = float_to_rawbits(imm);
+ // bit7: a000.0000
+ uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
+ // bit6: 0b00.0000
+ uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
+ // bit5_to_0: 00cd.efgh
+ uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
+
+ return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
+}
+
+
+Instr Assembler::ImmFP64(double imm) {
+ ASSERT(IsImmFP64(imm));
+ // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
+ // 0000.0000.0000.0000.0000.0000.0000.0000
+ uint64_t bits = double_to_rawbits(imm);
+ // bit7: a000.0000
+ uint32_t bit7 = ((bits >> 63) & 0x1) << 7;
+ // bit6: 0b00.0000
+ uint32_t bit6 = ((bits >> 61) & 0x1) << 6;
+ // bit5_to_0: 00cd.efgh
+ uint32_t bit5_to_0 = (bits >> 48) & 0x3f;
+
+ return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
+}
+
+
+// Code generation helpers.
+void Assembler::MoveWide(const Register& rd,
+ uint64_t imm,
+ int shift,
+ MoveWideImmediateOp mov_op) {
+ if (shift >= 0) {
+ // Explicit shift specified.
+ ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
+ ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16));
+ shift /= 16;
+ } else {
+ // Calculate a new immediate and shift combination to encode the immediate
+ // argument.
+ shift = 0;
+ if ((imm & ~0xffffUL) == 0) {
+ // Nothing to do.
+ } else if ((imm & ~(0xffffUL << 16)) == 0) {
+ imm >>= 16;
+ shift = 1;
+ } else if ((imm & ~(0xffffUL << 32)) == 0) {
+ ASSERT(rd.Is64Bits());
+ imm >>= 32;
+ shift = 2;
+ } else if ((imm & ~(0xffffUL << 48)) == 0) {
+ ASSERT(rd.Is64Bits());
+ imm >>= 48;
+ shift = 3;
+ }
+ }
+
+ ASSERT(is_uint16(imm));
+
+ Emit(SF(rd) | MoveWideImmediateFixed | mov_op |
+ Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift));
+}
+
+
+void Assembler::AddSub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op) {
+ ASSERT(rd.size() == rn.size());
+ if (operand.IsImmediate()) {
+ int64_t immediate = operand.immediate();
+ ASSERT(IsImmAddSub(immediate));
+ Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
+ Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
+ ImmAddSub(immediate) | dest_reg | RnSP(rn));
+ } else if (operand.IsShiftedRegister()) {
+ ASSERT(operand.reg().size() == rd.size());
+ ASSERT(operand.shift() != ROR);
+
+ // For instructions of the form:
+ // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ]
+ // add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ]
+ // add/sub wsp, wsp, <Wm> [, LSL #0-3 ]
+ // adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
+ // or their 64-bit register equivalents, convert the operand from shifted to
+ // extended register mode, and emit an add/sub extended instruction.
+ if (rn.IsSP() || rd.IsSP()) {
+ ASSERT(!(rd.IsSP() && (S == SetFlags)));
+ DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
+ AddSubExtendedFixed | op);
+ } else {
+ DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
+ }
+ } else {
+ ASSERT(operand.IsExtendedRegister());
+ DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
+ }
+}
+
+
+void Assembler::AddSubWithCarry(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op) {
+ ASSERT(rd.size() == rn.size());
+ ASSERT(rd.size() == operand.reg().size());
+ ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
+ Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::hlt(int code) {
+ ASSERT(is_uint16(code));
+ Emit(HLT | ImmException(code));
+}
+
+
+void Assembler::brk(int code) {
+ ASSERT(is_uint16(code));
+ Emit(BRK | ImmException(code));
+}
+
+
+void Assembler::Logical(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ LogicalOp op) {
+ ASSERT(rd.size() == rn.size());
+ if (operand.IsImmediate()) {
+ int64_t immediate = operand.immediate();
+ unsigned reg_size = rd.size();
+
+ ASSERT(immediate != 0);
+ ASSERT(immediate != -1);
+ ASSERT(rd.Is64Bits() || is_uint32(immediate));
+
+ // If the operation is NOT, invert the operation and immediate.
+ if ((op & NOT) == NOT) {
+ op = static_cast<LogicalOp>(op & ~NOT);
+ immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
+ }
+
+ unsigned n, imm_s, imm_r;
+ if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
+ // Immediate can be encoded in the instruction.
+ LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
+ } else {
+ // This case is handled in the macro assembler.
+ UNREACHABLE();
+ }
+ } else {
+ ASSERT(operand.IsShiftedRegister());
+ ASSERT(operand.reg().size() == rd.size());
+ Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
+ DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
+ }
+}
+
+
+void Assembler::LogicalImmediate(const Register& rd,
+ const Register& rn,
+ unsigned n,
+ unsigned imm_s,
+ unsigned imm_r,
+ LogicalOp op) {
+ unsigned reg_size = rd.size();
+ Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
+ Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
+ ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
+ Rn(rn));
+}
+
+
+void Assembler::ConditionalCompare(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op) {
+ Instr ccmpop;
+ if (operand.IsImmediate()) {
+ int64_t immediate = operand.immediate();
+ ASSERT(IsImmConditionalCompare(immediate));
+ ccmpop = ConditionalCompareImmediateFixed | op | ImmCondCmp(immediate);
+ } else {
+ ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
+ ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
+ }
+ Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
+}
+
+
+void Assembler::DataProcessing1Source(const Register& rd,
+ const Register& rn,
+ DataProcessing1SourceOp op) {
+ ASSERT(rd.size() == rn.size());
+ Emit(SF(rn) | op | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::FPDataProcessing1Source(const FPRegister& fd,
+ const FPRegister& fn,
+ FPDataProcessing1SourceOp op) {
+ Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
+}
+
+
+void Assembler::FPDataProcessing2Source(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ FPDataProcessing2SourceOp op) {
+ ASSERT(fd.size() == fn.size());
+ ASSERT(fd.size() == fm.size());
+ Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
+}
+
+
+void Assembler::FPDataProcessing3Source(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa,
+ FPDataProcessing3SourceOp op) {
+ ASSERT(AreSameSizeAndType(fd, fn, fm, fa));
+ Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
+}
+
+
+void Assembler::EmitShift(const Register& rd,
+ const Register& rn,
+ Shift shift,
+ unsigned shift_amount) {
+ switch (shift) {
+ case LSL:
+ lsl(rd, rn, shift_amount);
+ break;
+ case LSR:
+ lsr(rd, rn, shift_amount);
+ break;
+ case ASR:
+ asr(rd, rn, shift_amount);
+ break;
+ case ROR:
+ ror(rd, rn, shift_amount);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void Assembler::EmitExtendShift(const Register& rd,
+ const Register& rn,
+ Extend extend,
+ unsigned left_shift) {
+ ASSERT(rd.size() >= rn.size());
+ unsigned reg_size = rd.size();
+ // Use the correct size of register.
+ Register rn_ = Register(rn.code(), rd.size());
+ // Bits extracted are high_bit:0.
+ unsigned high_bit = (8 << (extend & 0x3)) - 1;
+ // Number of bits left in the result that are not introduced by the shift.
+ unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
+
+ if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
+ switch (extend) {
+ case UXTB:
+ case UXTH:
+ case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
+ case SXTB:
+ case SXTH:
+ case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
+ case UXTX:
+ case SXTX: {
+ ASSERT(rn.size() == kXRegSize);
+ // Nothing to extend. Just shift.
+ lsl(rd, rn_, left_shift);
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ } else {
+ // No need to extend as the extended bits would be shifted away.
+ lsl(rd, rn_, left_shift);
+ }
+}
+
+
+void Assembler::DataProcShiftedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op) {
+ ASSERT(operand.IsShiftedRegister());
+ ASSERT(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
+ Emit(SF(rd) | op | Flags(S) |
+ ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
+ Rm(operand.reg()) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::DataProcExtendedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op) {
+ Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
+ Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
+ ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
+ dest_reg | RnSP(rn));
+}
+
+
+bool Assembler::IsImmAddSub(int64_t immediate) {
+ return is_uint12(immediate) ||
+ (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
+}
+
+void Assembler::LoadStore(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op) {
+ Instr memop = op | Rt(rt) | RnSP(addr.base());
+ ptrdiff_t offset = addr.offset();
+
+ if (addr.IsImmediateOffset()) {
+ LSDataSize size = CalcLSDataSize(op);
+ if (IsImmLSScaled(offset, size)) {
+ // Use the scaled addressing mode.
+ Emit(LoadStoreUnsignedOffsetFixed | memop |
+ ImmLSUnsigned(offset >> size));
+ } else if (IsImmLSUnscaled(offset)) {
+ // Use the unscaled addressing mode.
+ Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
+ } else {
+ // This case is handled in the macro assembler.
+ UNREACHABLE();
+ }
+ } else if (addr.IsRegisterOffset()) {
+ Extend ext = addr.extend();
+ Shift shift = addr.shift();
+ unsigned shift_amount = addr.shift_amount();
+
+ // LSL is encoded in the option field as UXTX.
+ if (shift == LSL) {
+ ext = UXTX;
+ }
+
+ // Shifts are encoded in one bit, indicating a left shift by the memory
+ // access size.
+ ASSERT((shift_amount == 0) ||
+ (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
+ Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
+ ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
+ } else {
+ if (IsImmLSUnscaled(offset)) {
+ if (addr.IsPreIndex()) {
+ Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
+ } else {
+ ASSERT(addr.IsPostIndex());
+ Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
+ }
+ } else {
+ // This case is handled in the macro assembler.
+ UNREACHABLE();
+ }
+ }
+}
+
+
+bool Assembler::IsImmLSUnscaled(ptrdiff_t offset) {
+ return is_int9(offset);
+}
+
+
+bool Assembler::IsImmLSScaled(ptrdiff_t offset, LSDataSize size) {
+ bool offset_is_size_multiple = (((offset >> size) << size) == offset);
+ return offset_is_size_multiple && is_uint12(offset >> size);
+}
+
+
+void Assembler::LoadLiteral(const CPURegister& rt,
+ uint64_t imm,
+ LoadLiteralOp op) {
+ ASSERT(is_int32(imm) || is_uint32(imm) || (rt.Is64Bits()));
+
+ BlockLiteralPoolScope scope(this);
+ RecordLiteral(imm, rt.SizeInBytes());
+ Emit(op | ImmLLiteral(0) | Rt(rt));
+}
+
+
+// Test if a given value can be encoded in the immediate field of a logical
+// instruction.
+// If it can be encoded, the function returns true, and values pointed to by n,
+// imm_s and imm_r are updated with immediates encoded in the format required
+// by the corresponding fields in the logical instruction.
+// If it can not be encoded, the function returns false, and the values pointed
+// to by n, imm_s and imm_r are undefined.
+bool Assembler::IsImmLogical(uint64_t value,
+ unsigned width,
+ unsigned* n,
+ unsigned* imm_s,
+ unsigned* imm_r) {
+ ASSERT((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
+ ASSERT((width == kWRegSize) || (width == kXRegSize));
+
+ // Logical immediates are encoded using parameters n, imm_s and imm_r using
+ // the following table:
+ //
+ // N imms immr size S R
+ // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
+ // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
+ // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
+ // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
+ // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
+ // 0 11110s xxxxxr 2 UInt(s) UInt(r)
+ // (s bits must not be all set)
+ //
+ // A pattern is constructed of size bits, where the least significant S+1
+ // bits are set. The pattern is rotated right by R, and repeated across a
+ // 32 or 64-bit value, depending on destination register width.
+ //
+ // To test if an arbitrary immediate can be encoded using this scheme, an
+ // iterative algorithm is used.
+ //
+ // TODO: This code does not consider using X/W register overlap to support
+ // 64-bit immediates where the top 32-bits are zero, and the bottom 32-bits
+ // are an encodable logical immediate.
+
+ // 1. If the value has all set or all clear bits, it can't be encoded.
+ if ((value == 0) || (value == 0xffffffffffffffffUL) ||
+ ((width == kWRegSize) && (value == 0xffffffff))) {
+ return false;
+ }
+
+ unsigned lead_zero = CountLeadingZeros(value, width);
+ unsigned lead_one = CountLeadingZeros(~value, width);
+ unsigned trail_zero = CountTrailingZeros(value, width);
+ unsigned trail_one = CountTrailingZeros(~value, width);
+ unsigned set_bits = CountSetBits(value, width);
+
+ // The fixed bits in the immediate s field.
+ // If width == 64 (X reg), start at 0xFFFFFF80.
+ // If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit
+ // widths won't be executed.
+ int imm_s_fixed = (width == kXRegSize) ? -128 : -64;
+ int imm_s_mask = 0x3F;
+
+ for (;;) {
+ // 2. If the value is two bits wide, it can be encoded.
+ if (width == 2) {
+ *n = 0;
+ *imm_s = 0x3C;
+ *imm_r = (value & 3) - 1;
+ return true;
+ }
+
+ *n = (width == 64) ? 1 : 0;
+ *imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask);
+ if ((lead_zero + set_bits) == width) {
+ *imm_r = 0;
+ } else {
+ *imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one;
+ }
+
+ // 3. If the sum of leading zeros, trailing zeros and set bits is equal to
+ // the bit width of the value, it can be encoded.
+ if (lead_zero + trail_zero + set_bits == width) {
+ return true;
+ }
+
+ // 4. If the sum of leading ones, trailing ones and unset bits in the
+ // value is equal to the bit width of the value, it can be encoded.
+ if (lead_one + trail_one + (width - set_bits) == width) {
+ return true;
+ }
+
+ // 5. If the most-significant half of the bitwise value is equal to the
+ // least-significant half, return to step 2 using the least-significant
+ // half of the value.
+ uint64_t mask = (1UL << (width >> 1)) - 1;
+ if ((value & mask) == ((value >> (width >> 1)) & mask)) {
+ width >>= 1;
+ set_bits >>= 1;
+ imm_s_fixed >>= 1;
+ continue;
+ }
+
+ // 6. Otherwise, the value can't be encoded.
+ return false;
+ }
+}
+
+bool Assembler::IsImmConditionalCompare(int64_t immediate) {
+ return is_uint5(immediate);
+}
+
+
+bool Assembler::IsImmFP32(float imm) {
+ // Valid values will have the form:
+ // aBbb.bbbc.defg.h000.0000.0000.0000.0000
+ uint32_t bits = float_to_rawbits(imm);
+ // bits[19..0] are cleared.
+ if ((bits & 0x7ffff) != 0) {
+ return false;
+ }
+
+ // bits[29..25] are all set or all cleared.
+ uint32_t b_pattern = (bits >> 16) & 0x3e00;
+ if (b_pattern != 0 && b_pattern != 0x3e00) {
+ return false;
+ }
+
+ // bit[30] and bit[29] are opposite.
+ if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
+ return false;
+ }
+
+ return true;
+}
+
+
+bool Assembler::IsImmFP64(double imm) {
+ // Valid values will have the form:
+ // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
+ // 0000.0000.0000.0000.0000.0000.0000.0000
+ uint64_t bits = double_to_rawbits(imm);
+ // bits[47..0] are cleared.
+ if ((bits & 0xffffffffffffL) != 0) {
+ return false;
+ }
+
+ // bits[61..54] are all set or all cleared.
+ uint32_t b_pattern = (bits >> 48) & 0x3fc0;
+ if (b_pattern != 0 && b_pattern != 0x3fc0) {
+ return false;
+ }
+
+ // bit[62] and bit[61] are opposite.
+ if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
+ return false;
+ }
+
+ return true;
+}
+
+
+LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
+ ASSERT(rt.IsValid());
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? LDR_x : LDR_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? LDR_d : LDR_s;
+ }
+}
+
+
+LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
+ const CPURegister& rt2) {
+ ASSERT(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? LDP_x : LDP_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? LDP_d : LDP_s;
+ }
+}
+
+
+LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
+ ASSERT(rt.IsValid());
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? STR_x : STR_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? STR_d : STR_s;
+ }
+}
+
+
+LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
+ const CPURegister& rt2) {
+ ASSERT(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? STP_x : STP_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? STP_d : STP_s;
+ }
+}
+
+
+LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2) {
+ ASSERT(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? LDNP_x : LDNP_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? LDNP_d : LDNP_s;
+ }
+}
+
+
+LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2) {
+ ASSERT(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? STNP_x : STNP_w;
+ } else {
+ ASSERT(rt.IsFPRegister());
+ return rt.Is64Bits() ? STNP_d : STNP_s;
+ }
+}
+
+
+void Assembler::RecordLiteral(int64_t imm, unsigned size) {
+ literals_.push_front(new Literal(pc_, imm, size));
+}
+
+
+// Check if a literal pool should be emitted. Currently a literal is emitted
+// when:
+// * the distance to the first literal load handled by this pool is greater
+// than the recommended distance and the literal pool can be emitted without
+// generating a jump over it.
+// * the distance to the first literal load handled by this pool is greater
+// than twice the recommended distance.
+// TODO: refine this heuristic using real world data.
+void Assembler::CheckLiteralPool(LiteralPoolEmitOption option) {
+ if (IsLiteralPoolBlocked()) {
+ // Literal pool emission is forbidden, no point in doing further checks.
+ return;
+ }
+
+ if (literals_.empty()) {
+ // No literal pool to emit.
+ next_literal_pool_check_ += kLiteralPoolCheckInterval;
+ return;
+ }
+
+ intptr_t distance = pc_ - literals_.back()->pc_;
+ if ((distance < kRecommendedLiteralPoolRange) ||
+ ((option == JumpRequired) &&
+ (distance < (2 * kRecommendedLiteralPoolRange)))) {
+ // We prefer not to have to jump over the literal pool.
+ next_literal_pool_check_ += kLiteralPoolCheckInterval;
+ return;
+ }
+
+ EmitLiteralPool(option);
+}
+
+
+void Assembler::EmitLiteralPool(LiteralPoolEmitOption option) {
+ // Prevent recursive calls while emitting the literal pool.
+ BlockLiteralPoolScope scope(this);
+
+ Label marker;
+ Label start_of_pool;
+ Label end_of_pool;
+
+ if (option == JumpRequired) {
+ b(&end_of_pool);
+ }
+
+ // Leave space for a literal pool marker. This is populated later, once the
+ // size of the pool is known.
+ bind(&marker);
+ nop();
+
+ // Now populate the literal pool.
+ bind(&start_of_pool);
+ std::list<Literal*>::iterator it;
+ for (it = literals_.begin(); it != literals_.end(); it++) {
+ // Update the load-literal instruction to point to this pool entry.
+ Instruction* load_literal = (*it)->pc_;
+ load_literal->SetImmLLiteral(pc_);
+ // Copy the data into the pool.
+ uint64_t value= (*it)->value_;
+ unsigned size = (*it)->size_;
+ ASSERT((size == kXRegSizeInBytes) || (size == kWRegSizeInBytes));
+ ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
+ memcpy(pc_, &value, size);
+ pc_ += size;
+ delete *it;
+ }
+ literals_.clear();
+ bind(&end_of_pool);
+
+ // The pool size should always be a multiple of four bytes because that is the
+ // scaling applied by the LDR(literal) instruction, even for X-register loads.
+ ASSERT((SizeOfCodeGeneratedSince(&start_of_pool) % 4) == 0);
+ uint64_t pool_size = SizeOfCodeGeneratedSince(&start_of_pool) / 4;
+
+ // Literal pool marker indicating the size in words of the literal pool.
+ // We use a literal load to the zero register, the offset indicating the
+ // size in words. This instruction can encode a large enough offset to span
+ // the entire pool at its maximum size.
+ Instr marker_instruction = LDR_x_lit | ImmLLiteral(pool_size) | Rt(xzr);
+ memcpy(marker.target(), &marker_instruction, kInstructionSize);
+
+ next_literal_pool_check_ = pc_ + kLiteralPoolCheckInterval;
+}
+
+
+// Return the size in bytes, required by the literal pool entries. This does
+// not include any marker or branch over the literal pool itself.
+size_t Assembler::LiteralPoolSize() {
+ size_t size = 0;
+
+ std::list<Literal*>::iterator it;
+ for (it = literals_.begin(); it != literals_.end(); it++) {
+ size += (*it)->size_;
+ }
+
+ return size;
+}
+
+
+bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
+ const CPURegister& reg3, const CPURegister& reg4,
+ const CPURegister& reg5, const CPURegister& reg6,
+ const CPURegister& reg7, const CPURegister& reg8) {
+ int number_of_valid_regs = 0;
+ int number_of_valid_fpregs = 0;
+
+ RegList unique_regs = 0;
+ RegList unique_fpregs = 0;
+
+ const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
+
+ for (unsigned i = 0; i < sizeof(regs) / sizeof(regs[0]); i++) {
+ if (regs[i].IsRegister()) {
+ number_of_valid_regs++;
+ unique_regs |= regs[i].Bit();
+ } else if (regs[i].IsFPRegister()) {
+ number_of_valid_fpregs++;
+ unique_fpregs |= regs[i].Bit();
+ } else {
+ ASSERT(!regs[i].IsValid());
+ }
+ }
+
+ int number_of_unique_regs =
+ CountSetBits(unique_regs, sizeof(unique_regs) * 8);
+ int number_of_unique_fpregs =
+ CountSetBits(unique_fpregs, sizeof(unique_fpregs) * 8);
+
+ ASSERT(number_of_valid_regs >= number_of_unique_regs);
+ ASSERT(number_of_valid_fpregs >= number_of_unique_fpregs);
+
+ return (number_of_valid_regs != number_of_unique_regs) ||
+ (number_of_valid_fpregs != number_of_unique_fpregs);
+}
+
+
+bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
+ const CPURegister& reg3, const CPURegister& reg4,
+ const CPURegister& reg5, const CPURegister& reg6,
+ const CPURegister& reg7, const CPURegister& reg8) {
+ ASSERT(reg1.IsValid());
+ bool match = true;
+ match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
+ match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
+ match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
+ match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
+ match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
+ match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
+ match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
+ return match;
+}
+
+
+} // namespace vixl
new file mode 100644
@@ -0,0 +1,1784 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_ASSEMBLER_A64_H_
+#define VIXL_A64_ASSEMBLER_A64_H_
+
+#include <list>
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/instructions-a64.h"
+
+namespace vixl {
+
+typedef uint64_t RegList;
+static const int kRegListSizeInBits = sizeof(RegList) * 8;
+
+// Registers.
+
+// Some CPURegister methods can return Register and FPRegister types, so we
+// need to declare them in advance.
+class Register;
+class FPRegister;
+
+
+class CPURegister {
+ public:
+ enum RegisterType {
+ // The kInvalid value is used to detect uninitialized static instances,
+ // which are always zero-initialized before any constructors are called.
+ kInvalid = 0,
+ kRegister,
+ kFPRegister,
+ kNoRegister
+ };
+
+ CPURegister() : code_(0), size_(0), type_(kNoRegister) {
+ ASSERT(!IsValid());
+ ASSERT(IsNone());
+ }
+
+ CPURegister(unsigned code, unsigned size, RegisterType type)
+ : code_(code), size_(size), type_(type) {
+ ASSERT(IsValidOrNone());
+ }
+
+ unsigned code() const {
+ ASSERT(IsValid());
+ return code_;
+ }
+
+ RegisterType type() const {
+ ASSERT(IsValidOrNone());
+ return type_;
+ }
+
+ RegList Bit() const {
+ ASSERT(code_ < (sizeof(RegList) * 8));
+ return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
+ }
+
+ unsigned size() const {
+ ASSERT(IsValid());
+ return size_;
+ }
+
+ int SizeInBytes() const {
+ ASSERT(IsValid());
+ ASSERT(size() % 8 == 0);
+ return size_ / 8;
+ }
+
+ int SizeInBits() const {
+ ASSERT(IsValid());
+ return size_;
+ }
+
+ bool Is32Bits() const {
+ ASSERT(IsValid());
+ return size_ == 32;
+ }
+
+ bool Is64Bits() const {
+ ASSERT(IsValid());
+ return size_ == 64;
+ }
+
+ bool IsValid() const {
+ if (IsValidRegister() || IsValidFPRegister()) {
+ ASSERT(!IsNone());
+ return true;
+ } else {
+ ASSERT(IsNone());
+ return false;
+ }
+ }
+
+ bool IsValidRegister() const {
+ return IsRegister() &&
+ ((size_ == kWRegSize) || (size_ == kXRegSize)) &&
+ ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
+ }
+
+ bool IsValidFPRegister() const {
+ return IsFPRegister() &&
+ ((size_ == kSRegSize) || (size_ == kDRegSize)) &&
+ (code_ < kNumberOfFPRegisters);
+ }
+
+ bool IsNone() const {
+ // kNoRegister types should always have size 0 and code 0.
+ ASSERT((type_ != kNoRegister) || (code_ == 0));
+ ASSERT((type_ != kNoRegister) || (size_ == 0));
+
+ return type_ == kNoRegister;
+ }
+
+ bool Is(const CPURegister& other) const {
+ ASSERT(IsValidOrNone() && other.IsValidOrNone());
+ return (code_ == other.code_) && (size_ == other.size_) &&
+ (type_ == other.type_);
+ }
+
+ inline bool IsZero() const {
+ ASSERT(IsValid());
+ return IsRegister() && (code_ == kZeroRegCode);
+ }
+
+ inline bool IsSP() const {
+ ASSERT(IsValid());
+ return IsRegister() && (code_ == kSPRegInternalCode);
+ }
+
+ inline bool IsRegister() const {
+ return type_ == kRegister;
+ }
+
+ inline bool IsFPRegister() const {
+ return type_ == kFPRegister;
+ }
+
+ const Register& W() const;
+ const Register& X() const;
+ const FPRegister& S() const;
+ const FPRegister& D() const;
+
+ inline bool IsSameSizeAndType(const CPURegister& other) const {
+ return (size_ == other.size_) && (type_ == other.type_);
+ }
+
+ protected:
+ unsigned code_;
+ unsigned size_;
+ RegisterType type_;
+
+ private:
+ bool IsValidOrNone() const {
+ return IsValid() || IsNone();
+ }
+};
+
+
+class Register : public CPURegister {
+ public:
+ explicit Register() : CPURegister() {}
+ inline explicit Register(const CPURegister& other)
+ : CPURegister(other.code(), other.size(), other.type()) {
+ ASSERT(IsValidRegister());
+ }
+ explicit Register(unsigned code, unsigned size)
+ : CPURegister(code, size, kRegister) {}
+
+ bool IsValid() const {
+ ASSERT(IsRegister() || IsNone());
+ return IsValidRegister();
+ }
+
+ static const Register& WRegFromCode(unsigned code);
+ static const Register& XRegFromCode(unsigned code);
+
+ // V8 compatibility.
+ static const int kNumRegisters = kNumberOfRegisters;
+ static const int kNumAllocatableRegisters = kNumberOfRegisters - 1;
+
+ private:
+ static const Register wregisters[];
+ static const Register xregisters[];
+};
+
+
+class FPRegister : public CPURegister {
+ public:
+ inline FPRegister() : CPURegister() {}
+ inline explicit FPRegister(const CPURegister& other)
+ : CPURegister(other.code(), other.size(), other.type()) {
+ ASSERT(IsValidFPRegister());
+ }
+ inline FPRegister(unsigned code, unsigned size)
+ : CPURegister(code, size, kFPRegister) {}
+
+ bool IsValid() const {
+ ASSERT(IsFPRegister() || IsNone());
+ return IsValidFPRegister();
+ }
+
+ static const FPRegister& SRegFromCode(unsigned code);
+ static const FPRegister& DRegFromCode(unsigned code);
+
+ // V8 compatibility.
+ static const int kNumRegisters = kNumberOfFPRegisters;
+ static const int kNumAllocatableRegisters = kNumberOfFPRegisters - 1;
+
+ private:
+ static const FPRegister sregisters[];
+ static const FPRegister dregisters[];
+};
+
+
+// No*Reg is used to indicate an unused argument, or an error case. Note that
+// these all compare equal (using the Is() method). The Register and FPRegister
+// variants are provided for convenience.
+const Register NoReg;
+const FPRegister NoFPReg;
+const CPURegister NoCPUReg;
+
+
+#define DEFINE_REGISTERS(N) \
+const Register w##N(N, kWRegSize); \
+const Register x##N(N, kXRegSize);
+REGISTER_CODE_LIST(DEFINE_REGISTERS)
+#undef DEFINE_REGISTERS
+const Register wsp(kSPRegInternalCode, kWRegSize);
+const Register sp(kSPRegInternalCode, kXRegSize);
+
+
+#define DEFINE_FPREGISTERS(N) \
+const FPRegister s##N(N, kSRegSize); \
+const FPRegister d##N(N, kDRegSize);
+REGISTER_CODE_LIST(DEFINE_FPREGISTERS)
+#undef DEFINE_FPREGISTERS
+
+
+// Registers aliases.
+const Register ip0 = x16;
+const Register ip1 = x17;
+const Register lr = x30;
+const Register xzr = x31;
+const Register wzr = w31;
+
+
+// AreAliased returns true if any of the named registers overlap. Arguments
+// set to NoReg are ignored. The system stack pointer may be specified.
+bool AreAliased(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoReg,
+ const CPURegister& reg4 = NoReg,
+ const CPURegister& reg5 = NoReg,
+ const CPURegister& reg6 = NoReg,
+ const CPURegister& reg7 = NoReg,
+ const CPURegister& reg8 = NoReg);
+
+
+// AreSameSizeAndType returns true if all of the specified registers have the
+// same size, and are of the same type. The system stack pointer may be
+// specified. Arguments set to NoReg are ignored, as are any subsequent
+// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
+bool AreSameSizeAndType(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoCPUReg,
+ const CPURegister& reg4 = NoCPUReg,
+ const CPURegister& reg5 = NoCPUReg,
+ const CPURegister& reg6 = NoCPUReg,
+ const CPURegister& reg7 = NoCPUReg,
+ const CPURegister& reg8 = NoCPUReg);
+
+
+// Lists of registers.
+class CPURegList {
+ public:
+ inline explicit CPURegList(CPURegister reg1,
+ CPURegister reg2 = NoCPUReg,
+ CPURegister reg3 = NoCPUReg,
+ CPURegister reg4 = NoCPUReg)
+ : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
+ size_(reg1.size()), type_(reg1.type()) {
+ ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
+ ASSERT(IsValid());
+ }
+
+ inline CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
+ : list_(list), size_(size), type_(type) {
+ ASSERT(IsValid());
+ }
+
+ inline CPURegList(CPURegister::RegisterType type, unsigned size,
+ unsigned first_reg, unsigned last_reg)
+ : size_(size), type_(type) {
+ ASSERT(((type == CPURegister::kRegister) &&
+ (last_reg < kNumberOfRegisters)) ||
+ ((type == CPURegister::kFPRegister) &&
+ (last_reg < kNumberOfFPRegisters)));
+ ASSERT(last_reg >= first_reg);
+ list_ = (1UL << (last_reg + 1)) - 1;
+ list_ &= ~((1UL << first_reg) - 1);
+ ASSERT(IsValid());
+ }
+
+ inline CPURegister::RegisterType type() const {
+ ASSERT(IsValid());
+ return type_;
+ }
+
+ // Combine another CPURegList into this one. Registers that already exist in
+ // this list are left unchanged. The type and size of the registers in the
+ // 'other' list must match those in this list.
+ void Combine(const CPURegList& other) {
+ ASSERT(IsValid());
+ ASSERT(other.type() == type_);
+ ASSERT(other.RegisterSizeInBits() == size_);
+ list_ |= other.list();
+ }
+
+ // Remove every register in the other CPURegList from this one. Registers that
+ // do not exist in this list are ignored. The type and size of the registers
+ // in the 'other' list must match those in this list.
+ void Remove(const CPURegList& other) {
+ ASSERT(IsValid());
+ ASSERT(other.type() == type_);
+ ASSERT(other.RegisterSizeInBits() == size_);
+ list_ &= ~other.list();
+ }
+
+ // Variants of Combine and Remove which take a single register.
+ inline void Combine(const CPURegister& other) {
+ ASSERT(other.type() == type_);
+ ASSERT(other.size() == size_);
+ Combine(other.code());
+ }
+
+ inline void Remove(const CPURegister& other) {
+ ASSERT(other.type() == type_);
+ ASSERT(other.size() == size_);
+ Remove(other.code());
+ }
+
+ // Variants of Combine and Remove which take a single register by its code;
+ // the type and size of the register is inferred from this list.
+ inline void Combine(int code) {
+ ASSERT(IsValid());
+ ASSERT(CPURegister(code, size_, type_).IsValid());
+ list_ |= (1UL << code);
+ }
+
+ inline void Remove(int code) {
+ ASSERT(IsValid());
+ ASSERT(CPURegister(code, size_, type_).IsValid());
+ list_ &= ~(1UL << code);
+ }
+
+ inline RegList list() const {
+ ASSERT(IsValid());
+ return list_;
+ }
+
+ // Remove all callee-saved registers from the list. This can be useful when
+ // preparing registers for an AAPCS64 function call, for example.
+ void RemoveCalleeSaved();
+
+ CPURegister PopLowestIndex();
+ CPURegister PopHighestIndex();
+
+ // AAPCS64 callee-saved registers.
+ static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
+ static CPURegList GetCalleeSavedFP(unsigned size = kDRegSize);
+
+ // AAPCS64 caller-saved registers. Note that this includes lr.
+ static CPURegList GetCallerSaved(unsigned size = kXRegSize);
+ static CPURegList GetCallerSavedFP(unsigned size = kDRegSize);
+
+ inline bool IsEmpty() const {
+ ASSERT(IsValid());
+ return list_ == 0;
+ }
+
+ inline bool IncludesAliasOf(const CPURegister& other) const {
+ ASSERT(IsValid());
+ return (type_ == other.type()) && (other.Bit() & list_);
+ }
+
+ inline int Count() const {
+ ASSERT(IsValid());
+ return CountSetBits(list_, kRegListSizeInBits);
+ }
+
+ inline unsigned RegisterSizeInBits() const {
+ ASSERT(IsValid());
+ return size_;
+ }
+
+ inline unsigned RegisterSizeInBytes() const {
+ int size_in_bits = RegisterSizeInBits();
+ ASSERT((size_in_bits % 8) == 0);
+ return size_in_bits / 8;
+ }
+
+ private:
+ RegList list_;
+ unsigned size_;
+ CPURegister::RegisterType type_;
+
+ bool IsValid() const;
+};
+
+
+// AAPCS64 callee-saved registers.
+extern const CPURegList kCalleeSaved;
+extern const CPURegList kCalleeSavedFP;
+
+
+// AAPCS64 caller-saved registers. Note that this includes lr.
+extern const CPURegList kCallerSaved;
+extern const CPURegList kCallerSavedFP;
+
+
+// Operand.
+class Operand {
+ public:
+ // #<immediate>
+ // where <immediate> is int64_t.
+ // This is allowed to be an implicit constructor because Operand is
+ // a wrapper class that doesn't normally perform any type conversion.
+ Operand(int64_t immediate); // NOLINT(runtime/explicit)
+
+ // rm, {<shift> #<shift_amount>}
+ // where <shift> is one of {LSL, LSR, ASR, ROR}.
+ // <shift_amount> is uint6_t.
+ // This is allowed to be an implicit constructor because Operand is
+ // a wrapper class that doesn't normally perform any type conversion.
+ Operand(Register reg,
+ Shift shift = LSL,
+ unsigned shift_amount = 0); // NOLINT(runtime/explicit)
+
+ // rm, {<extend> {#<shift_amount>}}
+ // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
+ // <shift_amount> is uint2_t.
+ explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
+
+ bool IsImmediate() const;
+ bool IsShiftedRegister() const;
+ bool IsExtendedRegister() const;
+
+ // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
+ // which helps in the encoding of instructions that use the stack pointer.
+ Operand ToExtendedRegister() const;
+
+ int64_t immediate() const {
+ ASSERT(IsImmediate());
+ return immediate_;
+ }
+
+ Register reg() const {
+ ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return reg_;
+ }
+
+ Shift shift() const {
+ ASSERT(IsShiftedRegister());
+ return shift_;
+ }
+
+ Extend extend() const {
+ ASSERT(IsExtendedRegister());
+ return extend_;
+ }
+
+ unsigned shift_amount() const {
+ ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return shift_amount_;
+ }
+
+ private:
+ int64_t immediate_;
+ Register reg_;
+ Shift shift_;
+ Extend extend_;
+ unsigned shift_amount_;
+};
+
+
+// MemOperand represents the addressing mode of a load or store instruction.
+class MemOperand {
+ public:
+ explicit MemOperand(Register base,
+ ptrdiff_t offset = 0,
+ AddrMode addrmode = Offset);
+ explicit MemOperand(Register base,
+ Register regoffset,
+ Shift shift = LSL,
+ unsigned shift_amount = 0);
+ explicit MemOperand(Register base,
+ Register regoffset,
+ Extend extend,
+ unsigned shift_amount = 0);
+ explicit MemOperand(Register base,
+ const Operand& offset,
+ AddrMode addrmode = Offset);
+
+ const Register& base() const { return base_; }
+ const Register& regoffset() const { return regoffset_; }
+ ptrdiff_t offset() const { return offset_; }
+ AddrMode addrmode() const { return addrmode_; }
+ Shift shift() const { return shift_; }
+ Extend extend() const { return extend_; }
+ unsigned shift_amount() const { return shift_amount_; }
+ bool IsImmediateOffset() const;
+ bool IsRegisterOffset() const;
+ bool IsPreIndex() const;
+ bool IsPostIndex() const;
+
+ private:
+ Register base_;
+ Register regoffset_;
+ ptrdiff_t offset_;
+ AddrMode addrmode_;
+ Shift shift_;
+ Extend extend_;
+ unsigned shift_amount_;
+};
+
+
+class Label {
+ public:
+ Label() : is_bound_(false), link_(NULL), target_(NULL) {}
+ ~Label() {
+ // If the label has been linked to, it needs to be bound to a target.
+ ASSERT(!IsLinked() || IsBound());
+ }
+
+ inline Instruction* link() const { return link_; }
+ inline Instruction* target() const { return target_; }
+
+ inline bool IsBound() const { return is_bound_; }
+ inline bool IsLinked() const { return link_ != NULL; }
+
+ inline void set_link(Instruction* new_link) { link_ = new_link; }
+
+ static const int kEndOfChain = 0;
+
+ private:
+ // Indicates if the label has been bound, ie its location is fixed.
+ bool is_bound_;
+ // Branches instructions branching to this label form a chained list, with
+ // their offset indicating where the next instruction is located.
+ // link_ points to the latest branch instruction generated branching to this
+ // branch.
+ // If link_ is not NULL, the label has been linked to.
+ Instruction* link_;
+ // The label location.
+ Instruction* target_;
+
+ friend class Assembler;
+};
+
+
+// TODO: Obtain better values for these, based on real-world data.
+const int kLiteralPoolCheckInterval = 4 * KBytes;
+const int kRecommendedLiteralPoolRange = 2 * kLiteralPoolCheckInterval;
+
+
+// Control whether a branch over the literal pool should also be emitted. This
+// is needed if the literal pool has to be emitted in the middle of the JITted
+// code.
+enum LiteralPoolEmitOption {
+ JumpRequired,
+ NoJumpRequired
+};
+
+
+// Literal pool entry.
+class Literal {
+ public:
+ Literal(Instruction* pc, uint64_t imm, unsigned size)
+ : pc_(pc), value_(imm), size_(size) {}
+
+ private:
+ Instruction* pc_;
+ int64_t value_;
+ unsigned size_;
+
+ friend class Assembler;
+};
+
+
+// Assembler.
+class Assembler {
+ public:
+ Assembler(byte* buffer, unsigned buffer_size);
+
+ // The destructor asserts that one of the following is true:
+ // * The Assembler object has not been used.
+ // * Nothing has been emitted since the last Reset() call.
+ // * Nothing has been emitted since the last FinalizeCode() call.
+ ~Assembler();
+
+ // System functions.
+
+ // Start generating code from the beginning of the buffer, discarding any code
+ // and data that has already been emitted into the buffer.
+ //
+ // In order to avoid any accidental transfer of state, Reset ASSERTs that the
+ // constant pool is not blocked.
+ void Reset();
+
+ // Finalize a code buffer of generated instructions. This function must be
+ // called before executing or copying code from the buffer.
+ void FinalizeCode();
+
+ // Label.
+ // Bind a label to the current PC.
+ void bind(Label* label);
+ int UpdateAndGetByteOffsetTo(Label* label);
+ inline int UpdateAndGetInstructionOffsetTo(Label* label) {
+ ASSERT(Label::kEndOfChain == 0);
+ return UpdateAndGetByteOffsetTo(label) >> kInstructionSizeLog2;
+ }
+
+
+ // Instruction set functions.
+
+ // Branch / Jump instructions.
+ // Branch to register.
+ void br(const Register& xn);
+
+ // Branch with link to register.
+ void blr(const Register& xn);
+
+ // Branch to register with return hint.
+ void ret(const Register& xn = lr);
+
+ // Unconditional branch to label.
+ void b(Label* label);
+
+ // Conditional branch to label.
+ void b(Label* label, Condition cond);
+
+ // Unconditional branch to PC offset.
+ void b(int imm26);
+
+ // Conditional branch to PC offset.
+ void b(int imm19, Condition cond);
+
+ // Branch with link to label.
+ void bl(Label* label);
+
+ // Branch with link to PC offset.
+ void bl(int imm26);
+
+ // Compare and branch to label if zero.
+ void cbz(const Register& rt, Label* label);
+
+ // Compare and branch to PC offset if zero.
+ void cbz(const Register& rt, int imm19);
+
+ // Compare and branch to label if not zero.
+ void cbnz(const Register& rt, Label* label);
+
+ // Compare and branch to PC offset if not zero.
+ void cbnz(const Register& rt, int imm19);
+
+ // Test bit and branch to label if zero.
+ void tbz(const Register& rt, unsigned bit_pos, Label* label);
+
+ // Test bit and branch to PC offset if zero.
+ void tbz(const Register& rt, unsigned bit_pos, int imm14);
+
+ // Test bit and branch to label if not zero.
+ void tbnz(const Register& rt, unsigned bit_pos, Label* label);
+
+ // Test bit and branch to PC offset if not zero.
+ void tbnz(const Register& rt, unsigned bit_pos, int imm14);
+
+ // Address calculation instructions.
+ // Calculate a PC-relative address. Unlike for branches the offset in adr is
+ // unscaled (i.e. the result can be unaligned).
+
+ // Calculate the address of a label.
+ void adr(const Register& rd, Label* label);
+
+ // Calculate the address of a PC offset.
+ void adr(const Register& rd, int imm21);
+
+ // Data Processing instructions.
+ // Add.
+ void add(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Compare negative.
+ void cmn(const Register& rn, const Operand& operand);
+
+ // Subtract.
+ void sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Compare.
+ void cmp(const Register& rn, const Operand& operand);
+
+ // Negate.
+ void neg(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Add with carry bit.
+ void adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Subtract with carry bit.
+ void sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Negate with carry bit.
+ void ngc(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Logical instructions.
+ // Bitwise and (A & B).
+ void and_(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Bit test and set flags.
+ void tst(const Register& rn, const Operand& operand);
+
+ // Bit clear (A & ~B).
+ void bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Bitwise or (A | B).
+ void orr(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise nor (A | ~B).
+ void orn(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise eor/xor (A ^ B).
+ void eor(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise enor/xnor (A ^ ~B).
+ void eon(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Logical shift left by variable.
+ void lslv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Logical shift right by variable.
+ void lsrv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Arithmetic shift right by variable.
+ void asrv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Rotate right by variable.
+ void rorv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Bitfield instructions.
+ // Bitfield move.
+ void bfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Signed bitfield move.
+ void sbfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Unsigned bitfield move.
+ void ubfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Bfm aliases.
+ // Bitfield insert.
+ inline void bfi(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Bitfield extract and insert low.
+ inline void bfxil(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ bfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Sbfm aliases.
+ // Arithmetic shift right.
+ inline void asr(const Register& rd, const Register& rn, unsigned shift) {
+ ASSERT(shift < rd.size());
+ sbfm(rd, rn, shift, rd.size() - 1);
+ }
+
+ // Signed bitfield insert with zero at right.
+ inline void sbfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Signed bitfield extract.
+ inline void sbfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ sbfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Signed extend byte.
+ inline void sxtb(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 7);
+ }
+
+ // Signed extend halfword.
+ inline void sxth(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 15);
+ }
+
+ // Signed extend word.
+ inline void sxtw(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 31);
+ }
+
+ // Ubfm aliases.
+ // Logical shift left.
+ inline void lsl(const Register& rd, const Register& rn, unsigned shift) {
+ unsigned reg_size = rd.size();
+ ASSERT(shift < reg_size);
+ ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
+ }
+
+ // Logical shift right.
+ inline void lsr(const Register& rd, const Register& rn, unsigned shift) {
+ ASSERT(shift < rd.size());
+ ubfm(rd, rn, shift, rd.size() - 1);
+ }
+
+ // Unsigned bitfield insert with zero at right.
+ inline void ubfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Unsigned bitfield extract.
+ inline void ubfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ ubfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Unsigned extend byte.
+ inline void uxtb(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 7);
+ }
+
+ // Unsigned extend halfword.
+ inline void uxth(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 15);
+ }
+
+ // Unsigned extend word.
+ inline void uxtw(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 31);
+ }
+
+ // Extract.
+ void extr(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ unsigned lsb);
+
+ // Conditional select: rd = cond ? rn : rm.
+ void csel(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select increment: rd = cond ? rn : rm + 1.
+ void csinc(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select inversion: rd = cond ? rn : ~rm.
+ void csinv(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select negation: rd = cond ? rn : -rm.
+ void csneg(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional set: rd = cond ? 1 : 0.
+ void cset(const Register& rd, Condition cond);
+
+ // Conditional set mask: rd = cond ? -1 : 0.
+ void csetm(const Register& rd, Condition cond);
+
+ // Conditional increment: rd = cond ? rn + 1 : rn.
+ void cinc(const Register& rd, const Register& rn, Condition cond);
+
+ // Conditional invert: rd = cond ? ~rn : rn.
+ void cinv(const Register& rd, const Register& rn, Condition cond);
+
+ // Conditional negate: rd = cond ? -rn : rn.
+ void cneg(const Register& rd, const Register& rn, Condition cond);
+
+ // Rotate right.
+ inline void ror(const Register& rd, const Register& rs, unsigned shift) {
+ extr(rd, rs, rs, shift);
+ }
+
+ // Conditional comparison.
+ // Conditional compare negative.
+ void ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // Conditional compare.
+ void ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // Multiply.
+ void mul(const Register& rd, const Register& rn, const Register& rm);
+
+ // Negated multiply.
+ void mneg(const Register& rd, const Register& rn, const Register& rm);
+
+ // Signed long multiply: 32 x 32 -> 64-bit.
+ void smull(const Register& rd, const Register& rn, const Register& rm);
+
+ // Signed multiply high: 64 x 64 -> 64-bit <127:64>.
+ void smulh(const Register& xd, const Register& xn, const Register& xm);
+
+ // Multiply and accumulate.
+ void madd(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Multiply and subtract.
+ void msub(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+ void smaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+ void umaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+ void smsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+ void umsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed integer divide.
+ void sdiv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Unsigned integer divide.
+ void udiv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Bit reverse.
+ void rbit(const Register& rd, const Register& rn);
+
+ // Reverse bytes in 16-bit half words.
+ void rev16(const Register& rd, const Register& rn);
+
+ // Reverse bytes in 32-bit words.
+ void rev32(const Register& rd, const Register& rn);
+
+ // Reverse bytes.
+ void rev(const Register& rd, const Register& rn);
+
+ // Count leading zeroes.
+ void clz(const Register& rd, const Register& rn);
+
+ // Count leading sign bits.
+ void cls(const Register& rd, const Register& rn);
+
+ // Memory instructions.
+ // Load integer or FP register.
+ void ldr(const CPURegister& rt, const MemOperand& src);
+
+ // Store integer or FP register.
+ void str(const CPURegister& rt, const MemOperand& dst);
+
+ // Load word with sign extension.
+ void ldrsw(const Register& rt, const MemOperand& src);
+
+ // Load byte.
+ void ldrb(const Register& rt, const MemOperand& src);
+
+ // Store byte.
+ void strb(const Register& rt, const MemOperand& dst);
+
+ // Load byte with sign extension.
+ void ldrsb(const Register& rt, const MemOperand& src);
+
+ // Load half-word.
+ void ldrh(const Register& rt, const MemOperand& src);
+
+ // Store half-word.
+ void strh(const Register& rt, const MemOperand& dst);
+
+ // Load half-word with sign extension.
+ void ldrsh(const Register& rt, const MemOperand& src);
+
+ // Load integer or FP register pair.
+ void ldp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src);
+
+ // Store integer or FP register pair.
+ void stp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst);
+
+ // Load word pair with sign extension.
+ void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
+
+ // Load integer or FP register pair, non-temporal.
+ void ldnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src);
+
+ // Store integer or FP register pair, non-temporal.
+ void stnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst);
+
+ // Load literal to register.
+ void ldr(const Register& rt, uint64_t imm);
+
+ // Load literal to FP register.
+ void ldr(const FPRegister& ft, double imm);
+
+ // Move instructions. The default shift of -1 indicates that the move
+ // instruction will calculate an appropriate 16-bit immediate and left shift
+ // that is equal to the 64-bit immediate argument. If an explicit left shift
+ // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
+ //
+ // For movk, an explicit shift can be used to indicate which half word should
+ // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
+ // half word with zero, whereas movk(x0, 0, 48) will overwrite the
+ // most-significant.
+
+ // Move immediate and keep.
+ void movk(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVK);
+ }
+
+ // Move inverted immediate.
+ void movn(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVN);
+ }
+
+ // Move immediate.
+ void movz(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVZ);
+ }
+
+ // Misc instructions.
+ // Monitor debug-mode breakpoint.
+ void brk(int code);
+
+ // Halting debug-mode breakpoint.
+ void hlt(int code);
+
+ // Move register to register.
+ void mov(const Register& rd, const Register& rn);
+
+ // Move inverted operand to register.
+ void mvn(const Register& rd, const Operand& operand);
+
+ // System instructions.
+ // Move to register from system register.
+ void mrs(const Register& rt, SystemRegister sysreg);
+
+ // Move from register to system register.
+ void msr(SystemRegister sysreg, const Register& rt);
+
+ // System hint.
+ void hint(SystemHint code);
+
+ // Alias for system instructions.
+ // No-op.
+ void nop() {
+ hint(NOP);
+ }
+
+ // FP instructions.
+ // Move immediate to FP register.
+ void fmov(FPRegister fd, double imm);
+
+ // Move FP register to register.
+ void fmov(Register rd, FPRegister fn);
+
+ // Move register to FP register.
+ void fmov(FPRegister fd, Register rn);
+
+ // Move FP register to FP register.
+ void fmov(FPRegister fd, FPRegister fn);
+
+ // FP add.
+ void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP subtract.
+ void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP multiply.
+ void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP multiply and subtract.
+ void fmsub(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa);
+
+ // FP divide.
+ void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP maximum.
+ void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP minimum.
+ void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP absolute.
+ void fabs(const FPRegister& fd, const FPRegister& fn);
+
+ // FP negate.
+ void fneg(const FPRegister& fd, const FPRegister& fn);
+
+ // FP square root.
+ void fsqrt(const FPRegister& fd, const FPRegister& fn);
+
+ // FP round to integer (nearest with ties to even).
+ void frintn(const FPRegister& fd, const FPRegister& fn);
+
+ // FP round to integer (towards zero).
+ void frintz(const FPRegister& fd, const FPRegister& fn);
+
+ // FP compare registers.
+ void fcmp(const FPRegister& fn, const FPRegister& fm);
+
+ // FP compare immediate.
+ void fcmp(const FPRegister& fn, double value);
+
+ // FP conditional compare.
+ void fccmp(const FPRegister& fn,
+ const FPRegister& fm,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // FP conditional select.
+ void fcsel(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ Condition cond);
+
+ // Common FP Convert function.
+ void FPConvertToInt(const Register& rd,
+ const FPRegister& fn,
+ FPIntegerConvertOp op);
+
+ // FP convert between single and double precision.
+ void fcvt(const FPRegister& fd, const FPRegister& fn);
+
+ // Convert FP to unsigned integer (round towards -infinity).
+ void fcvtmu(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to signed integer (round towards -infinity).
+ void fcvtms(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to unsigned integer (nearest with ties to even).
+ void fcvtnu(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to signed integer (nearest with ties to even).
+ void fcvtns(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to unsigned integer (round towards zero).
+ void fcvtzu(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to signed integer (round towards zero).
+ void fcvtzs(const Register& rd, const FPRegister& fn);
+
+ // Convert signed integer or fixed point to FP.
+ void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
+
+ // Convert unsigned integer or fixed point to FP.
+ void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
+
+ // Emit generic instructions.
+ // Emit raw instructions into the instruction stream.
+ inline void dci(Instr raw_inst) { Emit(raw_inst); }
+
+ // Emit 32 bits of data into the instruction stream.
+ inline void dc32(uint32_t data) { EmitData(&data, sizeof(data)); }
+
+ // Emit 64 bits of data into the instruction stream.
+ inline void dc64(uint64_t data) { EmitData(&data, sizeof(data)); }
+
+ // Copy a string into the instruction stream, including the terminating NULL
+ // character. The instruction pointer (pc_) is then aligned correctly for
+ // subsequent instructions.
+ void EmitStringData(const char * string) {
+ ASSERT(string != NULL);
+
+ size_t len = strlen(string) + 1;
+ EmitData(string, len);
+
+ // Pad with NULL characters until pc_ is aligned.
+ const char pad[] = {'\0', '\0', '\0', '\0'};
+ ASSERT(sizeof(pad) == kInstructionSize);
+ Instruction* next_pc = AlignUp(pc_, kInstructionSize);
+ EmitData(&pad, next_pc - pc_);
+ }
+
+ // Code generation helpers.
+
+ // Register encoding.
+ static Instr Rd(CPURegister rd) {
+ ASSERT(rd.code() != kSPRegInternalCode);
+ return rd.code() << Rd_offset;
+ }
+
+ static Instr Rn(CPURegister rn) {
+ ASSERT(rn.code() != kSPRegInternalCode);
+ return rn.code() << Rn_offset;
+ }
+
+ static Instr Rm(CPURegister rm) {
+ ASSERT(rm.code() != kSPRegInternalCode);
+ return rm.code() << Rm_offset;
+ }
+
+ static Instr Ra(CPURegister ra) {
+ ASSERT(ra.code() != kSPRegInternalCode);
+ return ra.code() << Ra_offset;
+ }
+
+ static Instr Rt(CPURegister rt) {
+ ASSERT(rt.code() != kSPRegInternalCode);
+ return rt.code() << Rt_offset;
+ }
+
+ static Instr Rt2(CPURegister rt2) {
+ ASSERT(rt2.code() != kSPRegInternalCode);
+ return rt2.code() << Rt2_offset;
+ }
+
+ // These encoding functions allow the stack pointer to be encoded, and
+ // disallow the zero register.
+ static Instr RdSP(Register rd) {
+ ASSERT(!rd.IsZero());
+ return (rd.code() & kRegCodeMask) << Rd_offset;
+ }
+
+ static Instr RnSP(Register rn) {
+ ASSERT(!rn.IsZero());
+ return (rn.code() & kRegCodeMask) << Rn_offset;
+ }
+
+ // Flags encoding.
+ static Instr Flags(FlagsUpdate S) {
+ if (S == SetFlags) {
+ return 1 << FlagsUpdate_offset;
+ } else if (S == LeaveFlags) {
+ return 0 << FlagsUpdate_offset;
+ }
+ UNREACHABLE();
+ return 0;
+ }
+
+ static Instr Cond(Condition cond) {
+ return cond << Condition_offset;
+ }
+
+ // PC-relative address encoding.
+ static Instr ImmPCRelAddress(int imm21) {
+ ASSERT(is_int21(imm21));
+ Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
+ Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
+ Instr immlo = imm << ImmPCRelLo_offset;
+ return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
+ }
+
+ // Branch encoding.
+ static Instr ImmUncondBranch(int imm26) {
+ ASSERT(is_int26(imm26));
+ return truncate_to_int26(imm26) << ImmUncondBranch_offset;
+ }
+
+ static Instr ImmCondBranch(int imm19) {
+ ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCondBranch_offset;
+ }
+
+ static Instr ImmCmpBranch(int imm19) {
+ ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCmpBranch_offset;
+ }
+
+ static Instr ImmTestBranch(int imm14) {
+ ASSERT(is_int14(imm14));
+ return truncate_to_int14(imm14) << ImmTestBranch_offset;
+ }
+
+ static Instr ImmTestBranchBit(unsigned bit_pos) {
+ ASSERT(is_uint6(bit_pos));
+ // Subtract five from the shift offset, as we need bit 5 from bit_pos.
+ unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
+ unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
+ b5 &= ImmTestBranchBit5_mask;
+ b40 &= ImmTestBranchBit40_mask;
+ return b5 | b40;
+ }
+
+ // Data Processing encoding.
+ static Instr SF(Register rd) {
+ return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
+ }
+
+ static Instr ImmAddSub(int64_t imm) {
+ ASSERT(IsImmAddSub(imm));
+ if (is_uint12(imm)) { // No shift required.
+ return imm << ImmAddSub_offset;
+ } else {
+ return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
+ }
+ }
+
+ static inline Instr ImmS(unsigned imms, unsigned reg_size) {
+ ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
+ ((reg_size == kWRegSize) && is_uint5(imms)));
+ USE(reg_size);
+ return imms << ImmS_offset;
+ }
+
+ static inline Instr ImmR(unsigned immr, unsigned reg_size) {
+ ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+ ((reg_size == kWRegSize) && is_uint5(immr)));
+ USE(reg_size);
+ ASSERT(is_uint6(immr));
+ return immr << ImmR_offset;
+ }
+
+ static inline Instr ImmSetBits(unsigned imms, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT(is_uint6(imms));
+ ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
+ USE(reg_size);
+ return imms << ImmSetBits_offset;
+ }
+
+ static inline Instr ImmRotate(unsigned immr, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+ ((reg_size == kWRegSize) && is_uint5(immr)));
+ USE(reg_size);
+ return immr << ImmRotate_offset;
+ }
+
+ static inline Instr ImmLLiteral(int imm19) {
+ ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmLLiteral_offset;
+ }
+
+ static inline Instr BitN(unsigned bitn, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT((reg_size == kXRegSize) || (bitn == 0));
+ USE(reg_size);
+ return bitn << BitN_offset;
+ }
+
+ static Instr ShiftDP(Shift shift) {
+ ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
+ return shift << ShiftDP_offset;
+ }
+
+ static Instr ImmDPShift(unsigned amount) {
+ ASSERT(is_uint6(amount));
+ return amount << ImmDPShift_offset;
+ }
+
+ static Instr ExtendMode(Extend extend) {
+ return extend << ExtendMode_offset;
+ }
+
+ static Instr ImmExtendShift(unsigned left_shift) {
+ ASSERT(left_shift <= 4);
+ return left_shift << ImmExtendShift_offset;
+ }
+
+ static Instr ImmCondCmp(unsigned imm) {
+ ASSERT(is_uint5(imm));
+ return imm << ImmCondCmp_offset;
+ }
+
+ static Instr Nzcv(StatusFlags nzcv) {
+ return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
+ }
+
+ // MemOperand offset encoding.
+ static Instr ImmLSUnsigned(int imm12) {
+ ASSERT(is_uint12(imm12));
+ return imm12 << ImmLSUnsigned_offset;
+ }
+
+ static Instr ImmLS(int imm9) {
+ ASSERT(is_int9(imm9));
+ return truncate_to_int9(imm9) << ImmLS_offset;
+ }
+
+ static Instr ImmLSPair(int imm7, LSDataSize size) {
+ ASSERT(((imm7 >> size) << size) == imm7);
+ int scaled_imm7 = imm7 >> size;
+ ASSERT(is_int7(scaled_imm7));
+ return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
+ }
+
+ static Instr ImmShiftLS(unsigned shift_amount) {
+ ASSERT(is_uint1(shift_amount));
+ return shift_amount << ImmShiftLS_offset;
+ }
+
+ static Instr ImmException(int imm16) {
+ ASSERT(is_uint16(imm16));
+ return imm16 << ImmException_offset;
+ }
+
+ static Instr ImmSystemRegister(int imm15) {
+ ASSERT(is_uint15(imm15));
+ return imm15 << ImmSystemRegister_offset;
+ }
+
+ static Instr ImmHint(int imm7) {
+ ASSERT(is_uint7(imm7));
+ return imm7 << ImmHint_offset;
+ }
+
+ static LSDataSize CalcLSDataSize(LoadStoreOp op) {
+ ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
+ return static_cast<LSDataSize>(op >> SizeLS_offset);
+ }
+
+ // Move immediates encoding.
+ static Instr ImmMoveWide(uint64_t imm) {
+ ASSERT(is_uint16(imm));
+ return imm << ImmMoveWide_offset;
+ }
+
+ static Instr ShiftMoveWide(int64_t shift) {
+ ASSERT(is_uint2(shift));
+ return shift << ShiftMoveWide_offset;
+ }
+
+ // FP Immediates.
+ static Instr ImmFP32(float imm);
+ static Instr ImmFP64(double imm);
+
+ // FP register type.
+ static Instr FPType(FPRegister fd) {
+ return fd.Is64Bits() ? FP64 : FP32;
+ }
+
+ static Instr FPScale(unsigned scale) {
+ ASSERT(is_uint6(scale));
+ return scale << FPScale_offset;
+ }
+
+ // Size of the code generated in bytes
+ uint64_t SizeOfCodeGenerated() const {
+ ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
+ return pc_ - buffer_;
+ }
+
+ // Size of the code generated since label to the current position.
+ uint64_t SizeOfCodeGeneratedSince(Label* label) const {
+ ASSERT(label->IsBound());
+ ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_)));
+ return pc_ - label->target();
+ }
+
+
+ inline void BlockLiteralPool() {
+ literal_pool_monitor_++;
+ }
+
+ inline void ReleaseLiteralPool() {
+ if (--literal_pool_monitor_ == 0) {
+ // Has the literal pool been blocked for too long?
+ ASSERT(literals_.empty() ||
+ (pc_ < (literals_.back()->pc_ + kMaxLoadLiteralRange)));
+ }
+ }
+
+ inline bool IsLiteralPoolBlocked() {
+ return literal_pool_monitor_ != 0;
+ }
+
+ void CheckLiteralPool(LiteralPoolEmitOption option = JumpRequired);
+ void EmitLiteralPool(LiteralPoolEmitOption option = NoJumpRequired);
+ size_t LiteralPoolSize();
+
+ protected:
+ inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const {
+ return reg.Is64Bits() ? xzr : wzr;
+ }
+
+
+ void LoadStore(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op);
+ static bool IsImmLSUnscaled(ptrdiff_t offset);
+ static bool IsImmLSScaled(ptrdiff_t offset, LSDataSize size);
+
+ void Logical(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ LogicalOp op);
+ void LogicalImmediate(const Register& rd,
+ const Register& rn,
+ unsigned n,
+ unsigned imm_s,
+ unsigned imm_r,
+ LogicalOp op);
+ static bool IsImmLogical(uint64_t value,
+ unsigned width,
+ unsigned* n,
+ unsigned* imm_s,
+ unsigned* imm_r);
+
+ void ConditionalCompare(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op);
+ static bool IsImmConditionalCompare(int64_t immediate);
+
+ void AddSubWithCarry(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op);
+
+ // Functions for emulating operands not directly supported by the instruction
+ // set.
+ void EmitShift(const Register& rd,
+ const Register& rn,
+ Shift shift,
+ unsigned amount);
+ void EmitExtendShift(const Register& rd,
+ const Register& rn,
+ Extend extend,
+ unsigned left_shift);
+
+ void AddSub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op);
+ static bool IsImmAddSub(int64_t immediate);
+
+ // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
+ // registers. Only simple loads are supported; sign- and zero-extension (such
+ // as in LDPSW_x or LDRB_w) are not supported.
+ static LoadStoreOp LoadOpFor(const CPURegister& rt);
+ static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
+ const CPURegister& rt2);
+ static LoadStoreOp StoreOpFor(const CPURegister& rt);
+ static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
+ const CPURegister& rt2);
+ static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2);
+ static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2);
+
+
+ private:
+ // Instruction helpers.
+ void MoveWide(const Register& rd,
+ uint64_t imm,
+ int shift,
+ MoveWideImmediateOp mov_op);
+ void DataProcShiftedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op);
+ void DataProcExtendedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op);
+ void LoadStorePair(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairOp op);
+ void LoadStorePairNonTemporal(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairNonTemporalOp op);
+ void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
+ void ConditionalSelect(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond,
+ ConditionalSelectOp op);
+ void DataProcessing1Source(const Register& rd,
+ const Register& rn,
+ DataProcessing1SourceOp op);
+ void DataProcessing3Source(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra,
+ DataProcessing3SourceOp op);
+ void FPDataProcessing1Source(const FPRegister& fd,
+ const FPRegister& fn,
+ FPDataProcessing1SourceOp op);
+ void FPDataProcessing2Source(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ FPDataProcessing2SourceOp op);
+ void FPDataProcessing3Source(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa,
+ FPDataProcessing3SourceOp op);
+
+ // Encoding helpers.
+ static bool IsImmFP32(float imm);
+ static bool IsImmFP64(double imm);
+
+ void RecordLiteral(int64_t imm, unsigned size);
+
+ // Emit the instruction at pc_.
+ void Emit(Instr instruction) {
+ ASSERT(sizeof(*pc_) == 1);
+ ASSERT(sizeof(instruction) == kInstructionSize);
+ ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));
+
+#ifdef DEBUG
+ finalized_ = false;
+#endif
+
+ memcpy(pc_, &instruction, sizeof(instruction));
+ pc_ += sizeof(instruction);
+ CheckBufferSpace();
+ }
+
+ // Emit data inline in the instruction stream.
+ void EmitData(void const * data, unsigned size) {
+ ASSERT(sizeof(*pc_) == 1);
+ ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
+
+#ifdef DEBUG
+ finalized_ = false;
+#endif
+
+ // TODO: Record this 'instruction' as data, so that it can be disassembled
+ // correctly.
+ memcpy(pc_, data, size);
+ pc_ += size;
+ CheckBufferSpace();
+ }
+
+ inline void CheckBufferSpace() {
+ ASSERT(pc_ < (buffer_ + buffer_size_));
+ if (pc_ > next_literal_pool_check_) {
+ CheckLiteralPool();
+ }
+ }
+
+ // The buffer into which code and relocation info are generated.
+ Instruction* buffer_;
+ // Buffer size, in bytes.
+ unsigned buffer_size_;
+ Instruction* pc_;
+ std::list<Literal*> literals_;
+ Instruction* next_literal_pool_check_;
+ unsigned literal_pool_monitor_;
+
+ friend class BlockLiteralPoolScope;
+
+#ifdef DEBUG
+ bool finalized_;
+#endif
+};
+
+class BlockLiteralPoolScope {
+ public:
+ explicit BlockLiteralPoolScope(Assembler* assm) : assm_(assm) {
+ assm_->BlockLiteralPool();
+ }
+
+ ~BlockLiteralPoolScope() {
+ assm_->ReleaseLiteralPool();
+ }
+
+ private:
+ Assembler* assm_;
+};
+} // namespace vixl
+
+#endif // VIXL_A64_ASSEMBLER_A64_H_
new file mode 100644
@@ -0,0 +1,1104 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_CONSTANTS_A64_H_
+#define VIXL_A64_CONSTANTS_A64_H_
+
+namespace vixl {
+
+const unsigned kNumberOfRegisters = 32;
+const unsigned kNumberOfFPRegisters = 32;
+// Callee saved registers are x21-x30(lr).
+const int kNumberOfCalleeSavedRegisters = 10;
+const int kFirstCalleeSavedRegisterIndex = 21;
+// Callee saved FP registers are d8-d15.
+const int kNumberOfCalleeSavedFPRegisters = 8;
+const int kFirstCalleeSavedFPRegisterIndex = 8;
+
+#define REGISTER_CODE_LIST(R) \
+R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \
+R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \
+R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \
+R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)
+
+#define INSTRUCTION_FIELDS_LIST(V_) \
+/* Register fields */ \
+V_(Rd, 4, 0, Bits) /* Destination register. */ \
+V_(Rn, 9, 5, Bits) /* First source register. */ \
+V_(Rm, 20, 16, Bits) /* Second source register. */ \
+V_(Ra, 14, 10, Bits) /* Third source register. */ \
+V_(Rt, 4, 0, Bits) /* Load dest / store source. */ \
+V_(Rt2, 14, 10, Bits) /* Load second dest / */ \
+ /* store second source. */ \
+V_(PrefetchMode, 4, 0, Bits) \
+ \
+/* Common bits */ \
+V_(SixtyFourBits, 31, 31, Bits) \
+V_(FlagsUpdate, 29, 29, Bits) \
+ \
+/* PC relative addressing */ \
+V_(ImmPCRelHi, 23, 5, SignedBits) \
+V_(ImmPCRelLo, 30, 29, Bits) \
+ \
+/* Add/subtract/logical shift register */ \
+V_(ShiftDP, 23, 22, Bits) \
+V_(ImmDPShift, 15, 10, Bits) \
+ \
+/* Add/subtract immediate */ \
+V_(ImmAddSub, 21, 10, Bits) \
+V_(ShiftAddSub, 23, 22, Bits) \
+ \
+/* Add/substract extend */ \
+V_(ImmExtendShift, 12, 10, Bits) \
+V_(ExtendMode, 15, 13, Bits) \
+ \
+/* Move wide */ \
+V_(ImmMoveWide, 20, 5, Bits) \
+V_(ShiftMoveWide, 22, 21, Bits) \
+ \
+/* Logical immediate, bitfield and extract */ \
+V_(BitN, 22, 22, Bits) \
+V_(ImmRotate, 21, 16, Bits) \
+V_(ImmSetBits, 15, 10, Bits) \
+V_(ImmR, 21, 16, Bits) \
+V_(ImmS, 15, 10, Bits) \
+ \
+/* Test and branch immediate */ \
+V_(ImmTestBranch, 18, 5, SignedBits) \
+V_(ImmTestBranchBit40, 23, 19, Bits) \
+V_(ImmTestBranchBit5, 31, 31, Bits) \
+ \
+/* Conditionals */ \
+V_(Condition, 15, 12, Bits) \
+V_(ConditionBranch, 3, 0, Bits) \
+V_(Nzcv, 3, 0, Bits) \
+V_(ImmCondCmp, 20, 16, Bits) \
+V_(ImmCondBranch, 23, 5, SignedBits) \
+ \
+/* Floating point */ \
+V_(FPType, 23, 22, Bits) \
+V_(ImmFP, 20, 13, Bits) \
+V_(FPScale, 15, 10, Bits) \
+ \
+/* Load Store */ \
+V_(ImmLS, 20, 12, SignedBits) \
+V_(ImmLSUnsigned, 21, 10, Bits) \
+V_(ImmLSPair, 21, 15, SignedBits) \
+V_(SizeLS, 31, 30, Bits) \
+V_(ImmShiftLS, 12, 12, Bits) \
+ \
+/* Other immediates */ \
+V_(ImmUncondBranch, 25, 0, SignedBits) \
+V_(ImmCmpBranch, 23, 5, SignedBits) \
+V_(ImmLLiteral, 23, 5, SignedBits) \
+V_(ImmException, 20, 5, Bits) \
+V_(ImmHint, 11, 5, Bits) \
+ \
+/* System (MRS, MSR) */ \
+V_(ImmSystemRegister, 19, 5, Bits) \
+V_(SysO0, 19, 19, Bits) \
+V_(SysOp1, 18, 16, Bits) \
+V_(SysOp2, 7, 5, Bits) \
+V_(CRn, 15, 12, Bits) \
+V_(CRm, 11, 8, Bits) \
+
+
+#define SYSTEM_REGISTER_FIELDS_LIST(V_, M_) \
+/* NZCV */ \
+V_(Flags, 31, 28, Bits) \
+V_(N, 31, 31, Bits) \
+V_(Z, 30, 30, Bits) \
+V_(C, 29, 29, Bits) \
+V_(V, 28, 28, Bits) \
+M_(NZCV, Flags_mask) \
+ \
+/* FPCR */ \
+V_(AHP, 26, 26, Bits) \
+V_(DN, 25, 25, Bits) \
+V_(FZ, 24, 24, Bits) \
+V_(RMode, 23, 22, Bits) \
+M_(FPCR, AHP_mask | DN_mask | FZ_mask | RMode_mask)
+
+
+// Fields offsets.
+#define DECLARE_FIELDS_OFFSETS(Name, HighBit, LowBit, X) \
+const int Name##_offset = LowBit; \
+const int Name##_width = HighBit - LowBit + 1; \
+const uint32_t Name##_mask = ((1 << Name##_width) - 1) << LowBit;
+#define NOTHING(A, B)
+INSTRUCTION_FIELDS_LIST(DECLARE_FIELDS_OFFSETS)
+SYSTEM_REGISTER_FIELDS_LIST(DECLARE_FIELDS_OFFSETS, NOTHING)
+#undef NOTHING
+#undef DECLARE_FIELDS_BITS
+
+// ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST), formed
+// from ImmPCRelLo and ImmPCRelHi.
+const int ImmPCRel_mask = ImmPCRelLo_mask | ImmPCRelHi_mask;
+
+// Condition codes.
+enum Condition {
+ eq = 0,
+ ne = 1,
+ hs = 2,
+ lo = 3,
+ mi = 4,
+ pl = 5,
+ vs = 6,
+ vc = 7,
+ hi = 8,
+ ls = 9,
+ ge = 10,
+ lt = 11,
+ gt = 12,
+ le = 13,
+ al = 14,
+ nv = 15 // Behaves as always/al.
+};
+
+inline Condition InvertCondition(Condition cond) {
+ // Conditions al and nv behave identically, as "always true". They can't be
+ // inverted, because there is no "always false" condition.
+ ASSERT((cond != al) && (cond != nv));
+ return static_cast<Condition>(cond ^ 1);
+}
+
+enum FlagsUpdate {
+ SetFlags = 1,
+ LeaveFlags = 0
+};
+
+enum StatusFlags {
+ NoFlag = 0,
+
+ // Derive the flag combinations from the system register bit descriptions.
+ NFlag = N_mask,
+ ZFlag = Z_mask,
+ CFlag = C_mask,
+ VFlag = V_mask,
+ NZFlag = NFlag | ZFlag,
+ NCFlag = NFlag | CFlag,
+ NVFlag = NFlag | VFlag,
+ ZCFlag = ZFlag | CFlag,
+ ZVFlag = ZFlag | VFlag,
+ CVFlag = CFlag | VFlag,
+ NZCFlag = NFlag | ZFlag | CFlag,
+ NZVFlag = NFlag | ZFlag | VFlag,
+ NCVFlag = NFlag | CFlag | VFlag,
+ ZCVFlag = ZFlag | CFlag | VFlag,
+ NZCVFlag = NFlag | ZFlag | CFlag | VFlag,
+
+ // Floating-point comparison results.
+ FPEqualFlag = ZCFlag,
+ FPLessThanFlag = NFlag,
+ FPGreaterThanFlag = CFlag,
+ FPUnorderedFlag = CVFlag
+};
+
+enum Shift {
+ NO_SHIFT = -1,
+ LSL = 0x0,
+ LSR = 0x1,
+ ASR = 0x2,
+ ROR = 0x3
+};
+
+enum Extend {
+ NO_EXTEND = -1,
+ UXTB = 0,
+ UXTH = 1,
+ UXTW = 2,
+ UXTX = 3,
+ SXTB = 4,
+ SXTH = 5,
+ SXTW = 6,
+ SXTX = 7
+};
+
+enum SystemHint {
+ NOP = 0,
+ YIELD = 1,
+ WFE = 2,
+ WFI = 3,
+ SEV = 4,
+ SEVL = 5
+};
+
+// System/special register names.
+// This information is not encoded as one field but as the concatenation of
+// multiple fields (Op0<0>, Op1, Crn, Crm, Op2).
+enum SystemRegister {
+ NZCV = ((0x1 << SysO0_offset) |
+ (0x3 << SysOp1_offset) |
+ (0x4 << CRn_offset) |
+ (0x2 << CRm_offset) |
+ (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset,
+ FPCR = ((0x1 << SysO0_offset) |
+ (0x3 << SysOp1_offset) |
+ (0x4 << CRn_offset) |
+ (0x4 << CRm_offset) |
+ (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset
+};
+
+// Instruction enumerations.
+//
+// These are the masks that define a class of instructions, and the list of
+// instructions within each class. Each enumeration has a Fixed, FMask and
+// Mask value.
+//
+// Fixed: The fixed bits in this instruction class.
+// FMask: The mask used to extract the fixed bits in the class.
+// Mask: The mask used to identify the instructions within a class.
+//
+// The enumerations can be used like this:
+//
+// ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed);
+// switch(instr->Mask(PCRelAddressingMask)) {
+// case ADR: Format("adr 'Xd, 'AddrPCRelByte"); break;
+// case ADRP: Format("adrp 'Xd, 'AddrPCRelPage"); break;
+// default: printf("Unknown instruction\n");
+// }
+
+
+// Generic fields.
+enum GenericInstrField {
+ SixtyFourBits = 0x80000000,
+ ThirtyTwoBits = 0x00000000,
+ FP32 = 0x00000000,
+ FP64 = 0x00400000
+};
+
+// PC relative addressing.
+enum PCRelAddressingOp {
+ PCRelAddressingFixed = 0x10000000,
+ PCRelAddressingFMask = 0x1F000000,
+ PCRelAddressingMask = 0x9F000000,
+ ADR = PCRelAddressingFixed | 0x00000000,
+ ADRP = PCRelAddressingFixed | 0x80000000
+};
+
+// Add/sub (immediate, shifted and extended.)
+const int kSFOffset = 31;
+enum AddSubOp {
+ AddSubOpMask = 0x60000000,
+ AddSubSetFlagsBit = 0x20000000,
+ ADD = 0x00000000,
+ ADDS = ADD | AddSubSetFlagsBit,
+ SUB = 0x40000000,
+ SUBS = SUB | AddSubSetFlagsBit
+};
+
+#define ADD_SUB_OP_LIST(V) \
+ V(ADD), \
+ V(ADDS), \
+ V(SUB), \
+ V(SUBS)
+
+enum AddSubImmediateOp {
+ AddSubImmediateFixed = 0x11000000,
+ AddSubImmediateFMask = 0x1F000000,
+ AddSubImmediateMask = 0xFF000000,
+ #define ADD_SUB_IMMEDIATE(A) \
+ A##_w_imm = AddSubImmediateFixed | A, \
+ A##_x_imm = AddSubImmediateFixed | A | SixtyFourBits
+ ADD_SUB_OP_LIST(ADD_SUB_IMMEDIATE)
+ #undef ADD_SUB_IMMEDIATE
+};
+
+enum AddSubShiftedOp {
+ AddSubShiftedFixed = 0x0B000000,
+ AddSubShiftedFMask = 0x1F200000,
+ AddSubShiftedMask = 0xFF200000,
+ #define ADD_SUB_SHIFTED(A) \
+ A##_w_shift = AddSubShiftedFixed | A, \
+ A##_x_shift = AddSubShiftedFixed | A | SixtyFourBits
+ ADD_SUB_OP_LIST(ADD_SUB_SHIFTED)
+ #undef ADD_SUB_SHIFTED
+};
+
+enum AddSubExtendedOp {
+ AddSubExtendedFixed = 0x0B200000,
+ AddSubExtendedFMask = 0x1F200000,
+ AddSubExtendedMask = 0xFFE00000,
+ #define ADD_SUB_EXTENDED(A) \
+ A##_w_ext = AddSubExtendedFixed | A, \
+ A##_x_ext = AddSubExtendedFixed | A | SixtyFourBits
+ ADD_SUB_OP_LIST(ADD_SUB_EXTENDED)
+ #undef ADD_SUB_EXTENDED
+};
+
+// Add/sub with carry.
+enum AddSubWithCarryOp {
+ AddSubWithCarryFixed = 0x1A000000,
+ AddSubWithCarryFMask = 0x1FE00000,
+ AddSubWithCarryMask = 0xFFE0FC00,
+ ADC_w = AddSubWithCarryFixed | ADD,
+ ADC_x = AddSubWithCarryFixed | ADD | SixtyFourBits,
+ ADC = ADC_w,
+ ADCS_w = AddSubWithCarryFixed | ADDS,
+ ADCS_x = AddSubWithCarryFixed | ADDS | SixtyFourBits,
+ SBC_w = AddSubWithCarryFixed | SUB,
+ SBC_x = AddSubWithCarryFixed | SUB | SixtyFourBits,
+ SBC = SBC_w,
+ SBCS_w = AddSubWithCarryFixed | SUBS,
+ SBCS_x = AddSubWithCarryFixed | SUBS | SixtyFourBits
+};
+
+
+// Logical (immediate and shifted register).
+enum LogicalOp {
+ LogicalOpMask = 0x60200000,
+ NOT = 0x00200000,
+ AND = 0x00000000,
+ BIC = AND | NOT,
+ ORR = 0x20000000,
+ ORN = ORR | NOT,
+ EOR = 0x40000000,
+ EON = EOR | NOT,
+ ANDS = 0x60000000,
+ BICS = ANDS | NOT
+};
+
+// Logical immediate.
+enum LogicalImmediateOp {
+ LogicalImmediateFixed = 0x12000000,
+ LogicalImmediateFMask = 0x1F800000,
+ LogicalImmediateMask = 0xFF800000,
+ AND_w_imm = LogicalImmediateFixed | AND,
+ AND_x_imm = LogicalImmediateFixed | AND | SixtyFourBits,
+ ORR_w_imm = LogicalImmediateFixed | ORR,
+ ORR_x_imm = LogicalImmediateFixed | ORR | SixtyFourBits,
+ EOR_w_imm = LogicalImmediateFixed | EOR,
+ EOR_x_imm = LogicalImmediateFixed | EOR | SixtyFourBits,
+ ANDS_w_imm = LogicalImmediateFixed | ANDS,
+ ANDS_x_imm = LogicalImmediateFixed | ANDS | SixtyFourBits
+};
+
+// Logical shifted register.
+enum LogicalShiftedOp {
+ LogicalShiftedFixed = 0x0A000000,
+ LogicalShiftedFMask = 0x1F000000,
+ LogicalShiftedMask = 0xFF200000,
+ AND_w = LogicalShiftedFixed | AND,
+ AND_x = LogicalShiftedFixed | AND | SixtyFourBits,
+ AND_shift = AND_w,
+ BIC_w = LogicalShiftedFixed | BIC,
+ BIC_x = LogicalShiftedFixed | BIC | SixtyFourBits,
+ BIC_shift = BIC_w,
+ ORR_w = LogicalShiftedFixed | ORR,
+ ORR_x = LogicalShiftedFixed | ORR | SixtyFourBits,
+ ORR_shift = ORR_w,
+ ORN_w = LogicalShiftedFixed | ORN,
+ ORN_x = LogicalShiftedFixed | ORN | SixtyFourBits,
+ ORN_shift = ORN_w,
+ EOR_w = LogicalShiftedFixed | EOR,
+ EOR_x = LogicalShiftedFixed | EOR | SixtyFourBits,
+ EOR_shift = EOR_w,
+ EON_w = LogicalShiftedFixed | EON,
+ EON_x = LogicalShiftedFixed | EON | SixtyFourBits,
+ EON_shift = EON_w,
+ ANDS_w = LogicalShiftedFixed | ANDS,
+ ANDS_x = LogicalShiftedFixed | ANDS | SixtyFourBits,
+ ANDS_shift = ANDS_w,
+ BICS_w = LogicalShiftedFixed | BICS,
+ BICS_x = LogicalShiftedFixed | BICS | SixtyFourBits,
+ BICS_shift = BICS_w
+};
+
+// Move wide immediate.
+enum MoveWideImmediateOp {
+ MoveWideImmediateFixed = 0x12800000,
+ MoveWideImmediateFMask = 0x1F800000,
+ MoveWideImmediateMask = 0xFF800000,
+ MOVN = 0x00000000,
+ MOVZ = 0x40000000,
+ MOVK = 0x60000000,
+ MOVN_w = MoveWideImmediateFixed | MOVN,
+ MOVN_x = MoveWideImmediateFixed | MOVN | SixtyFourBits,
+ MOVZ_w = MoveWideImmediateFixed | MOVZ,
+ MOVZ_x = MoveWideImmediateFixed | MOVZ | SixtyFourBits,
+ MOVK_w = MoveWideImmediateFixed | MOVK,
+ MOVK_x = MoveWideImmediateFixed | MOVK | SixtyFourBits
+};
+
+// Bitfield.
+const int kBitfieldNOffset = 22;
+enum BitfieldOp {
+ BitfieldFixed = 0x13000000,
+ BitfieldFMask = 0x1F800000,
+ BitfieldMask = 0xFF800000,
+ SBFM_w = BitfieldFixed | 0x00000000,
+ SBFM_x = BitfieldFixed | 0x80000000,
+ SBFM = SBFM_w,
+ BFM_w = BitfieldFixed | 0x20000000,
+ BFM_x = BitfieldFixed | 0xA0000000,
+ BFM = BFM_w,
+ UBFM_w = BitfieldFixed | 0x40000000,
+ UBFM_x = BitfieldFixed | 0xC0000000,
+ UBFM = UBFM_w
+ // Bitfield N field.
+};
+
+// Extract.
+enum ExtractOp {
+ ExtractFixed = 0x13800000,
+ ExtractFMask = 0x1F800000,
+ ExtractMask = 0xFFA00000,
+ EXTR_w = ExtractFixed | 0x00000000,
+ EXTR_x = ExtractFixed | 0x80000000,
+ EXTR = EXTR_w
+};
+
+// Unconditional branch.
+enum UnconditionalBranchOp {
+ UnconditionalBranchFixed = 0x14000000,
+ UnconditionalBranchFMask = 0x7C000000,
+ UnconditionalBranchMask = 0xFC000000,
+ B = UnconditionalBranchFixed | 0x00000000,
+ BL = UnconditionalBranchFixed | 0x80000000
+};
+
+// Unconditional branch to register.
+enum UnconditionalBranchToRegisterOp {
+ UnconditionalBranchToRegisterFixed = 0xD6000000,
+ UnconditionalBranchToRegisterFMask = 0xFE000000,
+ UnconditionalBranchToRegisterMask = 0xFFFFFC1F,
+ BR = UnconditionalBranchToRegisterFixed | 0x001F0000,
+ BLR = UnconditionalBranchToRegisterFixed | 0x003F0000,
+ RET = UnconditionalBranchToRegisterFixed | 0x005F0000
+};
+
+// Compare and branch.
+enum CompareBranchOp {
+ CompareBranchFixed = 0x34000000,
+ CompareBranchFMask = 0x7E000000,
+ CompareBranchMask = 0xFF000000,
+ CBZ_w = CompareBranchFixed | 0x00000000,
+ CBZ_x = CompareBranchFixed | 0x80000000,
+ CBZ = CBZ_w,
+ CBNZ_w = CompareBranchFixed | 0x01000000,
+ CBNZ_x = CompareBranchFixed | 0x81000000,
+ CBNZ = CBNZ_w
+};
+
+// Test and branch.
+enum TestBranchOp {
+ TestBranchFixed = 0x36000000,
+ TestBranchFMask = 0x7E000000,
+ TestBranchMask = 0x7F000000,
+ TBZ = TestBranchFixed | 0x00000000,
+ TBNZ = TestBranchFixed | 0x01000000
+};
+
+// Conditional branch.
+enum ConditionalBranchOp {
+ ConditionalBranchFixed = 0x54000000,
+ ConditionalBranchFMask = 0xFE000000,
+ ConditionalBranchMask = 0xFF000010,
+ B_cond = ConditionalBranchFixed | 0x00000000
+};
+
+// System.
+// System instruction encoding is complicated because some instructions use op
+// and CR fields to encode parameters. To handle this cleanly, the system
+// instructions are split into more than one enum.
+
+enum SystemOp {
+ SystemFixed = 0xD5000000,
+ SystemFMask = 0xFFC00000
+};
+
+enum SystemSysRegOp {
+ SystemSysRegFixed = 0xD5100000,
+ SystemSysRegFMask = 0xFFD00000,
+ SystemSysRegMask = 0xFFF00000,
+ MRS = SystemSysRegFixed | 0x00200000,
+ MSR = SystemSysRegFixed | 0x00000000
+};
+
+enum SystemHintOp {
+ SystemHintFixed = 0xD503201F,
+ SystemHintFMask = 0xFFFFF01F,
+ SystemHintMask = 0xFFFFF01F,
+ HINT = SystemHintFixed | 0x00000000
+};
+
+// Exception.
+enum ExceptionOp {
+ ExceptionFixed = 0xD4000000,
+ ExceptionFMask = 0xFF000000,
+ ExceptionMask = 0xFFE0001F,
+ HLT = ExceptionFixed | 0x00400000,
+ BRK = ExceptionFixed | 0x00200000,
+ SVC = ExceptionFixed | 0x00000001,
+ HVC = ExceptionFixed | 0x00000002,
+ SMC = ExceptionFixed | 0x00000003,
+ DCPS1 = ExceptionFixed | 0x00A00001,
+ DCPS2 = ExceptionFixed | 0x00A00002,
+ DCPS3 = ExceptionFixed | 0x00A00003
+};
+
+// Any load or store.
+enum LoadStoreAnyOp {
+ LoadStoreAnyFMask = 0x0a000000,
+ LoadStoreAnyFixed = 0x08000000
+};
+
+#define LOAD_STORE_PAIR_OP_LIST(V) \
+ V(STP, w, 0x00000000), \
+ V(LDP, w, 0x00400000), \
+ V(LDPSW, x, 0x40400000), \
+ V(STP, x, 0x80000000), \
+ V(LDP, x, 0x80400000), \
+ V(STP, s, 0x04000000), \
+ V(LDP, s, 0x04400000), \
+ V(STP, d, 0x44000000), \
+ V(LDP, d, 0x44400000)
+
+// Load/store pair (post, pre and offset.)
+enum LoadStorePairOp {
+ LoadStorePairMask = 0xC4400000,
+ LoadStorePairLBit = 1 << 22,
+ #define LOAD_STORE_PAIR(A, B, C) \
+ A##_##B = C
+ LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR)
+ #undef LOAD_STORE_PAIR
+};
+
+enum LoadStorePairPostIndexOp {
+ LoadStorePairPostIndexFixed = 0x28800000,
+ LoadStorePairPostIndexFMask = 0x3B800000,
+ LoadStorePairPostIndexMask = 0xFFC00000,
+ #define LOAD_STORE_PAIR_POST_INDEX(A, B, C) \
+ A##_##B##_post = LoadStorePairPostIndexFixed | A##_##B
+ LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_POST_INDEX)
+ #undef LOAD_STORE_PAIR_POST_INDEX
+};
+
+enum LoadStorePairPreIndexOp {
+ LoadStorePairPreIndexFixed = 0x29800000,
+ LoadStorePairPreIndexFMask = 0x3B800000,
+ LoadStorePairPreIndexMask = 0xFFC00000,
+ #define LOAD_STORE_PAIR_PRE_INDEX(A, B, C) \
+ A##_##B##_pre = LoadStorePairPreIndexFixed | A##_##B
+ LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_PRE_INDEX)
+ #undef LOAD_STORE_PAIR_PRE_INDEX
+};
+
+enum LoadStorePairOffsetOp {
+ LoadStorePairOffsetFixed = 0x29000000,
+ LoadStorePairOffsetFMask = 0x3B800000,
+ LoadStorePairOffsetMask = 0xFFC00000,
+ #define LOAD_STORE_PAIR_OFFSET(A, B, C) \
+ A##_##B##_off = LoadStorePairOffsetFixed | A##_##B
+ LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_OFFSET)
+ #undef LOAD_STORE_PAIR_OFFSET
+};
+
+enum LoadStorePairNonTemporalOp {
+ LoadStorePairNonTemporalFixed = 0x28000000,
+ LoadStorePairNonTemporalFMask = 0x3B800000,
+ LoadStorePairNonTemporalMask = 0xFFC00000,
+ STNP_w = LoadStorePairNonTemporalFixed | STP_w,
+ LDNP_w = LoadStorePairNonTemporalFixed | LDP_w,
+ STNP_x = LoadStorePairNonTemporalFixed | STP_x,
+ LDNP_x = LoadStorePairNonTemporalFixed | LDP_x,
+ STNP_s = LoadStorePairNonTemporalFixed | STP_s,
+ LDNP_s = LoadStorePairNonTemporalFixed | LDP_s,
+ STNP_d = LoadStorePairNonTemporalFixed | STP_d,
+ LDNP_d = LoadStorePairNonTemporalFixed | LDP_d
+};
+
+// Load literal.
+enum LoadLiteralOp {
+ LoadLiteralFixed = 0x18000000,
+ LoadLiteralFMask = 0x3B000000,
+ LoadLiteralMask = 0xFF000000,
+ LDR_w_lit = LoadLiteralFixed | 0x00000000,
+ LDR_x_lit = LoadLiteralFixed | 0x40000000,
+ LDRSW_x_lit = LoadLiteralFixed | 0x80000000,
+ PRFM_lit = LoadLiteralFixed | 0xC0000000,
+ LDR_s_lit = LoadLiteralFixed | 0x04000000,
+ LDR_d_lit = LoadLiteralFixed | 0x44000000
+};
+
+#define LOAD_STORE_OP_LIST(V) \
+ V(ST, RB, w, 0x00000000), \
+ V(ST, RH, w, 0x40000000), \
+ V(ST, R, w, 0x80000000), \
+ V(ST, R, x, 0xC0000000), \
+ V(LD, RB, w, 0x00400000), \
+ V(LD, RH, w, 0x40400000), \
+ V(LD, R, w, 0x80400000), \
+ V(LD, R, x, 0xC0400000), \
+ V(LD, RSB, x, 0x00800000), \
+ V(LD, RSH, x, 0x40800000), \
+ V(LD, RSW, x, 0x80800000), \
+ V(LD, RSB, w, 0x00C00000), \
+ V(LD, RSH, w, 0x40C00000), \
+ V(ST, R, s, 0x84000000), \
+ V(ST, R, d, 0xC4000000), \
+ V(LD, R, s, 0x84400000), \
+ V(LD, R, d, 0xC4400000)
+
+
+// Load/store unscaled offset.
+enum LoadStoreUnscaledOffsetOp {
+ LoadStoreUnscaledOffsetFixed = 0x38000000,
+ LoadStoreUnscaledOffsetFMask = 0x3B200C00,
+ LoadStoreUnscaledOffsetMask = 0xFFE00C00,
+ #define LOAD_STORE_UNSCALED(A, B, C, D) \
+ A##U##B##_##C = LoadStoreUnscaledOffsetFixed | D
+ LOAD_STORE_OP_LIST(LOAD_STORE_UNSCALED)
+ #undef LOAD_STORE_UNSCALED
+};
+
+// Load/store (post, pre, offset and unsigned.)
+enum LoadStoreOp {
+ LoadStoreOpMask = 0xC4C00000,
+ #define LOAD_STORE(A, B, C, D) \
+ A##B##_##C = D
+ LOAD_STORE_OP_LIST(LOAD_STORE),
+ #undef LOAD_STORE
+ PRFM = 0xC0800000
+};
+
+// Load/store post index.
+enum LoadStorePostIndex {
+ LoadStorePostIndexFixed = 0x38000400,
+ LoadStorePostIndexFMask = 0x3B200C00,
+ LoadStorePostIndexMask = 0xFFE00C00,
+ #define LOAD_STORE_POST_INDEX(A, B, C, D) \
+ A##B##_##C##_post = LoadStorePostIndexFixed | D
+ LOAD_STORE_OP_LIST(LOAD_STORE_POST_INDEX)
+ #undef LOAD_STORE_POST_INDEX
+};
+
+// Load/store pre index.
+enum LoadStorePreIndex {
+ LoadStorePreIndexFixed = 0x38000C00,
+ LoadStorePreIndexFMask = 0x3B200C00,
+ LoadStorePreIndexMask = 0xFFE00C00,
+ #define LOAD_STORE_PRE_INDEX(A, B, C, D) \
+ A##B##_##C##_pre = LoadStorePreIndexFixed | D
+ LOAD_STORE_OP_LIST(LOAD_STORE_PRE_INDEX)
+ #undef LOAD_STORE_PRE_INDEX
+};
+
+// Load/store unsigned offset.
+enum LoadStoreUnsignedOffset {
+ LoadStoreUnsignedOffsetFixed = 0x39000000,
+ LoadStoreUnsignedOffsetFMask = 0x3B000000,
+ LoadStoreUnsignedOffsetMask = 0xFFC00000,
+ PRFM_unsigned = LoadStoreUnsignedOffsetFixed | PRFM,
+ #define LOAD_STORE_UNSIGNED_OFFSET(A, B, C, D) \
+ A##B##_##C##_unsigned = LoadStoreUnsignedOffsetFixed | D
+ LOAD_STORE_OP_LIST(LOAD_STORE_UNSIGNED_OFFSET)
+ #undef LOAD_STORE_UNSIGNED_OFFSET
+};
+
+// Load/store register offset.
+enum LoadStoreRegisterOffset {
+ LoadStoreRegisterOffsetFixed = 0x38200800,
+ LoadStoreRegisterOffsetFMask = 0x3B200C00,
+ LoadStoreRegisterOffsetMask = 0xFFE00C00,
+ PRFM_reg = LoadStoreRegisterOffsetFixed | PRFM,
+ #define LOAD_STORE_REGISTER_OFFSET(A, B, C, D) \
+ A##B##_##C##_reg = LoadStoreRegisterOffsetFixed | D
+ LOAD_STORE_OP_LIST(LOAD_STORE_REGISTER_OFFSET)
+ #undef LOAD_STORE_REGISTER_OFFSET
+};
+
+// Conditional compare.
+enum ConditionalCompareOp {
+ ConditionalCompareMask = 0x60000000,
+ CCMN = 0x20000000,
+ CCMP = 0x60000000
+};
+
+// Conditional compare register.
+enum ConditionalCompareRegisterOp {
+ ConditionalCompareRegisterFixed = 0x1A400000,
+ ConditionalCompareRegisterFMask = 0x1FE00800,
+ ConditionalCompareRegisterMask = 0xFFE00C10,
+ CCMN_w = ConditionalCompareRegisterFixed | CCMN,
+ CCMN_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMN,
+ CCMP_w = ConditionalCompareRegisterFixed | CCMP,
+ CCMP_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMP
+};
+
+// Conditional compare immediate.
+enum ConditionalCompareImmediateOp {
+ ConditionalCompareImmediateFixed = 0x1A400800,
+ ConditionalCompareImmediateFMask = 0x1FE00800,
+ ConditionalCompareImmediateMask = 0xFFE00C10,
+ CCMN_w_imm = ConditionalCompareImmediateFixed | CCMN,
+ CCMN_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMN,
+ CCMP_w_imm = ConditionalCompareImmediateFixed | CCMP,
+ CCMP_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMP
+};
+
+// Conditional select.
+enum ConditionalSelectOp {
+ ConditionalSelectFixed = 0x1A800000,
+ ConditionalSelectFMask = 0x1FE00000,
+ ConditionalSelectMask = 0xFFE00C00,
+ CSEL_w = ConditionalSelectFixed | 0x00000000,
+ CSEL_x = ConditionalSelectFixed | 0x80000000,
+ CSEL = CSEL_w,
+ CSINC_w = ConditionalSelectFixed | 0x00000400,
+ CSINC_x = ConditionalSelectFixed | 0x80000400,
+ CSINC = CSINC_w,
+ CSINV_w = ConditionalSelectFixed | 0x40000000,
+ CSINV_x = ConditionalSelectFixed | 0xC0000000,
+ CSINV = CSINV_w,
+ CSNEG_w = ConditionalSelectFixed | 0x40000400,
+ CSNEG_x = ConditionalSelectFixed | 0xC0000400,
+ CSNEG = CSNEG_w
+};
+
+// Data processing 1 source.
+enum DataProcessing1SourceOp {
+ DataProcessing1SourceFixed = 0x5AC00000,
+ DataProcessing1SourceFMask = 0x5FE00000,
+ DataProcessing1SourceMask = 0xFFFFFC00,
+ RBIT = DataProcessing1SourceFixed | 0x00000000,
+ RBIT_w = RBIT,
+ RBIT_x = RBIT | SixtyFourBits,
+ REV16 = DataProcessing1SourceFixed | 0x00000400,
+ REV16_w = REV16,
+ REV16_x = REV16 | SixtyFourBits,
+ REV = DataProcessing1SourceFixed | 0x00000800,
+ REV_w = REV,
+ REV32_x = REV | SixtyFourBits,
+ REV_x = DataProcessing1SourceFixed | SixtyFourBits | 0x00000C00,
+ CLZ = DataProcessing1SourceFixed | 0x00001000,
+ CLZ_w = CLZ,
+ CLZ_x = CLZ | SixtyFourBits,
+ CLS = DataProcessing1SourceFixed | 0x00001400,
+ CLS_w = CLS,
+ CLS_x = CLS | SixtyFourBits
+};
+
+// Data processing 2 source.
+enum DataProcessing2SourceOp {
+ DataProcessing2SourceFixed = 0x1AC00000,
+ DataProcessing2SourceFMask = 0x5FE00000,
+ DataProcessing2SourceMask = 0xFFE0FC00,
+ UDIV_w = DataProcessing2SourceFixed | 0x00000800,
+ UDIV_x = DataProcessing2SourceFixed | 0x80000800,
+ UDIV = UDIV_w,
+ SDIV_w = DataProcessing2SourceFixed | 0x00000C00,
+ SDIV_x = DataProcessing2SourceFixed | 0x80000C00,
+ SDIV = SDIV_w,
+ LSLV_w = DataProcessing2SourceFixed | 0x00002000,
+ LSLV_x = DataProcessing2SourceFixed | 0x80002000,
+ LSLV = LSLV_w,
+ LSRV_w = DataProcessing2SourceFixed | 0x00002400,
+ LSRV_x = DataProcessing2SourceFixed | 0x80002400,
+ LSRV = LSRV_w,
+ ASRV_w = DataProcessing2SourceFixed | 0x00002800,
+ ASRV_x = DataProcessing2SourceFixed | 0x80002800,
+ ASRV = ASRV_w,
+ RORV_w = DataProcessing2SourceFixed | 0x00002C00,
+ RORV_x = DataProcessing2SourceFixed | 0x80002C00,
+ RORV = RORV_w,
+ CRC32B = DataProcessing2SourceFixed | 0x00004000,
+ CRC32H = DataProcessing2SourceFixed | 0x00004400,
+ CRC32W = DataProcessing2SourceFixed | 0x00004800,
+ CRC32X = DataProcessing2SourceFixed | SixtyFourBits | 0x00004C00,
+ CRC32CB = DataProcessing2SourceFixed | 0x00005000,
+ CRC32CH = DataProcessing2SourceFixed | 0x00005400,
+ CRC32CW = DataProcessing2SourceFixed | 0x00005800,
+ CRC32CX = DataProcessing2SourceFixed | SixtyFourBits | 0x00005C00
+};
+
+// Data processing 3 source.
+enum DataProcessing3SourceOp {
+ DataProcessing3SourceFixed = 0x1B000000,
+ DataProcessing3SourceFMask = 0x1F000000,
+ DataProcessing3SourceMask = 0xFFE08000,
+ MADD_w = DataProcessing3SourceFixed | 0x00000000,
+ MADD_x = DataProcessing3SourceFixed | 0x80000000,
+ MADD = MADD_w,
+ MSUB_w = DataProcessing3SourceFixed | 0x00008000,
+ MSUB_x = DataProcessing3SourceFixed | 0x80008000,
+ MSUB = MSUB_w,
+ SMADDL_x = DataProcessing3SourceFixed | 0x80200000,
+ SMSUBL_x = DataProcessing3SourceFixed | 0x80208000,
+ SMULH_x = DataProcessing3SourceFixed | 0x80400000,
+ UMADDL_x = DataProcessing3SourceFixed | 0x80A00000,
+ UMSUBL_x = DataProcessing3SourceFixed | 0x80A08000,
+ UMULH_x = DataProcessing3SourceFixed | 0x80C00000
+};
+
+// Floating point compare.
+enum FPCompareOp {
+ FPCompareFixed = 0x1E202000,
+ FPCompareFMask = 0x5F203C00,
+ FPCompareMask = 0xFFE0FC1F,
+ FCMP_s = FPCompareFixed | 0x00000000,
+ FCMP_d = FPCompareFixed | FP64 | 0x00000000,
+ FCMP = FCMP_s,
+ FCMP_s_zero = FPCompareFixed | 0x00000008,
+ FCMP_d_zero = FPCompareFixed | FP64 | 0x00000008,
+ FCMP_zero = FCMP_s_zero,
+ FCMPE_s = FPCompareFixed | 0x00000010,
+ FCMPE_d = FPCompareFixed | FP64 | 0x00000010,
+ FCMPE_s_zero = FPCompareFixed | 0x00000018,
+ FCMPE_d_zero = FPCompareFixed | FP64 | 0x00000018
+};
+
+// Floating point conditional compare.
+enum FPConditionalCompareOp {
+ FPConditionalCompareFixed = 0x1E200400,
+ FPConditionalCompareFMask = 0x5F200C00,
+ FPConditionalCompareMask = 0xFFE00C10,
+ FCCMP_s = FPConditionalCompareFixed | 0x00000000,
+ FCCMP_d = FPConditionalCompareFixed | FP64 | 0x00000000,
+ FCCMP = FCCMP_s,
+ FCCMPE_s = FPConditionalCompareFixed | 0x00000010,
+ FCCMPE_d = FPConditionalCompareFixed | FP64 | 0x00000010,
+ FCCMPE = FCCMPE_s
+};
+
+// Floating point conditional select.
+enum FPConditionalSelectOp {
+ FPConditionalSelectFixed = 0x1E200C00,
+ FPConditionalSelectFMask = 0x5F200C00,
+ FPConditionalSelectMask = 0xFFE00C00,
+ FCSEL_s = FPConditionalSelectFixed | 0x00000000,
+ FCSEL_d = FPConditionalSelectFixed | FP64 | 0x00000000,
+ FCSEL = FCSEL_s
+};
+
+// Floating point immediate.
+enum FPImmediateOp {
+ FPImmediateFixed = 0x1E201000,
+ FPImmediateFMask = 0x5F201C00,
+ FPImmediateMask = 0xFFE01C00,
+ FMOV_s_imm = FPImmediateFixed | 0x00000000,
+ FMOV_d_imm = FPImmediateFixed | FP64 | 0x00000000
+};
+
+// Floating point data processing 1 source.
+enum FPDataProcessing1SourceOp {
+ FPDataProcessing1SourceFixed = 0x1E204000,
+ FPDataProcessing1SourceFMask = 0x5F207C00,
+ FPDataProcessing1SourceMask = 0xFFFFFC00,
+ FMOV_s = FPDataProcessing1SourceFixed | 0x00000000,
+ FMOV_d = FPDataProcessing1SourceFixed | FP64 | 0x00000000,
+ FMOV = FMOV_s,
+ FABS_s = FPDataProcessing1SourceFixed | 0x00008000,
+ FABS_d = FPDataProcessing1SourceFixed | FP64 | 0x00008000,
+ FABS = FABS_s,
+ FNEG_s = FPDataProcessing1SourceFixed | 0x00010000,
+ FNEG_d = FPDataProcessing1SourceFixed | FP64 | 0x00010000,
+ FNEG = FNEG_s,
+ FSQRT_s = FPDataProcessing1SourceFixed | 0x00018000,
+ FSQRT_d = FPDataProcessing1SourceFixed | FP64 | 0x00018000,
+ FSQRT = FSQRT_s,
+ FCVT_ds = FPDataProcessing1SourceFixed | 0x00028000,
+ FCVT_sd = FPDataProcessing1SourceFixed | FP64 | 0x00020000,
+ FRINTN_s = FPDataProcessing1SourceFixed | 0x00040000,
+ FRINTN_d = FPDataProcessing1SourceFixed | FP64 | 0x00040000,
+ FRINTN = FRINTN_s,
+ FRINTP_s = FPDataProcessing1SourceFixed | 0x00048000,
+ FRINTP_d = FPDataProcessing1SourceFixed | FP64 | 0x00048000,
+ FRINTM_s = FPDataProcessing1SourceFixed | 0x00050000,
+ FRINTM_d = FPDataProcessing1SourceFixed | FP64 | 0x00050000,
+ FRINTZ_s = FPDataProcessing1SourceFixed | 0x00058000,
+ FRINTZ_d = FPDataProcessing1SourceFixed | FP64 | 0x00058000,
+ FRINTZ = FRINTZ_s,
+ FRINTA_s = FPDataProcessing1SourceFixed | 0x00060000,
+ FRINTA_d = FPDataProcessing1SourceFixed | FP64 | 0x00060000,
+ FRINTX_s = FPDataProcessing1SourceFixed | 0x00070000,
+ FRINTX_d = FPDataProcessing1SourceFixed | FP64 | 0x00070000,
+ FRINTI_s = FPDataProcessing1SourceFixed | 0x00078000,
+ FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000
+};
+
+// Floating point data processing 2 source.
+enum FPDataProcessing2SourceOp {
+ FPDataProcessing2SourceFixed = 0x1E200800,
+ FPDataProcessing2SourceFMask = 0x5F200C00,
+ FPDataProcessing2SourceMask = 0xFFE0FC00,
+ FMUL = FPDataProcessing2SourceFixed | 0x00000000,
+ FMUL_s = FMUL,
+ FMUL_d = FMUL | FP64,
+ FDIV = FPDataProcessing2SourceFixed | 0x00001000,
+ FDIV_s = FDIV,
+ FDIV_d = FDIV | FP64,
+ FADD = FPDataProcessing2SourceFixed | 0x00002000,
+ FADD_s = FADD,
+ FADD_d = FADD | FP64,
+ FSUB = FPDataProcessing2SourceFixed | 0x00003000,
+ FSUB_s = FSUB,
+ FSUB_d = FSUB | FP64,
+ FMAX = FPDataProcessing2SourceFixed | 0x00004000,
+ FMAX_s = FMAX,
+ FMAX_d = FMAX | FP64,
+ FMIN = FPDataProcessing2SourceFixed | 0x00005000,
+ FMIN_s = FMIN,
+ FMIN_d = FMIN | FP64,
+ FMAXNM = FPDataProcessing2SourceFixed | 0x00006000,
+ FMAXNM_s = FMAXNM,
+ FMAXNM_d = FMAXNM | FP64,
+ FMINNM = FPDataProcessing2SourceFixed | 0x00007000,
+ FMINNM_s = FMINNM,
+ FMINNM_d = FMINNM | FP64,
+ FNMUL = FPDataProcessing2SourceFixed | 0x00008000,
+ FNMUL_s = FNMUL,
+ FNMUL_d = FNMUL | FP64
+};
+
+// Floating point data processing 3 source.
+enum FPDataProcessing3SourceOp {
+ FPDataProcessing3SourceFixed = 0x1F000000,
+ FPDataProcessing3SourceFMask = 0x5F000000,
+ FPDataProcessing3SourceMask = 0xFFE08000,
+ FMADD_s = FPDataProcessing3SourceFixed | 0x00000000,
+ FMSUB_s = FPDataProcessing3SourceFixed | 0x00008000,
+ FNMADD_s = FPDataProcessing3SourceFixed | 0x00200000,
+ FNMSUB_s = FPDataProcessing3SourceFixed | 0x00208000,
+ FMADD_d = FPDataProcessing3SourceFixed | 0x00400000,
+ FMSUB_d = FPDataProcessing3SourceFixed | 0x00408000,
+ FNMADD_d = FPDataProcessing3SourceFixed | 0x00600000,
+ FNMSUB_d = FPDataProcessing3SourceFixed | 0x00608000
+};
+
+// Conversion between floating point and integer.
+enum FPIntegerConvertOp {
+ FPIntegerConvertFixed = 0x1E200000,
+ FPIntegerConvertFMask = 0x5F20FC00,
+ FPIntegerConvertMask = 0xFFFFFC00,
+ FCVTNS = FPIntegerConvertFixed | 0x00000000,
+ FCVTNS_ws = FCVTNS,
+ FCVTNS_xs = FCVTNS | SixtyFourBits,
+ FCVTNS_wd = FCVTNS | FP64,
+ FCVTNS_xd = FCVTNS | SixtyFourBits | FP64,
+ FCVTNU = FPIntegerConvertFixed | 0x00010000,
+ FCVTNU_ws = FCVTNU,
+ FCVTNU_xs = FCVTNU | SixtyFourBits,
+ FCVTNU_wd = FCVTNU | FP64,
+ FCVTNU_xd = FCVTNU | SixtyFourBits | FP64,
+ FCVTPS = FPIntegerConvertFixed | 0x00080000,
+ FCVTPS_ws = FCVTPS,
+ FCVTPS_xs = FCVTPS | SixtyFourBits,
+ FCVTPS_wd = FCVTPS | FP64,
+ FCVTPS_xd = FCVTPS | SixtyFourBits | FP64,
+ FCVTPU = FPIntegerConvertFixed | 0x00090000,
+ FCVTPU_ws = FCVTPU,
+ FCVTPU_xs = FCVTPU | SixtyFourBits,
+ FCVTPU_wd = FCVTPU | FP64,
+ FCVTPU_xd = FCVTPU | SixtyFourBits | FP64,
+ FCVTMS = FPIntegerConvertFixed | 0x00100000,
+ FCVTMS_ws = FCVTMS,
+ FCVTMS_xs = FCVTMS | SixtyFourBits,
+ FCVTMS_wd = FCVTMS | FP64,
+ FCVTMS_xd = FCVTMS | SixtyFourBits | FP64,
+ FCVTMU = FPIntegerConvertFixed | 0x00110000,
+ FCVTMU_ws = FCVTMU,
+ FCVTMU_xs = FCVTMU | SixtyFourBits,
+ FCVTMU_wd = FCVTMU | FP64,
+ FCVTMU_xd = FCVTMU | SixtyFourBits | FP64,
+ FCVTZS = FPIntegerConvertFixed | 0x00180000,
+ FCVTZS_ws = FCVTZS,
+ FCVTZS_xs = FCVTZS | SixtyFourBits,
+ FCVTZS_wd = FCVTZS | FP64,
+ FCVTZS_xd = FCVTZS | SixtyFourBits | FP64,
+ FCVTZU = FPIntegerConvertFixed | 0x00190000,
+ FCVTZU_ws = FCVTZU,
+ FCVTZU_xs = FCVTZU | SixtyFourBits,
+ FCVTZU_wd = FCVTZU | FP64,
+ FCVTZU_xd = FCVTZU | SixtyFourBits | FP64,
+ SCVTF = FPIntegerConvertFixed | 0x00020000,
+ SCVTF_sw = SCVTF,
+ SCVTF_sx = SCVTF | SixtyFourBits,
+ SCVTF_dw = SCVTF | FP64,
+ SCVTF_dx = SCVTF | SixtyFourBits | FP64,
+ UCVTF = FPIntegerConvertFixed | 0x00030000,
+ UCVTF_sw = UCVTF,
+ UCVTF_sx = UCVTF | SixtyFourBits,
+ UCVTF_dw = UCVTF | FP64,
+ UCVTF_dx = UCVTF | SixtyFourBits | FP64,
+ FCVTAS = FPIntegerConvertFixed | 0x00040000,
+ FCVTAS_ws = FCVTAS,
+ FCVTAS_xs = FCVTAS | SixtyFourBits,
+ FCVTAS_wd = FCVTAS | FP64,
+ FCVTAS_xd = FCVTAS | SixtyFourBits | FP64,
+ FCVTAU = FPIntegerConvertFixed | 0x00050000,
+ FCVTAU_ws = FCVTAU,
+ FCVTAU_xs = FCVTAU | SixtyFourBits,
+ FCVTAU_wd = FCVTAU | FP64,
+ FCVTAU_xd = FCVTAU | SixtyFourBits | FP64,
+ FMOV_ws = FPIntegerConvertFixed | 0x00060000,
+ FMOV_sw = FPIntegerConvertFixed | 0x00070000,
+ FMOV_xd = FMOV_ws | SixtyFourBits | FP64,
+ FMOV_dx = FMOV_sw | SixtyFourBits | FP64
+};
+
+// Conversion between fixed point and floating point.
+enum FPFixedPointConvertOp {
+ FPFixedPointConvertFixed = 0x1E000000,
+ FPFixedPointConvertFMask = 0x5F200000,
+ FPFixedPointConvertMask = 0xFFFF0000,
+ FCVTZS_fixed = FPFixedPointConvertFixed | 0x00180000,
+ FCVTZS_ws_fixed = FCVTZS_fixed,
+ FCVTZS_xs_fixed = FCVTZS_fixed | SixtyFourBits,
+ FCVTZS_wd_fixed = FCVTZS_fixed | FP64,
+ FCVTZS_xd_fixed = FCVTZS_fixed | SixtyFourBits | FP64,
+ FCVTZU_fixed = FPFixedPointConvertFixed | 0x00190000,
+ FCVTZU_ws_fixed = FCVTZU_fixed,
+ FCVTZU_xs_fixed = FCVTZU_fixed | SixtyFourBits,
+ FCVTZU_wd_fixed = FCVTZU_fixed | FP64,
+ FCVTZU_xd_fixed = FCVTZU_fixed | SixtyFourBits | FP64,
+ SCVTF_fixed = FPFixedPointConvertFixed | 0x00020000,
+ SCVTF_sw_fixed = SCVTF_fixed,
+ SCVTF_sx_fixed = SCVTF_fixed | SixtyFourBits,
+ SCVTF_dw_fixed = SCVTF_fixed | FP64,
+ SCVTF_dx_fixed = SCVTF_fixed | SixtyFourBits | FP64,
+ UCVTF_fixed = FPFixedPointConvertFixed | 0x00030000,
+ UCVTF_sw_fixed = UCVTF_fixed,
+ UCVTF_sx_fixed = UCVTF_fixed | SixtyFourBits,
+ UCVTF_dw_fixed = UCVTF_fixed | FP64,
+ UCVTF_dx_fixed = UCVTF_fixed | SixtyFourBits | FP64
+};
+
+// Unimplemented and unallocated instructions. These are defined to make fixed
+// bit assertion easier.
+enum UnimplementedOp {
+ UnimplementedFixed = 0x00000000,
+ UnimplementedFMask = 0x00000000
+};
+
+enum UnallocatedOp {
+ UnallocatedFixed = 0x00000000,
+ UnallocatedFMask = 0x00000000
+};
+
+} // namespace vixl
+
+#endif // VIXL_A64_CONSTANTS_A64_H_
new file mode 100644
@@ -0,0 +1,148 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "utils.h"
+#include "a64/cpu-a64.h"
+
+namespace vixl {
+
+// Initialise to smallest possible cache size.
+unsigned CPU::dcache_line_size_ = 1;
+unsigned CPU::icache_line_size_ = 1;
+
+
+// Currently computes I and D cache line size.
+void CPU::SetUp() {
+ uint32_t cache_type_register = GetCacheType();
+
+ // The cache type register holds information about the caches, including I
+ // D caches line size.
+ static const int kDCacheLineSizeShift = 16;
+ static const int kICacheLineSizeShift = 0;
+ static const uint32_t kDCacheLineSizeMask = 0xf << kDCacheLineSizeShift;
+ static const uint32_t kICacheLineSizeMask = 0xf << kICacheLineSizeShift;
+
+ // The cache type register holds the size of the I and D caches as a power of
+ // two.
+ uint32_t dcache_line_size_power_of_two =
+ (cache_type_register & kDCacheLineSizeMask) >> kDCacheLineSizeShift;
+ uint32_t icache_line_size_power_of_two =
+ (cache_type_register & kICacheLineSizeMask) >> kICacheLineSizeShift;
+
+ dcache_line_size_ = 1 << dcache_line_size_power_of_two;
+ icache_line_size_ = 1 << icache_line_size_power_of_two;
+}
+
+
+uint32_t CPU::GetCacheType() {
+#ifdef USE_SIMULATOR
+ // This will lead to a cache with 1 byte long lines, which is fine since the
+ // simulator will not need this information.
+ return 0;
+#else
+ uint32_t cache_type_register;
+ // Copy the content of the cache type register to a core register.
+ __asm__ __volatile__ ("mrs %[ctr], ctr_el0" // NOLINT
+ : [ctr] "=r" (cache_type_register));
+ return cache_type_register;
+#endif
+}
+
+
+void CPU::EnsureIAndDCacheCoherency(void *address, size_t length) {
+#ifdef USE_SIMULATOR
+ USE(address);
+ USE(length);
+ // TODO: consider adding cache simulation to ensure every address run has been
+ // synchronised.
+#else
+ // The code below assumes user space cache operations are allowed.
+
+ uintptr_t start = reinterpret_cast<uintptr_t>(address);
+ // Sizes will be used to generate a mask big enough to cover a pointer.
+ uintptr_t dsize = static_cast<uintptr_t>(dcache_line_size_);
+ uintptr_t isize = static_cast<uintptr_t>(icache_line_size_);
+ // Cache line sizes are always a power of 2.
+ ASSERT(CountSetBits(dsize, 64) == 1);
+ ASSERT(CountSetBits(isize, 64) == 1);
+ uintptr_t dstart = start & ~(dsize - 1);
+ uintptr_t istart = start & ~(isize - 1);
+ uintptr_t end = start + length;
+
+ __asm__ __volatile__ ( // NOLINT
+ // Clean every line of the D cache containing the target data.
+ "0: \n\t"
+ // dc : Data Cache maintenance
+ // c : Clean
+ // va : by (Virtual) Address
+ // u : to the point of Unification
+ // The point of unification for a processor is the point by which the
+ // instruction and data caches are guaranteed to see the same copy of a
+ // memory location. See ARM DDI 0406B page B2-12 for more information.
+ "dc cvau, %[dline] \n\t"
+ "add %[dline], %[dline], %[dsize] \n\t"
+ "cmp %[dline], %[end] \n\t"
+ "b.lt 0b \n\t"
+ // Barrier to make sure the effect of the code above is visible to the rest
+ // of the world.
+ // dsb : Data Synchronisation Barrier
+ // ish : Inner SHareable domain
+ // The point of unification for an Inner Shareable shareability domain is
+ // the point by which the instruction and data caches of all the processors
+ // in that Inner Shareable shareability domain are guaranteed to see the
+ // same copy of a memory location. See ARM DDI 0406B page B2-12 for more
+ // information.
+ "dsb ish \n\t"
+ // Invalidate every line of the I cache containing the target data.
+ "1: \n\t"
+ // ic : instruction cache maintenance
+ // i : invalidate
+ // va : by address
+ // u : to the point of unification
+ "ic ivau, %[iline] \n\t"
+ "add %[iline], %[iline], %[isize] \n\t"
+ "cmp %[iline], %[end] \n\t"
+ "b.lt 1b \n\t"
+ // Barrier to make sure the effect of the code above is visible to the rest
+ // of the world.
+ "dsb ish \n\t"
+ // Barrier to ensure any prefetching which happened before this code is
+ // discarded.
+ // isb : Instruction Synchronisation Barrier
+ "isb \n\t"
+ : [dline] "+r" (dstart),
+ [iline] "+r" (istart)
+ : [dsize] "r" (dsize),
+ [isize] "r" (isize),
+ [end] "r" (end)
+ // This code does not write to memory but without the dependency gcc might
+ // move this code before the code is generated.
+ : "cc", "memory"
+ ); // NOLINT
+#endif
+}
+
+} // namespace vixl
new file mode 100644
@@ -0,0 +1,56 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_CPU_A64_H
+#define VIXL_CPU_A64_H
+
+#include "globals.h"
+
+namespace vixl {
+
+class CPU {
+ public:
+ // Initialise CPU support.
+ static void SetUp();
+
+ // Ensures the data at a given address and with a given size is the same for
+ // the I and D caches. I and D caches are not automatically coherent on ARM
+ // so this operation is required before any dynamically generated code can
+ // safely run.
+ static void EnsureIAndDCacheCoherency(void *address, size_t length);
+
+ private:
+ // Return the content of the cache type register.
+ static uint32_t GetCacheType();
+
+ // I and D cache line size in bytes.
+ static unsigned icache_line_size_;
+ static unsigned dcache_line_size_;
+};
+
+} // namespace vixl
+
+#endif // VIXL_CPU_A64_H
new file mode 100644
@@ -0,0 +1,1511 @@
+// Copyright 2013 ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY ARM LIMITED AND CONTRIBUTORS "AS IS" AND ANY
+// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL ARM LIMITED BE LIABLE FOR ANY DIRECT, INDIRECT,
+// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
+// OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "a64/debugger-a64.h"
+
+namespace vixl {
+
+// List of commands supported by the debugger.
+#define DEBUG_COMMAND_LIST(C) \
+C(HelpCommand) \
+C(ContinueCommand) \
+C(StepCommand) \
+C(DisasmCommand) \
+C(PrintCommand) \
+C(MemCommand)
+
+// Debugger command lines are broken up in token of different type to make
+// processing easier later on.
+class Token {
+ public:
+ virtual ~Token() {}
+
+ // Token type.
+ virtual bool IsRegister() const { return false; }
+ virtual bool IsFPRegister() const { return false; }
+ virtual bool IsIdentifier() const { return false; }
+ virtual bool IsAddress() const { return false; }
+ virtual bool IsInteger() const { return false; }
+ virtual bool IsFormat() const { return false; }
+ virtual bool IsUnknown() const { return false; }
+ // Token properties.
+ virtual bool CanAddressMemory() const { return false; }
+ virtual uint8_t* ToAddress(Debugger* debugger) const;
+ virtual void Print(FILE* out = stdout) const = 0;
+
+ static Token* Tokenize(const char* arg);
+};
+
+// Tokens often hold one value.
+template<typename T> class ValueToken : public Token {
+ public:
+ explicit ValueToken(T value) : value_(value) {}
+ ValueToken() {}
+
+ T value() const { return value_; }
+
+ protected:
+ T value_;
+};
+
+// Integer registers (X or W) and their aliases.
+// Format: wn or xn with 0 <= n < 32 or a name in the aliases list.
+class RegisterToken : public ValueToken<const Register> {
+ public:
+ explicit RegisterToken(const Register reg)
+ : ValueToken<const Register>(reg) {}
+
+ virtual bool IsRegister() const { return true; }
+ virtual bool CanAddressMemory() const { return value().Is64Bits(); }
+ virtual uint8_t* ToAddress(Debugger* debugger) const;
+ virtual void Print(FILE* out = stdout) const ;
+ const char* Name() const;
+
+ static Token* Tokenize(const char* arg);
+ static RegisterToken* Cast(Token* tok) {
+ ASSERT(tok->IsRegister());
+ return reinterpret_cast<RegisterToken*>(tok);
+ }
+
+ private:
+ static const int kMaxAliasNumber = 4;
+ static const char* kXAliases[kNumberOfRegisters][kMaxAliasNumber];
+ static const char* kWAliases[kNumberOfRegisters][kMaxAliasNumber];
+};
+
+// Floating point registers (D or S).
+// Format: sn or dn with 0 <= n < 32.
+class FPRegisterToken : public ValueToken<const FPRegister> {
+ public:
+ explicit FPRegisterToken(const FPRegister fpreg)
+ : ValueToken<const FPRegister>(fpreg) {}
+
+ virtual bool IsFPRegister() const { return true; }
+ virtual void Print(FILE* out = stdout) const ;
+
+ static Token* Tokenize(const char* arg);
+ static FPRegisterToken* Cast(Token* tok) {
+ ASSERT(tok->IsFPRegister());
+ return reinterpret_cast<FPRegisterToken*>(tok);
+ }
+};
+
+
+// Non-register identifiers.
+// Format: Alphanumeric string starting with a letter.
+class IdentifierToken : public ValueToken<char*> {
+ public:
+ explicit IdentifierToken(const char* name) {
+ int size = strlen(name) + 1;
+ value_ = new char[size];
+ strncpy(value_, name, size);
+ }
+ virtual ~IdentifierToken() { delete[] value_; }
+
+ virtual bool IsIdentifier() const { return true; }
+ virtual bool CanAddressMemory() const { return strcmp(value(), "pc") == 0; }
+ virtual uint8_t* ToAddress(Debugger* debugger) const;
+ virtual void Print(FILE* out = stdout) const;
+
+ static Token* Tokenize(const char* arg);
+ static IdentifierToken* Cast(Token* tok) {
+ ASSERT(tok->IsIdentifier());
+ return reinterpret_cast<IdentifierToken*>(tok);
+ }
+};
+
+// 64-bit address literal.
+// Format: 0x... with up to 16 hexadecimal digits.
+class AddressToken : public ValueToken<uint8_t*> {
+ public:
+ explicit AddressToken(uint8_t* address) : ValueToken<uint8_t*>(address) {}
+
+ virtual bool IsAddress() const { return true; }
+ virtual bool CanAddressMemory() const { return true; }
+ virtual uint8_t* ToAddress(Debugger* debugger) const;
+ virtual void Print(FILE* out = stdout) const ;
+
+ static Token* Tokenize(const char* arg);
+ static AddressToken* Cast(Token* tok) {
+ ASSERT(tok->IsAddress());
+ return reinterpret_cast<AddressToken*>(tok);
+ }
+};
+
+
+// 64-bit decimal integer literal.
+// Format: n.
+class IntegerToken : public ValueToken<int64_t> {
+ public:
+ explicit IntegerToken(int value) : ValueToken<int64_t>(value) {}
+
+ virtual bool IsInteger() const { return true; }
+ virtual void Print(FILE* out = stdout) const;
+
+ static Token* Tokenize(const char* arg);
+ static IntegerToken* Cast(Token* tok) {
+ ASSERT(tok->IsInteger());
+ return reinterpret_cast<IntegerToken*>(tok);
+ }
+};
+
+// Literal describing how to print a chunk of data (up to 64 bits).
+// Format: %qt
+// where q (qualifier) is one of
+// * s: signed integer
+// * u: unsigned integer
+// * a: hexadecimal floating point
+// and t (type) is one of
+// * x: 64-bit integer
+// * w: 32-bit integer
+// * h: 16-bit integer
+// * b: 8-bit integer
+// * c: character
+// * d: double
+// * s: float
+// When no qualifier is given for integers, they are printed in hexadecinal.
+class FormatToken : public Token {
+ public:
+ FormatToken() {}
+
+ virtual bool IsFormat() const { return true; }
+ virtual int SizeOf() const = 0;
+ virtual void PrintData(void* data, FILE* out = stdout) const = 0;
+ virtual void Print(FILE* out = stdout) const = 0;
+
+ static Token* Tokenize(const char* arg);
+ static FormatToken* Cast(Token* tok) {
+ ASSERT(tok->IsFormat());
+ return reinterpret_cast<FormatToken*>(tok);
+ }
+};
+
+
+template<typename T> class Format : public FormatToken {
+ public:
+ explicit Format(const char* fmt) : fmt_(fmt) {}
+
+ virtual int SizeOf() const { return sizeof(T); }
+ virtual void PrintData(void* data, FILE* out = stdout) const {
+ T value;
+ memcpy(&value, data, sizeof(value));
+ fprintf(out, fmt_, value);
+ }
+ virtual void Print(FILE* out = stdout) const;
+
+ private:
+ const char* fmt_;
+};
+
+// Tokens which don't fit any of the above.
+class UnknownToken : public Token {
+ public:
+ explicit UnknownToken(const char* arg) {
+ int size = strlen(arg) + 1;
+ unknown_ = new char[size];
+ strncpy(unknown_, arg, size);
+ }
+ virtual ~UnknownToken() { delete[] unknown_; }
+
+ virtual bool IsUnknown() const { return true; }
+ virtual void Print(FILE* out = stdout) const;
+
+ private:
+ char* unknown_;
+};
+
+
+// All debugger commands must subclass DebugCommand and implement Run, Print
+// and Build. Commands must also define kHelp and kAliases.
+class DebugCommand {
+ public:
+ explicit DebugCommand(Token* name) : name_(IdentifierToken::Cast(name)) {}
+ DebugCommand() : name_(NULL) {}
+ virtual ~DebugCommand() { delete name_; }
+
+ const char* name() { return name_->value(); }
+ // Run the command on the given debugger. The command returns true if
+ // execution should move to the next instruction.
+ virtual bool Run(Debugger * debugger) = 0;
+ virtual void Print(FILE* out = stdout);
+
+ static bool Match(const char* name, const char** aliases);
+ static DebugCommand* Parse(char* line);
+ static void PrintHelp(const char** aliases,
+ const char* args,
+ const char* help);
+
+ private:
+ IdentifierToken* name_;
+};
+
+// For all commands below see their respective kHelp and kAliases in
+// debugger-a64.cc
+class HelpCommand : public DebugCommand {
+ public:
+ explicit HelpCommand(Token* name) : DebugCommand(name) {}
+
+ virtual bool Run(Debugger* debugger);
+
+ static DebugCommand* Build(std::vector<Token*> args);
+
+ static const char* kHelp;
+ static const char* kAliases[];
+ static const char* kArguments;
+};
+
+
+class ContinueCommand : public DebugCommand {
+ public:
+ explicit ContinueCommand(Token* name) : DebugCommand(name) {}
+
+ virtual bool Run(Debugger* debugger);
+
+ static DebugCommand* Build(std::vector<Token*> args);
+
+ static const char* kHelp;
+ static const char* kAliases[];
+ static const char* kArguments;
+};
+
+
+class StepCommand : public DebugCommand {
+ public:
+ StepCommand(Token* name, IntegerToken* count)
+ : DebugCommand(name), count_(count) {}
+ virtual ~StepCommand() { delete count_; }
+
+ int64_t count() { return count_->value(); }
+ virtual bool Run(Debugger* debugger);
+ virtual void Print(FILE* out = stdout);
+
+ static DebugCommand* Build(std::vector<Token*> args);
+
+ static const char* kHelp;
+ static const char* kAliases[];
+ static const char* kArguments;
+
+ private:
+ IntegerToken* count_;
+};
+
+class DisasmCommand : public DebugCommand {
+ public:
+ DisasmCommand(Token* name, Token* target, IntegerToken* count)
+ : DebugCommand(name), target_(target), count_(count) {}
+ virtual ~DisasmCommand() {
+ delete target_;
+ delete count_;
+ }
+
+ Token* target() { return target_; }
+ int64_t count() { return count_->value(); }
+ virtual bool Run(Debugger* debugger);
+ virtual void Print(FILE* out = stdout);
+
+ static DebugCommand* Build(std::vector<Token*> args);
+
+ static const char* kHelp;
+ static const char* kAliases[];
+ static const char* kArguments;
+
+ private:
+ Token* target_;
+ IntegerToken* count_;
+};
+
+
+class PrintCommand : public DebugCommand {
+ public:
+ PrintCommand(Token* name, Token* target)
+ : DebugCommand(name), target_(target) {}
+ virtual ~PrintCommand() { delete target_; }
+
+ Token* target() { return target_; }
+ virtual bool Run(Debugger* debugger);
+ virtual void Print(FILE* out = stdout);
+
+ static DebugCommand* Build(std::vector<Token*> args);
+
+ static const char* kHelp;
+ static const char* kAliases[];
+ static const char* kArguments;
+
+ private:
+ Token* target_;
+};
+
+class MemCommand : public DebugCommand {
+ public:
+ MemCommand(Token* name,
+ Token* target,
+ IntegerToken* count,
+ FormatToken* format)
+ : DebugCommand(name), target_(target), count_(count), format_(format) {}
+ virtual ~MemCommand() {
+ delete target_;
+ delete count_;
+ delete format_;
+ }
+
+ Token* target() { return target_; }
+ int64_t count() { return count_->value(); }
+ FormatToken* format() { return format_; }
+ virtual bool Run(Debugger* debugger);
+ virtual void Print(FILE* out = stdout);
+
+ static DebugCommand* Build(std::vector<Token*> args);
+
+ static const char* kHelp;
+ static const char* kAliases[];
+ static const char* kArguments;
+
+ private:
+ Token* target_;
+ IntegerToken* count_;
+ FormatToken* format_;
+};
+
+// Commands which name does not match any of the known commnand.
+class UnknownCommand : public DebugCommand {
+ public:
+ explicit UnknownCommand(std::vector<Token*> args) : args_(args) {}
+ virtual ~UnknownCommand();
+
+ virtual bool Run(Debugger* debugger);
+
+ private:
+ std::vector<Token*> args_;
+};
+
+// Commands which name match a known command but the syntax is invalid.
+class InvalidCommand : public DebugCommand {
+ public:
+ InvalidCommand(std::vector<Token*> args, int index, const char* cause)
+ : args_(args), index_(index), cause_(cause) {}
+ virtual ~InvalidCommand();
+
+ virtual bool Run(Debugger* debugger);
+
+ private:
+ std::vector<Token*> args_;
+ int index_;
+ const char* cause_;
+};
+
+const char* HelpCommand::kAliases[] = { "help", NULL };
+const char* HelpCommand::kArguments = NULL;
+const char* HelpCommand::kHelp = " print this help";
+
+const char* ContinueCommand::kAliases[] = { "continue", "c", NULL };
+const char* ContinueCommand::kArguments = NULL;
+const char* ContinueCommand::kHelp = " resume execution";
+
+const char* StepCommand::kAliases[] = { "stepi", "si", NULL };
+const char* StepCommand::kArguments = "[n = 1]";
+const char* StepCommand::kHelp = " execute n next instruction(s)";
+
+const char* DisasmCommand::kAliases[] = { "dis", "d", NULL };
+const char* DisasmCommand::kArguments = "[addr = pc] [n = 1]";
+const char* DisasmCommand::kHelp =
+ " disassemble n instruction(s) at address addr.\n"
+ " addr can be an immediate address, a register or the pc."
+;
+
+const char* PrintCommand::kAliases[] = { "print", "p", NULL };
+const char* PrintCommand::kArguments = "<entity>";
+const char* PrintCommand::kHelp =
+ " print the given entity\n"
+ " entity can be 'regs' for W and X registers, 'fpregs' for S and D\n"
+ " registers, 'sysregs' for system registers (including NZCV) or 'pc'."
+;
+
+const char* MemCommand::kAliases[] = { "mem", "m", NULL };
+const char* MemCommand::kArguments = "<addr> [n = 1] [format = %x]";
+const char* MemCommand::kHelp =
+ " print n memory item(s) at address addr according to the given format.\n"
+ " addr can be an immediate address, a register or the pc.\n"
+ " format is made of a qualifer: 's', 'u', 'a' (signed, unsigned, hexa)\n"
+ " and a type 'x', 'w', 'h', 'b' (64- to 8-bit integer), 'c' (character),\n"
+ " 's' (float) or 'd' (double). E.g 'mem sp %w' will print a 32-bit word\n"
+ " from the stack as an hexadecimal number."
+;
+
+const char* RegisterToken::kXAliases[kNumberOfRegisters][kMaxAliasNumber] = {
+ { "x0", NULL },
+ { "x1", NULL },
+ { "x2", NULL },
+ { "x3", NULL },
+ { "x4", NULL },
+ { "x5", NULL },
+ { "x6", NULL },
+ { "x7", NULL },
+ { "x8", NULL },
+ { "x9", NULL },
+ { "x10", NULL },
+ { "x11", NULL },
+ { "x12", NULL },
+ { "x13", NULL },
+ { "x14", NULL },
+ { "x15", NULL },
+ { "ip0", "x16", NULL },
+ { "ip1", "x17", NULL },
+ { "x18", "pr", NULL },
+ { "x19", NULL },
+ { "x20", NULL },
+ { "x21", NULL },
+ { "x22", NULL },
+ { "x23", NULL },
+ { "x24", NULL },
+ { "x25", NULL },
+ { "x26", NULL },
+ { "x27", NULL },
+ { "x28", NULL },
+ { "fp", "x29", NULL },
+ { "lr", "x30", NULL },
+ { "sp", NULL}
+};
+
+const char* RegisterToken::kWAliases[kNumberOfRegisters][kMaxAliasNumber] = {
+ { "w0", NULL },
+ { "w1", NULL },
+ { "w2", NULL },
+ { "w3", NULL },
+ { "w4", NULL },
+ { "w5", NULL },
+ { "w6", NULL },
+ { "w7", NULL },
+ { "w8", NULL },
+ { "w9", NULL },
+ { "w10", NULL },
+ { "w11", NULL },
+ { "w12", NULL },
+ { "w13", NULL },
+ { "w14", NULL },
+ { "w15", NULL },
+ { "w16", NULL },
+ { "w17", NULL },
+ { "w18", NULL },
+ { "w19", NULL },
+ { "w20", NULL },
+ { "w21", NULL },
+ { "w22", NULL },
+ { "w23", NULL },
+ { "w24", NULL },
+ { "w25", NULL },
+ { "w26", NULL },
+ { "w27", NULL },
+ { "w28", NULL },
+ { "w29", NULL },
+ { "w30", NULL },
+ { "wsp", NULL }
+};
+
+
+Debugger::Debugger(Decoder* decoder, FILE* stream)
+ : Simulator(decoder, stream),
+ log_parameters_(0),
+ debug_parameters_(0),
+ pending_request_(false),
+ steps_(0),
+ last_command_(NULL) {
+ disasm_ = new PrintDisassembler(stdout);
+ printer_ = new Decoder();
+ printer_->AppendVisitor(disasm_);
+}
+
+
+void Debugger::Run() {
+ while (pc_ != kEndOfSimAddress) {
+ if (pending_request()) {
+ LogProcessorState();
+ RunDebuggerShell();
+ }
+
+ ExecuteInstruction();
+ }
+}
+
+
+void Debugger::PrintInstructions(void* address, int64_t count) {
+ if (count == 0) {
+ return;
+ }
+
+ Instruction* from = Instruction::Cast(address);
+ if (count < 0) {
+ count = -count;
+ from -= (count - 1) * kInstructionSize;
+ }
+ Instruction* to = from + count * kInstructionSize;
+
+ for (Instruction* current = from;
+ current < to;
+ current = current->NextInstruction()) {
+ printer_->Decode(current);
+ }
+}
+
+
+void Debugger::PrintMemory(const uint8_t* address,
+ int64_t count,
+ const FormatToken* format) {
+ if (count == 0) {
+ return;
+ }
+
+ const uint8_t* from = address;
+ int size = format->SizeOf();
+ if (count < 0) {
+ count = -count;
+ from -= (count - 1) * size;
+ }
+ const uint8_t* to = from + count * size;
+
+ for (const uint8_t* current = from; current < to; current += size) {
+ if (((current - from) % 16) == 0) {
+ printf("\n%p: ", current);
+ }
+
+ uint64_t data = MemoryRead(current, size);
+ format->PrintData(&data);
+ printf(" ");
+ }
+ printf("\n\n");
+}
+
+
+void Debugger::VisitException(Instruction* instr) {
+ switch (instr->Mask(ExceptionMask)) {
+ case BRK:
+ DoBreakpoint(instr);
+ return;
+ case HLT:
+ switch (instr->ImmException()) {
+ case kUnreachableOpcode:
+ DoUnreachable(instr);
+ return;
+ case kTraceOpcode:
+ DoTrace(instr);
+ return;
+ case kLogOpcode:
+ DoLog(instr);
+ return;
+ }
+ // Fall through
+ default: Simulator::VisitException(instr);
+ }
+}
+
+
+void Debugger::LogSystemRegisters() {
+ if (log_parameters_ & LOG_SYS_REGS) PrintSystemRegisters();
+}
+
+
+void Debugger::LogRegisters() {
+ if (log_parameters_ & LOG_REGS) PrintRegisters();
+}
+
+
+void Debugger::LogFPRegisters() {
+ if (log_parameters_ & LOG_FP_REGS) PrintFPRegisters();
+}
+
+
+void Debugger::LogProcessorState() {
+ LogSystemRegisters();
+ LogRegisters();
+ LogFPRegisters();
+}
+
+
+// Read a command. A command will be at most kMaxDebugShellLine char long and
+// ends with '\n\0'.
+// TODO: Should this be a utility function?
+char* Debugger::ReadCommandLine(const char* prompt, char* buffer, int length) {
+ int fgets_calls = 0;
+ char* end = NULL;
+
+ printf("%s", prompt);
+ fflush(stdout);
+
+ do {
+ if (fgets(buffer, length, stdin) == NULL) {
+ printf(" ** Error while reading command. **\n");
+ return NULL;
+ }
+
+ fgets_calls++;
+ end = strchr(buffer, '\n');
+ } while (end == NULL);
+
+ if (fgets_calls != 1) {
+ printf(" ** Command too long. **\n");
+ return NULL;
+ }
+
+ // Remove the newline from the end of the command.
+ ASSERT(end[1] == '\0');
+ ASSERT((end - buffer) < (length - 1));
+ end[0] = '\0';
+
+ return buffer;
+}
+
+
+void Debugger::RunDebuggerShell() {
+ if (IsDebuggerRunning()) {
+ if (steps_ > 0) {
+ // Finish stepping first.
+ --steps_;
+ return;
+ }
+
+ printf("Next: ");
+ PrintInstructions(pc());
+ bool done = false;
+ while (!done) {
+ char buffer[kMaxDebugShellLine];
+ char* line = ReadCommandLine("vixl> ", buffer, kMaxDebugShellLine);
+
+ if (line == NULL) continue; // An error occurred.
+
+ DebugCommand* command = DebugCommand::Parse(line);
+ if (command != NULL) {
+ last_command_ = command;
+ }
+
+ if (last_command_ != NULL) {
+ done = last_command_->Run(this);
+ } else {
+ printf("No previous command to run!\n");
+ }
+ }
+
+ if ((debug_parameters_ & DBG_BREAK) != 0) {
+ // The break request has now been handled, move to next instruction.
+ debug_parameters_ &= ~DBG_BREAK;
+ increment_pc();
+ }
+ }
+}
+
+
+void Debugger::DoBreakpoint(Instruction* instr) {
+ ASSERT(instr->Mask(ExceptionMask) == BRK);
+
+ printf("Hit breakpoint at pc=%p.\n", reinterpret_cast<void*>(instr));
+ set_debug_parameters(debug_parameters() | DBG_BREAK | DBG_ACTIVE);
+ // Make the shell point to the brk instruction.
+ set_pc(instr);
+}
+
+
+void Debugger::DoUnreachable(Instruction* instr) {
+ ASSERT((instr->Mask(ExceptionMask) == HLT) &&
+ (instr->ImmException() == kUnreachableOpcode));
+
+ fprintf(stream_, "Hit UNREACHABLE marker at pc=%p.\n",
+ reinterpret_cast<void*>(instr));
+ abort();
+}
+
+
+void Debugger::DoTrace(Instruction* instr) {
+ ASSERT((instr->Mask(ExceptionMask) == HLT) &&
+ (instr->ImmException() == kTraceOpcode));
+
+ // Read the arguments encoded inline in the instruction stream.
+ uint32_t parameters;
+ uint32_t command;
+
+ ASSERT(sizeof(*instr) == 1);
+ memcpy(¶meters, instr + kTraceParamsOffset, sizeof(parameters));
+ memcpy(&command, instr + kTraceCommandOffset, sizeof(command));
+
+ switch (command) {
+ case TRACE_ENABLE:
+ set_log_parameters(log_parameters() | parameters);
+ break;
+ case TRACE_DISABLE:
+ set_log_parameters(log_parameters() & ~parameters);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ set_pc(instr->InstructionAtOffset(kTraceLength));
+}
+
+
+void Debugger::DoLog(Instruction* instr) {
+ ASSERT((instr->Mask(ExceptionMask) == HLT) &&
+ (instr->ImmException() == kLogOpcode));
+
+ // Read the arguments encoded inline in the instruction stream.
+ uint32_t parameters;
+
+ ASSERT(sizeof(*instr) == 1);
+ memcpy(¶meters, instr + kTraceParamsOffset, sizeof(parameters));
+
+ // We don't support a one-shot LOG_DISASM.
+ ASSERT((parameters & LOG_DISASM) == 0);
+ // Print the requested information.
+ if (parameters & LOG_SYS_REGS) PrintSystemRegisters(true);
+ if (parameters & LOG_REGS) PrintRegisters(true);
+ if (parameters & LOG_FP_REGS) PrintFPRegisters(true);
+
+ set_pc(instr->InstructionAtOffset(kLogLength));
+}
+
+
+static bool StringToUInt64(uint64_t* value, const char* line, int base = 10) {
+ char* endptr = NULL;
+ errno = 0; // Reset errors.
+ uint64_t parsed = strtoul(line, &endptr, base);
+
+ if (errno == ERANGE) {
+ // Overflow.
+ return false;
+ }
+
+ if (endptr == line) {
+ // No digits were parsed.
+ return false;
+ }
+
+ if (*endptr != '\0') {
+ // Non-digit characters present at the end.
+ return false;
+ }
+
+ *value = parsed;
+ return true;
+}
+
+
+static bool StringToInt64(int64_t* value, const char* line, int base = 10) {
+ char* endptr = NULL;
+ errno = 0; // Reset errors.
+ int64_t parsed = strtol(line, &endptr, base);
+
+ if (errno == ERANGE) {
+ // Overflow, undeflow.
+ return false;
+ }
+
+ if (endptr == line) {
+ // No digits were parsed.
+ return false;
+ }
+
+ if (*endptr != '\0') {
+ // Non-digit characters present at the end.
+ return false;
+ }
+
+ *value = parsed;
+ return true;
+}
+
+
+uint8_t* Token::ToAddress(Debugger* debugger) const {
+ USE(debugger);
+ UNREACHABLE();
+ return NULL;
+}
+
+
+Token* Token::Tokenize(const char* arg) {
+ if ((arg == NULL) || (*arg == '\0')) {
+ return NULL;
+ }
+
+ // The order is important. For example Identifier::Tokenize would consider
+ // any register to be a valid identifier.
+
+ Token* token = RegisterToken::Tokenize(arg);
+ if (token != NULL) {
+ return token;
+ }
+
+ token = FPRegisterToken::Tokenize(arg);
+ if (token != NULL) {
+ return token;
+ }
+
+ token = IdentifierToken::Tokenize(arg);
+ if (token != NULL) {
+ return token;
+ }
+
+ token = AddressToken::Tokenize(arg);
+ if (token != NULL) {
+ return token;
+ }
+
+ token = IntegerToken::Tokenize(arg);
+ if (token != NULL) {
+ return token;
+ }
+
+ token = FormatToken::Tokenize(arg);
+ if (token != NULL) {
+ return token;
+ }
+
+ return new UnknownToken(arg);
+}
+
+
+uint8_t* RegisterToken::ToAddress(Debugger* debugger) const {
+ ASSERT(CanAddressMemory());
+ uint64_t reg_value = debugger->xreg(value().code(), Reg31IsStackPointer);
+ uint8_t* address = NULL;
+ memcpy(&address, ®_value, sizeof(address));
+ return address;
+}
+
+
+void RegisterToken::Print(FILE* out) const {
+ ASSERT(value().IsValid());
+ fprintf(out, "[Register %s]", Name());
+}
+
+
+const char* RegisterToken::Name() const {
+ if (value().Is32Bits()) {
+ return kWAliases[value().code()][0];
+ } else {
+ return kXAliases[value().code()][0];
+ }
+}
+
+
+Token* RegisterToken::Tokenize(const char* arg) {
+ for (unsigned i = 0; i < kNumberOfRegisters; i++) {
+ // Is it a X register or alias?
+ for (const char** current = kXAliases[i]; *current != NULL; current++) {
+ if (strcmp(arg, *current) == 0) {
+ return new RegisterToken(Register::XRegFromCode(i));
+ }
+ }
+
+ // Is it a W register or alias?
+ for (const char** current = kWAliases[i]; *current != NULL; current++) {
+ if (strcmp(arg, *current) == 0) {
+ return new RegisterToken(Register::WRegFromCode(i));
+ }
+ }
+ }
+
+ return NULL;
+}
+
+
+void FPRegisterToken::Print(FILE* out) const {
+ ASSERT(value().IsValid());
+ char prefix = value().Is32Bits() ? 's' : 'd';
+ fprintf(out, "[FPRegister %c%" PRIu32 "]", prefix, value().code());
+}
+
+
+Token* FPRegisterToken::Tokenize(const char* arg) {
+ if (strlen(arg) < 2) {
+ return NULL;
+ }
+
+ switch (*arg) {
+ case 's':
+ case 'd':
+ const char* cursor = arg + 1;
+ uint64_t code = 0;
+ if (!StringToUInt64(&code, cursor)) {
+ return NULL;
+ }
+
+ if (code > kNumberOfFPRegisters) {
+ return NULL;
+ }
+
+ FPRegister fpreg = NoFPReg;
+ switch (*arg) {
+ case 's': fpreg = FPRegister::SRegFromCode(code); break;
+ case 'd': fpreg = FPRegister::DRegFromCode(code); break;
+ default: UNREACHABLE();
+ }
+
+ return new FPRegisterToken(fpreg);
+ }
+
+ return NULL;
+}
+
+
+uint8_t* IdentifierToken::ToAddress(Debugger* debugger) const {
+ ASSERT(CanAddressMemory());
+ Instruction* pc_value = debugger->pc();
+ uint8_t* address = NULL;
+ memcpy(&address, &pc_value, sizeof(address));
+ return address;
+}
+
+void IdentifierToken::Print(FILE* out) const {
+ fprintf(out, "[Identifier %s]", value());
+}
+
+
+Token* IdentifierToken::Tokenize(const char* arg) {
+ if (!isalpha(arg[0])) {
+ return NULL;
+ }
+
+ const char* cursor = arg + 1;
+ while ((*cursor != '\0') && isalnum(*cursor)) {
+ ++cursor;
+ }
+
+ if (*cursor == '\0') {
+ return new IdentifierToken(arg);
+ }
+
+ return NULL;
+}
+
+
+uint8_t* AddressToken::ToAddress(Debugger* debugger) const {
+ USE(debugger);
+ return value();
+}
+
+
+void AddressToken::Print(FILE* out) const {
+ fprintf(out, "[Address %p]", value());
+}
+
+
+Token* AddressToken::Tokenize(const char* arg) {
+ if ((strlen(arg) < 3) || (arg[0] != '0') || (arg[1] != 'x')) {
+ return NULL;
+ }
+
+ uint64_t ptr = 0;
+ if (!StringToUInt64(&ptr, arg, 16)) {
+ return NULL;
+ }
+
+ uint8_t* address = reinterpret_cast<uint8_t*>(ptr);
+ return new AddressToken(address);
+}
+
+
+void IntegerToken::Print(FILE* out) const {
+ fprintf(out, "[Integer %" PRId64 "]", value());
+}
+
+
+Token* IntegerToken::Tokenize(const char* arg) {
+ int64_t value = 0;
+ if (!StringToInt64(&value, arg)) {
+ return NULL;
+ }
+
+ return new IntegerToken(value);
+}
+
+
+Token* FormatToken::Tokenize(const char* arg) {
+ if (arg[0] != '%') {
+ return NULL;
+ }
+
+ int length = strlen(arg);
+ if ((length < 2) || (length > 3)) {
+ return NULL;
+ }
+
+ char type = arg[length - 1];
+ if (length == 2) {
+ switch (type) {
+ case 'x': return new Format<uint64_t>("%016" PRIx64);
+ case 'w': return new Format<uint32_t>("%08" PRIx32);
+ case 'h': return new Format<uint16_t>("%04" PRIx16);
+ case 'b': return new Format<uint8_t>("%02" PRIx8);
+ case 'c': return new Format<char>("%c");
+ case 'd': return new Format<double>("%g");
+ case 's': return new Format<float>("%g");
+ default: return NULL;
+ }
+ }
+
+ ASSERT(length == 3);
+ switch (arg[1]) {
+ case 's':
+ switch (type) {
+ case 'x': return new Format<int64_t>("%+20" PRId64);
+ case 'w': return new Format<int32_t>("%+11" PRId32);
+ case 'h': return new Format<int16_t>("%+6" PRId16);
+ case 'b': return new Format<int8_t>("%+4" PRId8);
+ default: return NULL;
+ }
+ case 'u':
+ switch (type) {
+ case 'x': return new Format<uint64_t>("%20" PRIu64);
+ case 'w': return new Format<uint32_t>("%10" PRIu32);
+ case 'h': return new Format<uint16_t>("%5" PRIu16);
+ case 'b': return new Format<uint8_t>("%3" PRIu8);
+ default: return NULL;
+ }
+ case 'a':
+ switch (type) {
+ case 'd': return new Format<double>("%a");
+ case 's': return new Format<float>("%a");
+ default: return NULL;
+ }
+ default: return NULL;
+ }
+}
+
+
+template<typename T>
+void Format<T>::Print(FILE* out) const {
+ fprintf(out, "[Format %s - %lu byte(s)]", fmt_, sizeof(T));
+}
+
+
+void UnknownToken::Print(FILE* out) const {
+ fprintf(out, "[Unknown %s]", unknown_);
+}
+
+
+void DebugCommand::Print(FILE* out) {
+ fprintf(out, "%s", name());
+}
+
+
+bool DebugCommand::Match(const char* name, const char** aliases) {
+ for (const char** current = aliases; *current != NULL; current++) {
+ if (strcmp(name, *current) == 0) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+DebugCommand* DebugCommand::Parse(char* line) {
+ std::vector<Token*> args;
+
+ for (char* chunk = strtok(line, " ");
+ chunk != NULL;
+ chunk = strtok(NULL, " ")) {
+ args.push_back(Token::Tokenize(chunk));
+ }
+
+ if (args.size() == 0) {
+ return NULL;
+ }
+
+ if (!args[0]->IsIdentifier()) {
+ return new InvalidCommand(args, 0, "command name is not an identifier");
+ }
+
+ const char* name = IdentifierToken::Cast(args[0])->value();
+ #define RETURN_IF_MATCH(Command) \
+ if (Match(name, Command::kAliases)) { \
+ return Command::Build(args); \
+ }
+ DEBUG_COMMAND_LIST(RETURN_IF_MATCH);
+ #undef RETURN_IF_MATCH
+
+ return new UnknownCommand(args);
+}
+
+
+void DebugCommand::PrintHelp(const char** aliases,
+ const char* args,
+ const char* help) {
+ ASSERT(aliases[0] != NULL);
+ ASSERT(help != NULL);
+
+ printf("\n----\n\n");
+ for (const char** current = aliases; *current != NULL; current++) {
+ if (args != NULL) {
+ printf("%s %s\n", *current, args);
+ } else {
+ printf("%s\n", *current);
+ }
+ }
+ printf("\n%s\n", help);
+}
+
+
+bool HelpCommand::Run(Debugger* debugger) {
+ ASSERT(debugger->IsDebuggerRunning());
+ USE(debugger);
+
+ #define PRINT_HELP(Command) \
+ DebugCommand::PrintHelp(Command::kAliases, \
+ Command::kArguments, \
+ Command::kHelp);
+ DEBUG_COMMAND_LIST(PRINT_HELP);
+ #undef PRINT_HELP
+ printf("\n----\n\n");
+
+ return false;
+}
+
+
+DebugCommand* HelpCommand::Build(std::vector<Token*> args) {
+ if (args.size() != 1) {
+ return new InvalidCommand(args, -1, "too many arguments");
+ }
+
+ return new HelpCommand(args[0]);
+}
+
+
+bool ContinueCommand::Run(Debugger* debugger) {
+ ASSERT(debugger->IsDebuggerRunning());
+
+ debugger->set_debug_parameters(debugger->debug_parameters() & ~DBG_ACTIVE);
+ return true;
+}
+
+
+DebugCommand* ContinueCommand::Build(std::vector<Token*> args) {
+ if (args.size() != 1) {
+ return new InvalidCommand(args, -1, "too many arguments");
+ }
+
+ return new ContinueCommand(args[0]);
+}
+
+
+bool StepCommand::Run(Debugger* debugger) {
+ ASSERT(debugger->IsDebuggerRunning());
+
+ int64_t steps = count();
+ if (steps < 0) {
+ printf(" ** invalid value for steps: %" PRId64 " (<0) **\n", steps);
+ } else if (steps > 1) {
+ debugger->set_steps(steps - 1);
+ }
+
+ return true;
+}
+
+
+void StepCommand::Print(FILE* out) {
+ fprintf(out, "%s %" PRId64 "", name(), count());
+}
+
+
+DebugCommand* StepCommand::Build(std::vector<Token*> args) {
+ IntegerToken* count = NULL;
+ switch (args.size()) {
+ case 1: { // step [1]
+ count = new IntegerToken(1);
+ break;
+ }
+ case 2: { // step n
+ Token* first = args[1];
+ if (!first->IsInteger()) {
+ return new InvalidCommand(args, 1, "expects int");
+ }
+ count = IntegerToken::Cast(first);
+ break;
+ }
+ default:
+ return new InvalidCommand(args, -1, "too many arguments");
+ }
+
+ return new StepCommand(args[0], count);
+}
+
+
+bool DisasmCommand::Run(Debugger* debugger) {
+ ASSERT(debugger->IsDebuggerRunning());
+
+ uint8_t* from = target()->ToAddress(debugger);
+ debugger->PrintInstructions(from, count());
+
+ return false;
+}
+
+
+void DisasmCommand::Print(FILE* out) {
+ fprintf(out, "%s ", name());
+ target()->Print(out);
+ fprintf(out, " %" PRId64 "", count());
+}
+
+
+DebugCommand* DisasmCommand::Build(std::vector<Token*> args) {
+ Token* address = NULL;
+ IntegerToken* count = NULL;
+ switch (args.size()) {
+ case 1: { // disasm [pc] [1]
+ address = new IdentifierToken("pc");
+ count = new IntegerToken(1);
+ break;
+ }
+ case 2: { // disasm [pc] n or disasm address [1]
+ Token* first = args[1];
+ if (first->IsInteger()) {
+ address = new IdentifierToken("pc");
+ count = IntegerToken::Cast(first);
+ } else if (first->CanAddressMemory()) {
+ address = first;
+ count = new IntegerToken(1);
+ } else {
+ return new InvalidCommand(args, 1, "expects int or addr");
+ }
+ break;
+ }
+ case 3: { // disasm address count
+ Token* first = args[1];
+ Token* second = args[2];
+ if (!first->CanAddressMemory() || !second->IsInteger()) {
+ return new InvalidCommand(args, -1, "disasm addr int");
+ }
+ address = first;
+ count = IntegerToken::Cast(second);
+ break;
+ }
+ default:
+ return new InvalidCommand(args, -1, "wrong arguments number");
+ }
+
+ return new DisasmCommand(args[0], address, count);
+}
+
+
+void PrintCommand::Print(FILE* out) {
+ fprintf(out, "%s ", name());
+ target()->Print(out);
+}
+
+
+bool PrintCommand::Run(Debugger* debugger) {
+ ASSERT(debugger->IsDebuggerRunning());
+
+ Token* tok = target();
+ if (tok->IsIdentifier()) {
+ char* identifier = IdentifierToken::Cast(tok)->value();
+ if (strcmp(identifier, "regs") == 0) {
+ debugger->PrintRegisters(true);
+ } else if (strcmp(identifier, "fpregs") == 0) {
+ debugger->PrintFPRegisters(true);
+ } else if (strcmp(identifier, "sysregs") == 0) {
+ debugger->PrintSystemRegisters(true);
+ } else if (strcmp(identifier, "pc") == 0) {
+ printf("pc = %16p\n", reinterpret_cast<void*>(debugger->pc()));
+ } else {
+ printf(" ** Unknown identifier to print: %s **\n", identifier);
+ }
+
+ return false;
+ }
+
+ if (tok->IsRegister()) {
+ RegisterToken* reg_tok = RegisterToken::Cast(tok);
+ Register reg = reg_tok->value();
+ if (reg.Is32Bits()) {
+ printf("%s = %" PRId32 "\n",
+ reg_tok->Name(),
+ debugger->wreg(reg.code(), Reg31IsStackPointer));
+ } else {
+ printf("%s = %" PRId64 "\n",
+ reg_tok->Name(),
+ debugger->xreg(reg.code(), Reg31IsStackPointer));
+ }
+
+ return false;
+ }
+
+ if (tok->IsFPRegister()) {
+ FPRegister fpreg = FPRegisterToken::Cast(tok)->value();
+ if (fpreg.Is32Bits()) {
+ printf("s%u = %g\n", fpreg.code(), debugger->sreg(fpreg.code()));
+ } else {
+ printf("d%u = %g\n", fpreg.code(), debugger->dreg(fpreg.code()));
+ }
+
+ return false;
+ }
+
+ UNREACHABLE();
+ return false;
+}
+
+
+DebugCommand* PrintCommand::Build(std::vector<Token*> args) {
+ Token* target = NULL;
+ switch (args.size()) {
+ case 2: {
+ target = args[1];
+ if (!target->IsRegister()
+ && !target->IsFPRegister()
+ && !target->IsIdentifier()) {
+ return new InvalidCommand(args, 1, "expects reg or identifier");
+ }
+ break;
+ }
+ default:
+ return new InvalidCommand(args, -1, "too many arguments");
+ }
+
+ return new PrintCommand(args[0], target);
+}
+
+
+bool MemCommand::Run(Debugger* debugger) {
+ ASSERT(debugger->IsDebuggerRunning());
+
+ uint8_t* address = target()->ToAddress(debugger);
+ debugger->PrintMemory(address, count(), format());
+
+ return false;
+}
+
+
+void MemCommand::Print(FILE* out) {
+ fprintf(out, "%s ", name());
+ target()->Print(out);
+ fprintf(out, " %" PRId64 " ", count());
+ format()->Print(out);
+}
+
+
+DebugCommand* MemCommand::Build(std::vector<Token*> args) {
+ if (args.size() < 2) {
+ return new InvalidCommand(args, -1, "too few arguments");
+ }
+
+ Token* target = args[1];
+ IntegerToken* count = NULL;
+ FormatToken* format = NULL;
+
+ if (!target->CanAddressMemory()) {
+ return new InvalidCommand(args, 1, "expects address");
+ }
+
+ switch (args.size()) {
+ case 2: { // mem addressable [1] [%x]
+ count = new IntegerToken(1);
+ format = new Format<uint64_t>("%016x");
+ break;
+ }
+ case 3: { // mem addr n [%x] or mem addr [n] %f
+ Token* second = args[2];
+ if (second->IsInteger()) {
+ count = IntegerToken::Cast(second);
+ format = new Format<uint64_t>("%016x");
+ } else if (second->IsFormat()) {
+ count = new IntegerToken(1);
+ format = FormatToken::Cast(second);
+ } else {
+ return new InvalidCommand(args, 2, "expects int or format");
+ }
+ break;
+ }
+ case 4: { // mem addr n %f
+ Token* second = args[2];
+ Token* third = args[3];
+ if (!second->IsInteger() || !third->IsFormat()) {
+ return new InvalidCommand(args, -1, "mem addr >>int<< %F");
+ }
+
+ count = IntegerToken::Cast(second);
+ format = FormatToken::Cast(third);
+ break;
+ }
+ default:
+ return new InvalidCommand(args, -1, "too many arguments");
+ }
+
+ return new MemCommand(args[0], target, count, format);
+}
+
+
+UnknownCommand::~UnknownCommand() {
+ const int size = args_.size();
+ for (int i = 0; i < size; ++i) {
+ delete args_[i];
+ }
+}
+
+
+bool UnknownCommand::Run(Debugger* debugger) {
+ ASSERT(debugger->IsDebuggerRunning());
+ USE(debugger);
+
+ printf(" ** Unknown Command:");
+ const int size = args_.size();
+ for (int i = 0; i < size; ++i) {
+ printf(" ");
+ args_[i]->Print(stdout);
+ }
+ printf(" **\n");
+
+ return false;
+}
+
+
+InvalidCommand::~InvalidCommand() {
+ const int size = args_.size();
+ for (int i = 0; i < size; ++i) {
+ delete args_[i];
+ }
+}
+
+
+bool InvalidCommand::Run(Debugger* debugger) {
+ ASSERT(debugger->IsDebuggerRunning());
+ USE(debugger);
+
+ printf(" ** Invalid Command:");
+ const int size = args_.size();
+ for (int i = 0; i < size; ++i) {
+ printf(" ");
+ if (i == index_) {
+ printf(">>");
+ args_[i]->Print(stdout);
+ printf("<<");
+ } else {
+ args_[i]->Print(stdout);
+ }
+ }
+ printf(" **\n");
+ printf(" ** %s\n", cause_);
+
+ return false;
+}
+
+} // namespace vixl
new file mode 100644
@@ -0,0 +1,188 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_DEBUGGER_A64_H_
+#define VIXL_A64_DEBUGGER_A64_H_
+
+#include <ctype.h>
+#include <limits.h>
+#include <errno.h>
+#include <vector>
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/constants-a64.h"
+#include "a64/simulator-a64.h"
+
+namespace vixl {
+
+// Debug instructions.
+//
+// VIXL's macro-assembler and debugger support a few pseudo instructions to
+// make debugging easier. These pseudo instructions do not exist on real
+// hardware.
+//
+// Each debug pseudo instruction is represented by a HLT instruction. The HLT
+// immediate field is used to identify the type of debug pseudo isntruction.
+// Each pseudo instruction use a custom encoding for additional arguments, as
+// described below.
+
+// Unreachable
+//
+// Instruction which should never be executed. This is used as a guard in parts
+// of the code that should not be reachable, such as in data encoded inline in
+// the instructions.
+const Instr kUnreachableOpcode = 0xdeb0;
+
+// Trace
+// - parameter: TraceParameter stored as a uint32_t
+// - command: TraceCommand stored as a uint32_t
+//
+// Allow for trace management in the generated code. See the corresponding
+// enums for more information on permitted actions.
+const Instr kTraceOpcode = 0xdeb2;
+const unsigned kTraceParamsOffset = 1 * kInstructionSize;
+const unsigned kTraceCommandOffset = 2 * kInstructionSize;
+const unsigned kTraceLength = 3 * kInstructionSize;
+
+// Log
+// - parameter: TraceParameter stored as a uint32_t
+//
+// Output the requested information.
+const Instr kLogOpcode = 0xdeb3;
+const unsigned kLogParamsOffset = 1 * kInstructionSize;
+const unsigned kLogLength = 2 * kInstructionSize;
+
+// Trace commands.
+enum TraceCommand {
+ TRACE_ENABLE = 1,
+ TRACE_DISABLE = 2
+};
+
+// Trace parameters.
+enum TraceParameters {
+ LOG_DISASM = 1 << 0, // Log disassembly.
+ LOG_REGS = 1 << 1, // Log general purpose registers.
+ LOG_FP_REGS = 1 << 2, // Log floating-point registers.
+ LOG_SYS_REGS = 1 << 3, // Log the flags and system registers.
+
+ LOG_STATE = LOG_REGS | LOG_FP_REGS | LOG_SYS_REGS,
+ LOG_ALL = LOG_DISASM | LOG_REGS | LOG_FP_REGS | LOG_SYS_REGS
+};
+
+// Debugger parameters
+enum DebugParameters {
+ DBG_ACTIVE = 1 << 0, // The debugger is active.
+ DBG_BREAK = 1 << 1 // The debugger is at a breakpoint.
+};
+
+// Forward declarations.
+class DebugCommand;
+class Token;
+class FormatToken;
+
+class Debugger : public Simulator {
+ public:
+ Debugger(Decoder* decoder, FILE* stream = stdout);
+
+ virtual void Run();
+ void VisitException(Instruction* instr);
+
+ inline int log_parameters() {
+ // The simulator can control disassembly, so make sure that the Debugger's
+ // log parameters agree with it.
+ if (disasm_trace()) {
+ log_parameters_ |= LOG_DISASM;
+ }
+ return log_parameters_;
+ }
+ inline void set_log_parameters(int parameters) {
+ set_disasm_trace((parameters & LOG_DISASM) != 0);
+ log_parameters_ = parameters;
+
+ update_pending_request();
+ }
+
+ inline int debug_parameters() { return debug_parameters_; }
+ inline void set_debug_parameters(int parameters) {
+ debug_parameters_ = parameters;
+
+ update_pending_request();
+ }
+
+ // Numbers of instructions to execute before the debugger shell is given
+ // back control.
+ inline int steps() { return steps_; }
+ inline void set_steps(int value) {
+ ASSERT(value > 1);
+ steps_ = value;
+ }
+
+ inline bool IsDebuggerRunning() {
+ return (debug_parameters_ & DBG_ACTIVE) != 0;
+ }
+
+ inline bool pending_request() { return pending_request_; }
+ inline void update_pending_request() {
+ const int kLoggingMask = LOG_STATE;
+ const bool logging = (log_parameters_ & kLoggingMask) != 0;
+ const bool debugging = IsDebuggerRunning();
+
+ pending_request_ = logging || debugging;
+ }
+
+ void PrintInstructions(void* address, int64_t count = 1);
+ void PrintMemory(const uint8_t* address,
+ int64_t count,
+ const FormatToken* format);
+
+ private:
+ void LogSystemRegisters();
+ void LogRegisters();
+ void LogFPRegisters();
+ void LogProcessorState();
+ char* ReadCommandLine(const char* prompt, char* buffer, int length);
+ void RunDebuggerShell();
+ void DoBreakpoint(Instruction* instr);
+ void DoUnreachable(Instruction* instr);
+ void DoTrace(Instruction* instr);
+ void DoLog(Instruction* instr);
+
+ int log_parameters_;
+ int debug_parameters_;
+ bool pending_request_;
+ int steps_;
+ DebugCommand* last_command_;
+ PrintDisassembler* disasm_;
+ Decoder* printer_;
+
+ // Length of the biggest command line accepted by the debugger shell.
+ static const int kMaxDebugShellLine = 256;
+};
+
+} // namespace vixl
+
+#endif // VIXL_A64_DEBUGGER_A64_H_
new file mode 100644
@@ -0,0 +1,712 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/decoder-a64.h"
+
+namespace vixl {
+// Top-level instruction decode function.
+void Decoder::Decode(Instruction *instr) {
+ if (instr->Bits(28, 27) == 0) {
+ VisitUnallocated(instr);
+ } else {
+ switch (instr->Bits(27, 24)) {
+ // 0: PC relative addressing.
+ case 0x0: DecodePCRelAddressing(instr); break;
+
+ // 1: Add/sub immediate.
+ case 0x1: DecodeAddSubImmediate(instr); break;
+
+ // A: Logical shifted register.
+ // Add/sub with carry.
+ // Conditional compare register.
+ // Conditional compare immediate.
+ // Conditional select.
+ // Data processing 1 source.
+ // Data processing 2 source.
+ // B: Add/sub shifted register.
+ // Add/sub extended register.
+ // Data processing 3 source.
+ case 0xA:
+ case 0xB: DecodeDataProcessing(instr); break;
+
+ // 2: Logical immediate.
+ // Move wide immediate.
+ case 0x2: DecodeLogical(instr); break;
+
+ // 3: Bitfield.
+ // Extract.
+ case 0x3: DecodeBitfieldExtract(instr); break;
+
+ // 4: Unconditional branch immediate.
+ // Exception generation.
+ // Compare and branch immediate.
+ // 5: Compare and branch immediate.
+ // Conditional branch.
+ // System.
+ // 6,7: Unconditional branch.
+ // Test and branch immediate.
+ case 0x4:
+ case 0x5:
+ case 0x6:
+ case 0x7: DecodeBranchSystemException(instr); break;
+
+ // 8,9: Load/store register pair post-index.
+ // Load register literal.
+ // Load/store register unscaled immediate.
+ // Load/store register immediate post-index.
+ // Load/store register immediate pre-index.
+ // Load/store register offset.
+ // Load/store exclusive.
+ // C,D: Load/store register pair offset.
+ // Load/store register pair pre-index.
+ // Load/store register unsigned immediate.
+ // Advanced SIMD.
+ case 0x8:
+ case 0x9:
+ case 0xC:
+ case 0xD: DecodeLoadStore(instr); break;
+
+ // E: FP fixed point conversion.
+ // FP integer conversion.
+ // FP data processing 1 source.
+ // FP compare.
+ // FP immediate.
+ // FP data processing 2 source.
+ // FP conditional compare.
+ // FP conditional select.
+ // Advanced SIMD.
+ // F: FP data processing 3 source.
+ // Advanced SIMD.
+ case 0xE:
+ case 0xF: DecodeFP(instr); break;
+ }
+ }
+}
+
+void Decoder::AppendVisitor(DecoderVisitor* new_visitor) {
+ visitors_.remove(new_visitor);
+ visitors_.push_front(new_visitor);
+}
+
+
+void Decoder::PrependVisitor(DecoderVisitor* new_visitor) {
+ visitors_.remove(new_visitor);
+ visitors_.push_back(new_visitor);
+}
+
+
+void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor,
+ DecoderVisitor* registered_visitor) {
+ visitors_.remove(new_visitor);
+ std::list<DecoderVisitor*>::iterator it;
+ for (it = visitors_.begin(); it != visitors_.end(); it++) {
+ if (*it == registered_visitor) {
+ visitors_.insert(it, new_visitor);
+ return;
+ }
+ }
+ // We reached the end of the list. The last element must be
+ // registered_visitor.
+ ASSERT(*it == registered_visitor);
+ visitors_.insert(it, new_visitor);
+}
+
+
+void Decoder::InsertVisitorAfter(DecoderVisitor* new_visitor,
+ DecoderVisitor* registered_visitor) {
+ visitors_.remove(new_visitor);
+ std::list<DecoderVisitor*>::iterator it;
+ for (it = visitors_.begin(); it != visitors_.end(); it++) {
+ if (*it == registered_visitor) {
+ it++;
+ visitors_.insert(it, new_visitor);
+ return;
+ }
+ }
+ // We reached the end of the list. The last element must be
+ // registered_visitor.
+ ASSERT(*it == registered_visitor);
+ visitors_.push_back(new_visitor);
+}
+
+
+void Decoder::RemoveVisitor(DecoderVisitor* visitor) {
+ visitors_.remove(visitor);
+}
+
+
+void Decoder::DecodePCRelAddressing(Instruction* instr) {
+ ASSERT(instr->Bits(27, 24) == 0x0);
+ // We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level
+ // decode.
+ ASSERT(instr->Bit(28) == 0x1);
+ VisitPCRelAddressing(instr);
+}
+
+
+void Decoder::DecodeBranchSystemException(Instruction* instr) {
+ ASSERT((instr->Bits(27, 24) == 0x4) ||
+ (instr->Bits(27, 24) == 0x5) ||
+ (instr->Bits(27, 24) == 0x6) ||
+ (instr->Bits(27, 24) == 0x7) );
+
+ switch (instr->Bits(31, 29)) {
+ case 0:
+ case 4: {
+ VisitUnconditionalBranch(instr);
+ break;
+ }
+ case 1:
+ case 5: {
+ if (instr->Bit(25) == 0) {
+ VisitCompareBranch(instr);
+ } else {
+ VisitTestBranch(instr);
+ }
+ break;
+ }
+ case 2: {
+ if (instr->Bit(25) == 0) {
+ if ((instr->Bit(24) == 0x1) ||
+ (instr->Mask(0x01000010) == 0x00000010)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitConditionalBranch(instr);
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ break;
+ }
+ case 6: {
+ if (instr->Bit(25) == 0) {
+ if (instr->Bit(24) == 0) {
+ if ((instr->Bits(4, 2) != 0) ||
+ (instr->Mask(0x00E0001D) == 0x00200001) ||
+ (instr->Mask(0x00E0001D) == 0x00400001) ||
+ (instr->Mask(0x00E0001E) == 0x00200002) ||
+ (instr->Mask(0x00E0001E) == 0x00400002) ||
+ (instr->Mask(0x00E0001C) == 0x00600000) ||
+ (instr->Mask(0x00E0001C) == 0x00800000) ||
+ (instr->Mask(0x00E0001F) == 0x00A00000) ||
+ (instr->Mask(0x00C0001C) == 0x00C00000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitException(instr);
+ }
+ } else {
+ if (instr->Bits(23, 22) == 0) {
+ const Instr masked_003FF0E0 = instr->Mask(0x003FF0E0);
+ if ((instr->Bits(21, 19) == 0x4) ||
+ (masked_003FF0E0 == 0x00033000) ||
+ (masked_003FF0E0 == 0x003FF020) ||
+ (masked_003FF0E0 == 0x003FF060) ||
+ (masked_003FF0E0 == 0x003FF0E0) ||
+ (instr->Mask(0x00388000) == 0x00008000) ||
+ (instr->Mask(0x0038E000) == 0x00000000) ||
+ (instr->Mask(0x0039E000) == 0x00002000) ||
+ (instr->Mask(0x003AE000) == 0x00002000) ||
+ (instr->Mask(0x003CE000) == 0x00042000) ||
+ (instr->Mask(0x003FFFC0) == 0x000320C0) ||
+ (instr->Mask(0x003FF100) == 0x00032100) ||
+ (instr->Mask(0x003FF200) == 0x00032200) ||
+ (instr->Mask(0x003FF400) == 0x00032400) ||
+ (instr->Mask(0x003FF800) == 0x00032800) ||
+ (instr->Mask(0x0038F000) == 0x00005000) ||
+ (instr->Mask(0x0038E000) == 0x00006000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitSystem(instr);
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ } else {
+ if ((instr->Bit(24) == 0x1) ||
+ (instr->Bits(20, 16) != 0x1F) ||
+ (instr->Bits(15, 10) != 0) ||
+ (instr->Bits(4, 0) != 0) ||
+ (instr->Bits(24, 21) == 0x3) ||
+ (instr->Bits(24, 22) == 0x3)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitUnconditionalBranchToRegister(instr);
+ }
+ }
+ break;
+ }
+ case 3:
+ case 7: {
+ VisitUnallocated(instr);
+ break;
+ }
+ }
+}
+
+
+void Decoder::DecodeLoadStore(Instruction* instr) {
+ ASSERT((instr->Bits(27, 24) == 0x8) ||
+ (instr->Bits(27, 24) == 0x9) ||
+ (instr->Bits(27, 24) == 0xC) ||
+ (instr->Bits(27, 24) == 0xD) );
+
+ if (instr->Bit(24) == 0) {
+ if (instr->Bit(28) == 0) {
+ if (instr->Bit(29) == 0) {
+ if (instr->Bit(26) == 0) {
+ // TODO: VisitLoadStoreExclusive.
+ VisitUnimplemented(instr);
+ } else {
+ DecodeAdvSIMDLoadStore(instr);
+ }
+ } else {
+ if ((instr->Bits(31, 30) == 0x3) ||
+ (instr->Mask(0xC4400000) == 0x40000000)) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(23) == 0) {
+ if (instr->Mask(0xC4400000) == 0xC0400000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadStorePairNonTemporal(instr);
+ }
+ } else {
+ VisitLoadStorePairPostIndex(instr);
+ }
+ }
+ }
+ } else {
+ if (instr->Bit(29) == 0) {
+ if (instr->Mask(0xC4000000) == 0xC4000000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadLiteral(instr);
+ }
+ } else {
+ if ((instr->Mask(0x84C00000) == 0x80C00000) ||
+ (instr->Mask(0x44800000) == 0x44800000) ||
+ (instr->Mask(0x84800000) == 0x84800000)) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(21) == 0) {
+ switch (instr->Bits(11, 10)) {
+ case 0: {
+ VisitLoadStoreUnscaledOffset(instr);
+ break;
+ }
+ case 1: {
+ if (instr->Mask(0xC4C00000) == 0xC0800000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadStorePostIndex(instr);
+ }
+ break;
+ }
+ case 2: {
+ // TODO: VisitLoadStoreRegisterOffsetUnpriv.
+ VisitUnimplemented(instr);
+ break;
+ }
+ case 3: {
+ if (instr->Mask(0xC4C00000) == 0xC0800000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadStorePreIndex(instr);
+ }
+ break;
+ }
+ }
+ } else {
+ if (instr->Bits(11, 10) == 0x2) {
+ if (instr->Bit(14) == 0) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadStoreRegisterOffset(instr);
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ }
+ }
+ }
+ } else {
+ if (instr->Bit(28) == 0) {
+ if (instr->Bit(29) == 0) {
+ VisitUnallocated(instr);
+ } else {
+ if ((instr->Bits(31, 30) == 0x3) ||
+ (instr->Mask(0xC4400000) == 0x40000000)) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(23) == 0) {
+ VisitLoadStorePairOffset(instr);
+ } else {
+ VisitLoadStorePairPreIndex(instr);
+ }
+ }
+ }
+ } else {
+ if (instr->Bit(29) == 0) {
+ VisitUnallocated(instr);
+ } else {
+ if ((instr->Mask(0x84C00000) == 0x80C00000) ||
+ (instr->Mask(0x44800000) == 0x44800000) ||
+ (instr->Mask(0x84800000) == 0x84800000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadStoreUnsignedOffset(instr);
+ }
+ }
+ }
+ }
+}
+
+
+void Decoder::DecodeLogical(Instruction* instr) {
+ ASSERT(instr->Bits(27, 24) == 0x2);
+
+ if (instr->Mask(0x80400000) == 0x00400000) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(23) == 0) {
+ VisitLogicalImmediate(instr);
+ } else {
+ if (instr->Bits(30, 29) == 0x1) {
+ VisitUnallocated(instr);
+ } else {
+ VisitMoveWideImmediate(instr);
+ }
+ }
+ }
+}
+
+
+void Decoder::DecodeBitfieldExtract(Instruction* instr) {
+ ASSERT(instr->Bits(27, 24) == 0x3);
+
+ if ((instr->Mask(0x80400000) == 0x80000000) ||
+ (instr->Mask(0x80400000) == 0x00400000) ||
+ (instr->Mask(0x80008000) == 0x00008000)) {
+ VisitUnallocated(instr);
+ } else if (instr->Bit(23) == 0) {
+ if ((instr->Mask(0x80200000) == 0x00200000) ||
+ (instr->Mask(0x60000000) == 0x60000000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitBitfield(instr);
+ }
+ } else {
+ if ((instr->Mask(0x60200000) == 0x00200000) ||
+ (instr->Mask(0x60000000) != 0x00000000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitExtract(instr);
+ }
+ }
+}
+
+
+void Decoder::DecodeAddSubImmediate(Instruction* instr) {
+ ASSERT(instr->Bits(27, 24) == 0x1);
+ if (instr->Bit(23) == 1) {
+ VisitUnallocated(instr);
+ } else {
+ VisitAddSubImmediate(instr);
+ }
+}
+
+
+void Decoder::DecodeDataProcessing(Instruction* instr) {
+ ASSERT((instr->Bits(27, 24) == 0xA) ||
+ (instr->Bits(27, 24) == 0xB) );
+
+ if (instr->Bit(24) == 0) {
+ if (instr->Bit(28) == 0) {
+ if (instr->Mask(0x80008000) == 0x00008000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLogicalShifted(instr);
+ }
+ } else {
+ switch (instr->Bits(23, 21)) {
+ case 0: {
+ if (instr->Mask(0x0000FC00) != 0) {
+ VisitUnallocated(instr);
+ } else {
+ VisitAddSubWithCarry(instr);
+ }
+ break;
+ }
+ case 2: {
+ if ((instr->Bit(29) == 0) ||
+ (instr->Mask(0x00000410) != 0)) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(11) == 0) {
+ VisitConditionalCompareRegister(instr);
+ } else {
+ VisitConditionalCompareImmediate(instr);
+ }
+ }
+ break;
+ }
+ case 4: {
+ if (instr->Mask(0x20000800) != 0x00000000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitConditionalSelect(instr);
+ }
+ break;
+ }
+ case 6: {
+ if (instr->Bit(29) == 0x1) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(30) == 0) {
+ if ((instr->Bit(15) == 0x1) ||
+ (instr->Bits(15, 11) == 0) ||
+ (instr->Bits(15, 12) == 0x1) ||
+ (instr->Bits(15, 12) == 0x3) ||
+ (instr->Bits(15, 13) == 0x3) ||
+ (instr->Mask(0x8000EC00) == 0x00004C00) ||
+ (instr->Mask(0x8000E800) == 0x80004000) ||
+ (instr->Mask(0x8000E400) == 0x80004000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitDataProcessing2Source(instr);
+ }
+ } else {
+ if ((instr->Bit(13) == 1) ||
+ (instr->Bits(20, 16) != 0) ||
+ (instr->Bits(15, 14) != 0) ||
+ (instr->Mask(0xA01FFC00) == 0x00000C00) ||
+ (instr->Mask(0x201FF800) == 0x00001800)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitDataProcessing1Source(instr);
+ }
+ }
+ break;
+ }
+ }
+ case 1:
+ case 3:
+ case 5:
+ case 7: VisitUnallocated(instr); break;
+ }
+ }
+ } else {
+ if (instr->Bit(28) == 0) {
+ if (instr->Bit(21) == 0) {
+ if ((instr->Bits(23, 22) == 0x3) ||
+ (instr->Mask(0x80008000) == 0x00008000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitAddSubShifted(instr);
+ }
+ } else {
+ if ((instr->Mask(0x00C00000) != 0x00000000) ||
+ (instr->Mask(0x00001400) == 0x00001400) ||
+ (instr->Mask(0x00001800) == 0x00001800)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitAddSubExtended(instr);
+ }
+ }
+ } else {
+ if ((instr->Bit(30) == 0x1) ||
+ (instr->Bits(30, 29) == 0x1) ||
+ (instr->Mask(0xE0600000) == 0x00200000) ||
+ (instr->Mask(0xE0608000) == 0x00400000) ||
+ (instr->Mask(0x60608000) == 0x00408000) ||
+ (instr->Mask(0x60E00000) == 0x00E00000) ||
+ (instr->Mask(0x60E00000) == 0x00800000) ||
+ (instr->Mask(0x60E00000) == 0x00600000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitDataProcessing3Source(instr);
+ }
+ }
+ }
+}
+
+
+void Decoder::DecodeFP(Instruction* instr) {
+ ASSERT((instr->Bits(27, 24) == 0xE) ||
+ (instr->Bits(27, 24) == 0xF) );
+
+ if (instr->Bit(28) == 0) {
+ DecodeAdvSIMDDataProcessing(instr);
+ } else {
+ if (instr->Bit(29) == 1) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bits(31, 30) == 0x3) {
+ VisitUnallocated(instr);
+ } else if (instr->Bits(31, 30) == 0x1) {
+ DecodeAdvSIMDDataProcessing(instr);
+ } else {
+ if (instr->Bit(24) == 0) {
+ if (instr->Bit(21) == 0) {
+ if ((instr->Bit(23) == 1) ||
+ (instr->Bit(18) == 1) ||
+ (instr->Mask(0x80008000) == 0x00000000) ||
+ (instr->Mask(0x000E0000) == 0x00000000) ||
+ (instr->Mask(0x000E0000) == 0x000A0000) ||
+ (instr->Mask(0x00160000) == 0x00000000) ||
+ (instr->Mask(0x00160000) == 0x00120000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPFixedPointConvert(instr);
+ }
+ } else {
+ if (instr->Bits(15, 10) == 32) {
+ VisitUnallocated(instr);
+ } else if (instr->Bits(15, 10) == 0) {
+ if ((instr->Bits(23, 22) == 0x3) ||
+ (instr->Mask(0x000E0000) == 0x000A0000) ||
+ (instr->Mask(0x000E0000) == 0x000C0000) ||
+ (instr->Mask(0x00160000) == 0x00120000) ||
+ (instr->Mask(0x00160000) == 0x00140000) ||
+ (instr->Mask(0x20C40000) == 0x00800000) ||
+ (instr->Mask(0x20C60000) == 0x00840000) ||
+ (instr->Mask(0xA0C60000) == 0x80060000) ||
+ (instr->Mask(0xA0C60000) == 0x00860000) ||
+ (instr->Mask(0xA0C60000) == 0x00460000) ||
+ (instr->Mask(0xA0CE0000) == 0x80860000) ||
+ (instr->Mask(0xA0CE0000) == 0x804E0000) ||
+ (instr->Mask(0xA0CE0000) == 0x000E0000) ||
+ (instr->Mask(0xA0D60000) == 0x00160000) ||
+ (instr->Mask(0xA0D60000) == 0x80560000) ||
+ (instr->Mask(0xA0D60000) == 0x80960000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPIntegerConvert(instr);
+ }
+ } else if (instr->Bits(14, 10) == 16) {
+ const Instr masked_A0DF8000 = instr->Mask(0xA0DF8000);
+ if ((instr->Mask(0x80180000) != 0) ||
+ (masked_A0DF8000 == 0x00020000) ||
+ (masked_A0DF8000 == 0x00030000) ||
+ (masked_A0DF8000 == 0x00068000) ||
+ (masked_A0DF8000 == 0x00428000) ||
+ (masked_A0DF8000 == 0x00430000) ||
+ (masked_A0DF8000 == 0x00468000) ||
+ (instr->Mask(0xA0D80000) == 0x00800000) ||
+ (instr->Mask(0xA0DE0000) == 0x00C00000) ||
+ (instr->Mask(0xA0DF0000) == 0x00C30000) ||
+ (instr->Mask(0xA0DC0000) == 0x00C40000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPDataProcessing1Source(instr);
+ }
+ } else if (instr->Bits(13, 10) == 8) {
+ if ((instr->Bits(15, 14) != 0) ||
+ (instr->Bits(2, 0) != 0) ||
+ (instr->Mask(0x80800000) != 0x00000000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPCompare(instr);
+ }
+ } else if (instr->Bits(12, 10) == 4) {
+ if ((instr->Bits(9, 5) != 0) ||
+ (instr->Mask(0x80800000) != 0x00000000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPImmediate(instr);
+ }
+ } else {
+ if (instr->Mask(0x80800000) != 0x00000000) {
+ VisitUnallocated(instr);
+ } else {
+ switch (instr->Bits(11, 10)) {
+ case 1: {
+ VisitFPConditionalCompare(instr);
+ break;
+ }
+ case 2: {
+ if ((instr->Bits(15, 14) == 0x3) ||
+ (instr->Mask(0x00009000) == 0x00009000) ||
+ (instr->Mask(0x0000A000) == 0x0000A000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPDataProcessing2Source(instr);
+ }
+ break;
+ }
+ case 3: {
+ VisitFPConditionalSelect(instr);
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ }
+ }
+ }
+ } else {
+ // Bit 30 == 1 has been handled earlier.
+ ASSERT(instr->Bit(30) == 0);
+ if (instr->Mask(0xA0800000) != 0) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPDataProcessing3Source(instr);
+ }
+ }
+ }
+ }
+ }
+}
+
+
+void Decoder::DecodeAdvSIMDLoadStore(Instruction* instr) {
+ // TODO: Implement Advanced SIMD load/store instruction decode.
+ ASSERT(instr->Bits(29, 25) == 0x6);
+ VisitUnimplemented(instr);
+}
+
+
+void Decoder::DecodeAdvSIMDDataProcessing(Instruction* instr) {
+ // TODO: Implement Advanced SIMD data processing instruction decode.
+ ASSERT(instr->Bits(27, 25) == 0x7);
+ VisitUnimplemented(instr);
+}
+
+
+#define DEFINE_VISITOR_CALLERS(A) \
+ void Decoder::Visit##A(Instruction *instr) { \
+ ASSERT(instr->Mask(A##FMask) == A##Fixed); \
+ std::list<DecoderVisitor*>::iterator it; \
+ for (it = visitors_.begin(); it != visitors_.end(); it++) { \
+ (*it)->Visit##A(instr); \
+ } \
+ }
+VISITOR_LIST(DEFINE_VISITOR_CALLERS)
+#undef DEFINE_VISITOR_CALLERS
+} // namespace vixl
new file mode 100644
@@ -0,0 +1,198 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_DECODER_A64_H_
+#define VIXL_A64_DECODER_A64_H_
+
+#include <list>
+
+#include "globals.h"
+#include "a64/instructions-a64.h"
+
+
+// List macro containing all visitors needed by the decoder class.
+
+#define VISITOR_LIST(V) \
+ V(PCRelAddressing) \
+ V(AddSubImmediate) \
+ V(LogicalImmediate) \
+ V(MoveWideImmediate) \
+ V(Bitfield) \
+ V(Extract) \
+ V(UnconditionalBranch) \
+ V(UnconditionalBranchToRegister) \
+ V(CompareBranch) \
+ V(TestBranch) \
+ V(ConditionalBranch) \
+ V(System) \
+ V(Exception) \
+ V(LoadStorePairPostIndex) \
+ V(LoadStorePairOffset) \
+ V(LoadStorePairPreIndex) \
+ V(LoadStorePairNonTemporal) \
+ V(LoadLiteral) \
+ V(LoadStoreUnscaledOffset) \
+ V(LoadStorePostIndex) \
+ V(LoadStorePreIndex) \
+ V(LoadStoreRegisterOffset) \
+ V(LoadStoreUnsignedOffset) \
+ V(LogicalShifted) \
+ V(AddSubShifted) \
+ V(AddSubExtended) \
+ V(AddSubWithCarry) \
+ V(ConditionalCompareRegister) \
+ V(ConditionalCompareImmediate) \
+ V(ConditionalSelect) \
+ V(DataProcessing1Source) \
+ V(DataProcessing2Source) \
+ V(DataProcessing3Source) \
+ V(FPCompare) \
+ V(FPConditionalCompare) \
+ V(FPConditionalSelect) \
+ V(FPImmediate) \
+ V(FPDataProcessing1Source) \
+ V(FPDataProcessing2Source) \
+ V(FPDataProcessing3Source) \
+ V(FPIntegerConvert) \
+ V(FPFixedPointConvert) \
+ V(Unallocated) \
+ V(Unimplemented)
+
+namespace vixl {
+
+// The Visitor interface. Disassembler and simulator (and other tools)
+// must provide implementations for all of these functions.
+class DecoderVisitor {
+ public:
+ #define DECLARE(A) virtual void Visit##A(Instruction* instr) = 0;
+ VISITOR_LIST(DECLARE)
+ #undef DECLARE
+
+ virtual ~DecoderVisitor() {}
+
+ private:
+ // Visitors are registered in a list.
+ std::list<DecoderVisitor*> visitors_;
+
+ friend class Decoder;
+};
+
+
+class Decoder: public DecoderVisitor {
+ public:
+ Decoder() {}
+
+ // Top-level instruction decoder function. Decodes an instruction and calls
+ // the visitor functions registered with the Decoder class.
+ void Decode(Instruction *instr);
+
+ // Register a new visitor class with the decoder.
+ // Decode() will call the corresponding visitor method from all registered
+ // visitor classes when decoding reaches the leaf node of the instruction
+ // decode tree.
+ // Visitors are called in the order.
+ // A visitor can only be registered once.
+ // Registering an already registered visitor will update its position.
+ //
+ // d.AppendVisitor(V1);
+ // d.AppendVisitor(V2);
+ // d.PrependVisitor(V2); // Move V2 at the start of the list.
+ // d.InsertVisitorBefore(V3, V2);
+ // d.AppendVisitor(V4);
+ // d.AppendVisitor(V4); // No effect.
+ //
+ // d.Decode(i);
+ //
+ // will call in order visitor methods in V3, V2, V1, V4.
+ void AppendVisitor(DecoderVisitor* visitor);
+ void PrependVisitor(DecoderVisitor* visitor);
+ void InsertVisitorBefore(DecoderVisitor* new_visitor,
+ DecoderVisitor* registered_visitor);
+ void InsertVisitorAfter(DecoderVisitor* new_visitor,
+ DecoderVisitor* registered_visitor);
+
+ // Remove a previously registered visitor class from the list of visitors
+ // stored by the decoder.
+ void RemoveVisitor(DecoderVisitor* visitor);
+
+ #define DECLARE(A) void Visit##A(Instruction* instr);
+ VISITOR_LIST(DECLARE)
+ #undef DECLARE
+
+ private:
+ // Decode the PC relative addressing instruction, and call the corresponding
+ // visitors.
+ // On entry, instruction bits 27:24 = 0x0.
+ void DecodePCRelAddressing(Instruction* instr);
+
+ // Decode the add/subtract immediate instruction, and call the correspoding
+ // visitors.
+ // On entry, instruction bits 27:24 = 0x1.
+ void DecodeAddSubImmediate(Instruction* instr);
+
+ // Decode the branch, system command, and exception generation parts of
+ // the instruction tree, and call the corresponding visitors.
+ // On entry, instruction bits 27:24 = {0x4, 0x5, 0x6, 0x7}.
+ void DecodeBranchSystemException(Instruction* instr);
+
+ // Decode the load and store parts of the instruction tree, and call
+ // the corresponding visitors.
+ // On entry, instruction bits 27:24 = {0x8, 0x9, 0xC, 0xD}.
+ void DecodeLoadStore(Instruction* instr);
+
+ // Decode the logical immediate and move wide immediate parts of the
+ // instruction tree, and call the corresponding visitors.
+ // On entry, instruction bits 27:24 = 0x2.
+ void DecodeLogical(Instruction* instr);
+
+ // Decode the bitfield and extraction parts of the instruction tree,
+ // and call the corresponding visitors.
+ // On entry, instruction bits 27:24 = 0x3.
+ void DecodeBitfieldExtract(Instruction* instr);
+
+ // Decode the data processing parts of the instruction tree, and call the
+ // corresponding visitors.
+ // On entry, instruction bits 27:24 = {0x1, 0xA, 0xB}.
+ void DecodeDataProcessing(Instruction* instr);
+
+ // Decode the floating point parts of the instruction tree, and call the
+ // corresponding visitors.
+ // On entry, instruction bits 27:24 = {0xE, 0xF}.
+ void DecodeFP(Instruction* instr);
+
+ // Decode the Advanced SIMD (NEON) load/store part of the instruction tree,
+ // and call the corresponding visitors.
+ // On entry, instruction bits 29:25 = 0x6.
+ void DecodeAdvSIMDLoadStore(Instruction* instr);
+
+ // Decode the Advanced SIMD (NEON) data processing part of the instruction
+ // tree, and call the corresponding visitors.
+ // On entry, instruction bits 27:25 = 0x7.
+ void DecodeAdvSIMDDataProcessing(Instruction* instr);
+};
+} // namespace vixl
+
+#endif // VIXL_A64_DECODER_A64_H_
new file mode 100644
@@ -0,0 +1,1678 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "a64/disasm-a64.h"
+
+namespace vixl {
+
+Disassembler::Disassembler() {
+ buffer_size_ = 256;
+ buffer_ = reinterpret_cast<char*>(malloc(buffer_size_));
+ buffer_pos_ = 0;
+ own_buffer_ = true;
+}
+
+
+Disassembler::Disassembler(char* text_buffer, int buffer_size) {
+ buffer_size_ = buffer_size;
+ buffer_ = text_buffer;
+ buffer_pos_ = 0;
+ own_buffer_ = false;
+}
+
+
+Disassembler::~Disassembler() {
+ if (own_buffer_) {
+ free(buffer_);
+ }
+}
+
+
+char* Disassembler::GetOutput() {
+ return buffer_;
+}
+
+
+void Disassembler::VisitAddSubImmediate(Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool stack_op = (rd_is_zr || RnIsZROrSP(instr)) &&
+ (instr->ImmAddSub() == 0) ? true : false;
+ const char *mnemonic = "";
+ const char *form = "'Rds, 'Rns, 'IAddSub";
+ const char *form_cmp = "'Rns, 'IAddSub";
+ const char *form_mov = "'Rds, 'Rns";
+
+ switch (instr->Mask(AddSubImmediateMask)) {
+ case ADD_w_imm:
+ case ADD_x_imm: {
+ mnemonic = "add";
+ if (stack_op) {
+ mnemonic = "mov";
+ form = form_mov;
+ }
+ break;
+ }
+ case ADDS_w_imm:
+ case ADDS_x_imm: {
+ mnemonic = "adds";
+ if (rd_is_zr) {
+ mnemonic = "cmn";
+ form = form_cmp;
+ }
+ break;
+ }
+ case SUB_w_imm:
+ case SUB_x_imm: mnemonic = "sub"; break;
+ case SUBS_w_imm:
+ case SUBS_x_imm: {
+ mnemonic = "subs";
+ if (rd_is_zr) {
+ mnemonic = "cmp";
+ form = form_cmp;
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitAddSubShifted(Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm'HDP";
+ const char *form_cmp = "'Rn, 'Rm'HDP";
+ const char *form_neg = "'Rd, 'Rm'HDP";
+
+ switch (instr->Mask(AddSubShiftedMask)) {
+ case ADD_w_shift:
+ case ADD_x_shift: mnemonic = "add"; break;
+ case ADDS_w_shift:
+ case ADDS_x_shift: {
+ mnemonic = "adds";
+ if (rd_is_zr) {
+ mnemonic = "cmn";
+ form = form_cmp;
+ }
+ break;
+ }
+ case SUB_w_shift:
+ case SUB_x_shift: {
+ mnemonic = "sub";
+ if (rn_is_zr) {
+ mnemonic = "neg";
+ form = form_neg;
+ }
+ break;
+ }
+ case SUBS_w_shift:
+ case SUBS_x_shift: {
+ mnemonic = "subs";
+ if (rd_is_zr) {
+ mnemonic = "cmp";
+ form = form_cmp;
+ } else if (rn_is_zr) {
+ mnemonic = "negs";
+ form = form_neg;
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitAddSubExtended(Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ const char *mnemonic = "";
+ Extend mode = static_cast<Extend>(instr->ExtendMode());
+ const char *form = ((mode == UXTX) || (mode == SXTX)) ?
+ "'Rds, 'Rns, 'Xm'Ext" : "'Rds, 'Rns, 'Wm'Ext";
+ const char *form_cmp = ((mode == UXTX) || (mode == SXTX)) ?
+ "'Rns, 'Xm'Ext" : "'Rns, 'Wm'Ext";
+
+ switch (instr->Mask(AddSubExtendedMask)) {
+ case ADD_w_ext:
+ case ADD_x_ext: mnemonic = "add"; break;
+ case ADDS_w_ext:
+ case ADDS_x_ext: {
+ mnemonic = "adds";
+ if (rd_is_zr) {
+ mnemonic = "cmn";
+ form = form_cmp;
+ }
+ break;
+ }
+ case SUB_w_ext:
+ case SUB_x_ext: mnemonic = "sub"; break;
+ case SUBS_w_ext:
+ case SUBS_x_ext: {
+ mnemonic = "subs";
+ if (rd_is_zr) {
+ mnemonic = "cmp";
+ form = form_cmp;
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitAddSubWithCarry(Instruction* instr) {
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm";
+ const char *form_neg = "'Rd, 'Rm";
+
+ switch (instr->Mask(AddSubWithCarryMask)) {
+ case ADC_w:
+ case ADC_x: mnemonic = "adc"; break;
+ case ADCS_w:
+ case ADCS_x: mnemonic = "adcs"; break;
+ case SBC_w:
+ case SBC_x: {
+ mnemonic = "sbc";
+ if (rn_is_zr) {
+ mnemonic = "ngc";
+ form = form_neg;
+ }
+ break;
+ }
+ case SBCS_w:
+ case SBCS_x: {
+ mnemonic = "sbcs";
+ if (rn_is_zr) {
+ mnemonic = "ngcs";
+ form = form_neg;
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLogicalImmediate(Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rds, 'Rn, 'ITri";
+
+ if (instr->ImmLogical() == 0) {
+ // The immediate encoded in the instruction is not in the expected format.
+ Format(instr, "unallocated", "(LogicalImmediate)");
+ return;
+ }
+
+ switch (instr->Mask(LogicalImmediateMask)) {
+ case AND_w_imm:
+ case AND_x_imm: mnemonic = "and"; break;
+ case ORR_w_imm:
+ case ORR_x_imm: {
+ mnemonic = "orr";
+ unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize
+ : kWRegSize;
+ if (rn_is_zr && !IsMovzMovnImm(reg_size, instr->ImmLogical())) {
+ mnemonic = "mov";
+ form = "'Rds, 'ITri";
+ }
+ break;
+ }
+ case EOR_w_imm:
+ case EOR_x_imm: mnemonic = "eor"; break;
+ case ANDS_w_imm:
+ case ANDS_x_imm: {
+ mnemonic = "ands";
+ if (rd_is_zr) {
+ mnemonic = "tst";
+ form = "'Rn, 'ITri";
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) {
+ ASSERT((reg_size == kXRegSize) ||
+ ((reg_size == kWRegSize) && (value <= 0xffffffff)));
+
+ // Test for movz: 16 bits set at positions 0, 16, 32 or 48.
+ if (((value & 0xffffffffffff0000UL) == 0UL) ||
+ ((value & 0xffffffff0000ffffUL) == 0UL) ||
+ ((value & 0xffff0000ffffffffUL) == 0UL) ||
+ ((value & 0x0000ffffffffffffUL) == 0UL)) {
+ return true;
+ }
+
+ // Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48).
+ if ((reg_size == kXRegSize) &&
+ (((value & 0xffffffffffff0000UL) == 0xffffffffffff0000UL) ||
+ ((value & 0xffffffff0000ffffUL) == 0xffffffff0000ffffUL) ||
+ ((value & 0xffff0000ffffffffUL) == 0xffff0000ffffffffUL) ||
+ ((value & 0x0000ffffffffffffUL) == 0x0000ffffffffffffUL))) {
+ return true;
+ }
+ if ((reg_size == kWRegSize) &&
+ (((value & 0xffff0000) == 0xffff0000) ||
+ ((value & 0x0000ffff) == 0x0000ffff))) {
+ return true;
+ }
+ return false;
+}
+
+
+void Disassembler::VisitLogicalShifted(Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm'HLo";
+
+ switch (instr->Mask(LogicalShiftedMask)) {
+ case AND_w:
+ case AND_x: mnemonic = "and"; break;
+ case BIC_w:
+ case BIC_x: mnemonic = "bic"; break;
+ case EOR_w:
+ case EOR_x: mnemonic = "eor"; break;
+ case EON_w:
+ case EON_x: mnemonic = "eon"; break;
+ case BICS_w:
+ case BICS_x: mnemonic = "bics"; break;
+ case ANDS_w:
+ case ANDS_x: {
+ mnemonic = "ands";
+ if (rd_is_zr) {
+ mnemonic = "tst";
+ form = "'Rn, 'Rm'HLo";
+ }
+ break;
+ }
+ case ORR_w:
+ case ORR_x: {
+ mnemonic = "orr";
+ if (rn_is_zr && (instr->ImmDPShift() == 0) && (instr->ShiftDP() == LSL)) {
+ mnemonic = "mov";
+ form = "'Rd, 'Rm";
+ }
+ break;
+ }
+ case ORN_w:
+ case ORN_x: {
+ mnemonic = "orn";
+ if (rn_is_zr) {
+ mnemonic = "mvn";
+ form = "'Rd, 'Rm'HLo";
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitConditionalCompareRegister(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rn, 'Rm, 'INzcv, 'Cond";
+
+ switch (instr->Mask(ConditionalCompareRegisterMask)) {
+ case CCMN_w:
+ case CCMN_x: mnemonic = "ccmn"; break;
+ case CCMP_w:
+ case CCMP_x: mnemonic = "ccmp"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitConditionalCompareImmediate(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rn, 'IP, 'INzcv, 'Cond";
+
+ switch (instr->Mask(ConditionalCompareImmediateMask)) {
+ case CCMN_w_imm:
+ case CCMN_x_imm: mnemonic = "ccmn"; break;
+ case CCMP_w_imm:
+ case CCMP_x_imm: mnemonic = "ccmp"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitConditionalSelect(Instruction* instr) {
+ bool rnm_is_zr = (RnIsZROrSP(instr) && RmIsZROrSP(instr));
+ bool rn_is_rm = (instr->Rn() == instr->Rm());
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm, 'Cond";
+ const char *form_test = "'Rd, 'CInv";
+ const char *form_update = "'Rd, 'Rn, 'CInv";
+
+ Condition cond = static_cast<Condition>(instr->Condition());
+ bool invertible_cond = (cond != al) && (cond != nv);
+
+ switch (instr->Mask(ConditionalSelectMask)) {
+ case CSEL_w:
+ case CSEL_x: mnemonic = "csel"; break;
+ case CSINC_w:
+ case CSINC_x: {
+ mnemonic = "csinc";
+ if (rnm_is_zr && invertible_cond) {
+ mnemonic = "cset";
+ form = form_test;
+ } else if (rn_is_rm && invertible_cond) {
+ mnemonic = "cinc";
+ form = form_update;
+ }
+ break;
+ }
+ case CSINV_w:
+ case CSINV_x: {
+ mnemonic = "csinv";
+ if (rnm_is_zr && invertible_cond) {
+ mnemonic = "csetm";
+ form = form_test;
+ } else if (rn_is_rm && invertible_cond) {
+ mnemonic = "cinv";
+ form = form_update;
+ }
+ break;
+ }
+ case CSNEG_w:
+ case CSNEG_x: {
+ mnemonic = "csneg";
+ if (rn_is_rm && invertible_cond) {
+ mnemonic = "cneg";
+ form = form_update;
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitBitfield(Instruction* instr) {
+ unsigned s = instr->ImmS();
+ unsigned r = instr->ImmR();
+ unsigned rd_size_minus_1 =
+ ((instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize) - 1;
+ const char *mnemonic = "";
+ const char *form = "";
+ const char *form_shift_right = "'Rd, 'Rn, 'IBr";
+ const char *form_extend = "'Rd, 'Wn";
+ const char *form_bfiz = "'Rd, 'Rn, 'IBZ-r, 'IBs+1";
+ const char *form_bfx = "'Rd, 'Rn, 'IBr, 'IBs-r+1";
+ const char *form_lsl = "'Rd, 'Rn, 'IBZ-r";
+
+ switch (instr->Mask(BitfieldMask)) {
+ case SBFM_w:
+ case SBFM_x: {
+ mnemonic = "sbfx";
+ form = form_bfx;
+ if (r == 0) {
+ form = form_extend;
+ if (s == 7) {
+ mnemonic = "sxtb";
+ } else if (s == 15) {
+ mnemonic = "sxth";
+ } else if ((s == 31) && (instr->SixtyFourBits() == 1)) {
+ mnemonic = "sxtw";
+ } else {
+ form = form_bfx;
+ }
+ } else if (s == rd_size_minus_1) {
+ mnemonic = "asr";
+ form = form_shift_right;
+ } else if (s < r) {
+ mnemonic = "sbfiz";
+ form = form_bfiz;
+ }
+ break;
+ }
+ case UBFM_w:
+ case UBFM_x: {
+ mnemonic = "ubfx";
+ form = form_bfx;
+ if (r == 0) {
+ form = form_extend;
+ if (s == 7) {
+ mnemonic = "uxtb";
+ } else if (s == 15) {
+ mnemonic = "uxth";
+ } else {
+ form = form_bfx;
+ }
+ }
+ if (s == rd_size_minus_1) {
+ mnemonic = "lsr";
+ form = form_shift_right;
+ } else if (r == s + 1) {
+ mnemonic = "lsl";
+ form = form_lsl;
+ } else if (s < r) {
+ mnemonic = "ubfiz";
+ form = form_bfiz;
+ }
+ break;
+ }
+ case BFM_w:
+ case BFM_x: {
+ mnemonic = "bfxil";
+ form = form_bfx;
+ if (s < r) {
+ mnemonic = "bfi";
+ form = form_bfiz;
+ }
+ }
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitExtract(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm, 'IExtract";
+
+ switch (instr->Mask(ExtractMask)) {
+ case EXTR_w:
+ case EXTR_x: {
+ if (instr->Rn() == instr->Rm()) {
+ mnemonic = "ror";
+ form = "'Rd, 'Rn, 'IExtract";
+ } else {
+ mnemonic = "extr";
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitPCRelAddressing(Instruction* instr) {
+ switch (instr->Mask(PCRelAddressingMask)) {
+ case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break;
+ // ADRP is not implemented.
+ default: Format(instr, "unimplemented", "(PCRelAddressing)");
+ }
+}
+
+
+void Disassembler::VisitConditionalBranch(Instruction* instr) {
+ switch (instr->Mask(ConditionalBranchMask)) {
+ case B_cond: Format(instr, "b.'CBrn", "'BImmCond"); break;
+ default: UNREACHABLE();
+ }
+}
+
+
+void Disassembler::VisitUnconditionalBranchToRegister(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Xn";
+
+ switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
+ case BR: mnemonic = "br"; break;
+ case BLR: mnemonic = "blr"; break;
+ case RET: {
+ mnemonic = "ret";
+ if (instr->Rn() == kLinkRegCode) {
+ form = NULL;
+ }
+ break;
+ }
+ default: form = "(UnconditionalBranchToRegister)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitUnconditionalBranch(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'BImmUncn";
+
+ switch (instr->Mask(UnconditionalBranchMask)) {
+ case B: mnemonic = "b"; break;
+ case BL: mnemonic = "bl"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitDataProcessing1Source(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn";
+
+ switch (instr->Mask(DataProcessing1SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_w: \
+ case A##_x: mnemonic = B; break;
+ FORMAT(RBIT, "rbit");
+ FORMAT(REV16, "rev16");
+ FORMAT(REV, "rev");
+ FORMAT(CLZ, "clz");
+ FORMAT(CLS, "cls");
+ #undef FORMAT
+ case REV32_x: mnemonic = "rev32"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitDataProcessing2Source(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Rd, 'Rn, 'Rm";
+
+ switch (instr->Mask(DataProcessing2SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_w: \
+ case A##_x: mnemonic = B; break;
+ FORMAT(UDIV, "udiv");
+ FORMAT(SDIV, "sdiv");
+ FORMAT(LSLV, "lsl");
+ FORMAT(LSRV, "lsr");
+ FORMAT(ASRV, "asr");
+ FORMAT(RORV, "ror");
+ #undef FORMAT
+ default: form = "(DataProcessing2Source)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitDataProcessing3Source(Instruction* instr) {
+ bool ra_is_zr = RaIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Xd, 'Wn, 'Wm, 'Xa";
+ const char *form_rrr = "'Rd, 'Rn, 'Rm";
+ const char *form_rrrr = "'Rd, 'Rn, 'Rm, 'Ra";
+ const char *form_xww = "'Xd, 'Wn, 'Wm";
+ const char *form_xxx = "'Xd, 'Xn, 'Xm";
+
+ switch (instr->Mask(DataProcessing3SourceMask)) {
+ case MADD_w:
+ case MADD_x: {
+ mnemonic = "madd";
+ form = form_rrrr;
+ if (ra_is_zr) {
+ mnemonic = "mul";
+ form = form_rrr;
+ }
+ break;
+ }
+ case MSUB_w:
+ case MSUB_x: {
+ mnemonic = "msub";
+ form = form_rrrr;
+ if (ra_is_zr) {
+ mnemonic = "mneg";
+ form = form_rrr;
+ }
+ break;
+ }
+ case SMADDL_x: {
+ mnemonic = "smaddl";
+ if (ra_is_zr) {
+ mnemonic = "smull";
+ form = form_xww;
+ }
+ break;
+ }
+ case SMSUBL_x: {
+ mnemonic = "smsubl";
+ if (ra_is_zr) {
+ mnemonic = "smnegl";
+ form = form_xww;
+ }
+ break;
+ }
+ case UMADDL_x: {
+ mnemonic = "umaddl";
+ if (ra_is_zr) {
+ mnemonic = "umull";
+ form = form_xww;
+ }
+ break;
+ }
+ case UMSUBL_x: {
+ mnemonic = "umsubl";
+ if (ra_is_zr) {
+ mnemonic = "umnegl";
+ form = form_xww;
+ }
+ break;
+ }
+ case SMULH_x: {
+ mnemonic = "smulh";
+ form = form_xxx;
+ break;
+ }
+ case UMULH_x: {
+ mnemonic = "umulh";
+ form = form_xxx;
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitCompareBranch(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rt, 'BImmCmpa";
+
+ switch (instr->Mask(CompareBranchMask)) {
+ case CBZ_w:
+ case CBZ_x: mnemonic = "cbz"; break;
+ case CBNZ_w:
+ case CBNZ_x: mnemonic = "cbnz"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitTestBranch(Instruction* instr) {
+ const char *mnemonic = "";
+ // If the top bit of the immediate is clear, the tested register is
+ // disassembled as Wt, otherwise Xt. As the top bit of the immediate is
+ // encoded in bit 31 of the instruction, we can reuse the Rt form, which
+ // uses bit 31 (normally "sf") to choose the register size.
+ const char *form = "'Rt, 'IS, 'BImmTest";
+
+ switch (instr->Mask(TestBranchMask)) {
+ case TBZ: mnemonic = "tbz"; break;
+ case TBNZ: mnemonic = "tbnz"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitMoveWideImmediate(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'IMoveImm";
+
+ // Print the shift separately for movk, to make it clear which half word will
+ // be overwritten. Movn and movz print the computed immediate, which includes
+ // shift calculation.
+ switch (instr->Mask(MoveWideImmediateMask)) {
+ case MOVN_w:
+ case MOVN_x: mnemonic = "movn"; break;
+ case MOVZ_w:
+ case MOVZ_x: mnemonic = "movz"; break;
+ case MOVK_w:
+ case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+#define LOAD_STORE_LIST(V) \
+ V(STRB_w, "strb", "'Wt") \
+ V(STRH_w, "strh", "'Wt") \
+ V(STR_w, "str", "'Wt") \
+ V(STR_x, "str", "'Xt") \
+ V(LDRB_w, "ldrb", "'Wt") \
+ V(LDRH_w, "ldrh", "'Wt") \
+ V(LDR_w, "ldr", "'Wt") \
+ V(LDR_x, "ldr", "'Xt") \
+ V(LDRSB_x, "ldrsb", "'Xt") \
+ V(LDRSH_x, "ldrsh", "'Xt") \
+ V(LDRSW_x, "ldrsw", "'Xt") \
+ V(LDRSB_w, "ldrsb", "'Wt") \
+ V(LDRSH_w, "ldrsh", "'Wt") \
+ V(STR_s, "str", "'St") \
+ V(STR_d, "str", "'Dt") \
+ V(LDR_s, "ldr", "'St") \
+ V(LDR_d, "ldr", "'Dt")
+
+void Disassembler::VisitLoadStorePreIndex(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePreIndex)";
+
+ switch (instr->Mask(LoadStorePreIndexMask)) {
+ #define LS_PREINDEX(A, B, C) \
+ case A##_pre: mnemonic = B; form = C ", ['Xns'ILS]!"; break;
+ LOAD_STORE_LIST(LS_PREINDEX)
+ #undef LS_PREINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePostIndex(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePostIndex)";
+
+ switch (instr->Mask(LoadStorePostIndexMask)) {
+ #define LS_POSTINDEX(A, B, C) \
+ case A##_post: mnemonic = B; form = C ", ['Xns]'ILS"; break;
+ LOAD_STORE_LIST(LS_POSTINDEX)
+ #undef LS_POSTINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStoreUnsignedOffset(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStoreUnsignedOffset)";
+
+ switch (instr->Mask(LoadStoreUnsignedOffsetMask)) {
+ #define LS_UNSIGNEDOFFSET(A, B, C) \
+ case A##_unsigned: mnemonic = B; form = C ", ['Xns'ILU]"; break;
+ LOAD_STORE_LIST(LS_UNSIGNEDOFFSET)
+ #undef LS_UNSIGNEDOFFSET
+ case PRFM_unsigned: mnemonic = "prfm"; form = "'PrefOp, ['Xn'ILU]";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStoreRegisterOffset(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStoreRegisterOffset)";
+
+ switch (instr->Mask(LoadStoreRegisterOffsetMask)) {
+ #define LS_REGISTEROFFSET(A, B, C) \
+ case A##_reg: mnemonic = B; form = C ", ['Xns, 'Offsetreg]"; break;
+ LOAD_STORE_LIST(LS_REGISTEROFFSET)
+ #undef LS_REGISTEROFFSET
+ case PRFM_reg: mnemonic = "prfm"; form = "'PrefOp, ['Xns, 'Offsetreg]";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStoreUnscaledOffset(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Wt, ['Xns'ILS]";
+ const char *form_x = "'Xt, ['Xns'ILS]";
+ const char *form_s = "'St, ['Xns'ILS]";
+ const char *form_d = "'Dt, ['Xns'ILS]";
+
+ switch (instr->Mask(LoadStoreUnscaledOffsetMask)) {
+ case STURB_w: mnemonic = "sturb"; break;
+ case STURH_w: mnemonic = "sturh"; break;
+ case STUR_w: mnemonic = "stur"; break;
+ case STUR_x: mnemonic = "stur"; form = form_x; break;
+ case STUR_s: mnemonic = "stur"; form = form_s; break;
+ case STUR_d: mnemonic = "stur"; form = form_d; break;
+ case LDURB_w: mnemonic = "ldurb"; break;
+ case LDURH_w: mnemonic = "ldurh"; break;
+ case LDUR_w: mnemonic = "ldur"; break;
+ case LDUR_x: mnemonic = "ldur"; form = form_x; break;
+ case LDUR_s: mnemonic = "ldur"; form = form_s; break;
+ case LDUR_d: mnemonic = "ldur"; form = form_d; break;
+ case LDURSB_x: form = form_x; // Fall through.
+ case LDURSB_w: mnemonic = "ldursb"; break;
+ case LDURSH_x: form = form_x; // Fall through.
+ case LDURSH_w: mnemonic = "ldursh"; break;
+ case LDURSW_x: mnemonic = "ldursw"; form = form_x; break;
+ default: form = "(LoadStoreUnscaledOffset)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadLiteral(Instruction* instr) {
+ const char *mnemonic = "ldr";
+ const char *form = "(LoadLiteral)";
+
+ switch (instr->Mask(LoadLiteralMask)) {
+ case LDR_w_lit: form = "'Wt, 'ILLiteral 'LValue"; break;
+ case LDR_x_lit: form = "'Xt, 'ILLiteral 'LValue"; break;
+ case LDR_s_lit: form = "'St, 'ILLiteral 'LValue"; break;
+ case LDR_d_lit: form = "'Dt, 'ILLiteral 'LValue"; break;
+ default: mnemonic = "unimplemented";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+#define LOAD_STORE_PAIR_LIST(V) \
+ V(STP_w, "stp", "'Wt, 'Wt2", "4") \
+ V(LDP_w, "ldp", "'Wt, 'Wt2", "4") \
+ V(LDPSW_x, "ldpsw", "'Xt, 'Xt2", "4") \
+ V(STP_x, "stp", "'Xt, 'Xt2", "8") \
+ V(LDP_x, "ldp", "'Xt, 'Xt2", "8") \
+ V(STP_s, "stp", "'St, 'St2", "4") \
+ V(LDP_s, "ldp", "'St, 'St2", "4") \
+ V(STP_d, "stp", "'Dt, 'Dt2", "8") \
+ V(LDP_d, "ldp", "'Dt, 'Dt2", "8")
+
+void Disassembler::VisitLoadStorePairPostIndex(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePairPostIndex)";
+
+ switch (instr->Mask(LoadStorePairPostIndexMask)) {
+ #define LSP_POSTINDEX(A, B, C, D) \
+ case A##_post: mnemonic = B; form = C ", ['Xns]'ILP" D; break;
+ LOAD_STORE_PAIR_LIST(LSP_POSTINDEX)
+ #undef LSP_POSTINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePairPreIndex(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePairPreIndex)";
+
+ switch (instr->Mask(LoadStorePairPreIndexMask)) {
+ #define LSP_PREINDEX(A, B, C, D) \
+ case A##_pre: mnemonic = B; form = C ", ['Xns'ILP" D "]!"; break;
+ LOAD_STORE_PAIR_LIST(LSP_PREINDEX)
+ #undef LSP_PREINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePairOffset(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePairOffset)";
+
+ switch (instr->Mask(LoadStorePairOffsetMask)) {
+ #define LSP_OFFSET(A, B, C, D) \
+ case A##_off: mnemonic = B; form = C ", ['Xns'ILP" D "]"; break;
+ LOAD_STORE_PAIR_LIST(LSP_OFFSET)
+ #undef LSP_OFFSET
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePairNonTemporal(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form;
+
+ switch (instr->Mask(LoadStorePairNonTemporalMask)) {
+ case STNP_w: mnemonic = "stnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break;
+ case LDNP_w: mnemonic = "ldnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break;
+ case STNP_x: mnemonic = "stnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break;
+ case LDNP_x: mnemonic = "ldnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break;
+ case STNP_s: mnemonic = "stnp"; form = "'St, 'St2, ['Xns'ILP4]"; break;
+ case LDNP_s: mnemonic = "ldnp"; form = "'St, 'St2, ['Xns'ILP4]"; break;
+ case STNP_d: mnemonic = "stnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break;
+ case LDNP_d: mnemonic = "ldnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break;
+ default: form = "(LoadStorePairNonTemporal)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPCompare(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Fn, 'Fm";
+ const char *form_zero = "'Fn, #0.0";
+
+ switch (instr->Mask(FPCompareMask)) {
+ case FCMP_s_zero:
+ case FCMP_d_zero: form = form_zero; // Fall through.
+ case FCMP_s:
+ case FCMP_d: mnemonic = "fcmp"; break;
+ default: form = "(FPCompare)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPConditionalCompare(Instruction* instr) {
+ const char *mnemonic = "unmplemented";
+ const char *form = "'Fn, 'Fm, 'INzcv, 'Cond";
+
+ switch (instr->Mask(FPConditionalCompareMask)) {
+ case FCCMP_s:
+ case FCCMP_d: mnemonic = "fccmp"; break;
+ case FCCMPE_s:
+ case FCCMPE_d: mnemonic = "fccmpe"; break;
+ default: form = "(FPConditionalCompare)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPConditionalSelect(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Fd, 'Fn, 'Fm, 'Cond";
+
+ switch (instr->Mask(FPConditionalSelectMask)) {
+ case FCSEL_s:
+ case FCSEL_d: mnemonic = "fcsel"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPDataProcessing1Source(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Fd, 'Fn";
+
+ switch (instr->Mask(FPDataProcessing1SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_s: \
+ case A##_d: mnemonic = B; break;
+ FORMAT(FMOV, "fmov");
+ FORMAT(FABS, "fabs");
+ FORMAT(FNEG, "fneg");
+ FORMAT(FSQRT, "fsqrt");
+ FORMAT(FRINTN, "frintn");
+ FORMAT(FRINTP, "frintp");
+ FORMAT(FRINTM, "frintm");
+ FORMAT(FRINTZ, "frintz");
+ FORMAT(FRINTA, "frinta");
+ FORMAT(FRINTX, "frintx");
+ FORMAT(FRINTI, "frinti");
+ #undef FORMAT
+ case FCVT_ds: mnemonic = "fcvt"; form = "'Dd, 'Sn"; break;
+ case FCVT_sd: mnemonic = "fcvt"; form = "'Sd, 'Dn"; break;
+ default: form = "(FPDataProcessing1Source)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPDataProcessing2Source(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Fd, 'Fn, 'Fm";
+
+ switch (instr->Mask(FPDataProcessing2SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_s: \
+ case A##_d: mnemonic = B; break;
+ FORMAT(FMUL, "fmul");
+ FORMAT(FDIV, "fdiv");
+ FORMAT(FADD, "fadd");
+ FORMAT(FSUB, "fsub");
+ FORMAT(FMAX, "fmax");
+ FORMAT(FMIN, "fmin");
+ FORMAT(FMAXNM, "fmaxnm");
+ FORMAT(FMINNM, "fminnm");
+ FORMAT(FNMUL, "fnmul");
+ #undef FORMAT
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPDataProcessing3Source(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Fd, 'Fn, 'Fm, 'Fa";
+
+ switch (instr->Mask(FPDataProcessing3SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_s: \
+ case A##_d: mnemonic = B; break;
+ FORMAT(FMADD, "fmadd");
+ FORMAT(FMSUB, "fmsub");
+ FORMAT(FNMADD, "fnmadd");
+ FORMAT(FNMSUB, "fnmsub");
+ #undef FORMAT
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPImmediate(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "(FPImmediate)";
+
+ switch (instr->Mask(FPImmediateMask)) {
+ case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break;
+ case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPIntegerConvert(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(FPIntegerConvert)";
+ const char *form_rf = "'Rd, 'Fn";
+ const char *form_fr = "'Fd, 'Rn";
+
+ switch (instr->Mask(FPIntegerConvertMask)) {
+ case FMOV_ws:
+ case FMOV_xd: mnemonic = "fmov"; form = form_rf; break;
+ case FMOV_sw:
+ case FMOV_dx: mnemonic = "fmov"; form = form_fr; break;
+ case FCVTMS_ws:
+ case FCVTMS_xs:
+ case FCVTMS_wd:
+ case FCVTMS_xd: mnemonic = "fcvtms"; form = form_rf; break;
+ case FCVTMU_ws:
+ case FCVTMU_xs:
+ case FCVTMU_wd:
+ case FCVTMU_xd: mnemonic = "fcvtmu"; form = form_rf; break;
+ case FCVTNS_ws:
+ case FCVTNS_xs:
+ case FCVTNS_wd:
+ case FCVTNS_xd: mnemonic = "fcvtns"; form = form_rf; break;
+ case FCVTNU_ws:
+ case FCVTNU_xs:
+ case FCVTNU_wd:
+ case FCVTNU_xd: mnemonic = "fcvtnu"; form = form_rf; break;
+ case FCVTZU_xd:
+ case FCVTZU_ws:
+ case FCVTZU_wd:
+ case FCVTZU_xs: mnemonic = "fcvtzu"; form = form_rf; break;
+ case FCVTZS_xd:
+ case FCVTZS_wd:
+ case FCVTZS_xs:
+ case FCVTZS_ws: mnemonic = "fcvtzs"; form = form_rf; break;
+ case SCVTF_sw:
+ case SCVTF_sx:
+ case SCVTF_dw:
+ case SCVTF_dx: mnemonic = "scvtf"; form = form_fr; break;
+ case UCVTF_sw:
+ case UCVTF_sx:
+ case UCVTF_dw:
+ case UCVTF_dx: mnemonic = "ucvtf"; form = form_fr; break;
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPFixedPointConvert(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Fn, 'IFPFBits";
+ const char *form_fr = "'Fd, 'Rn, 'IFPFBits";
+
+ switch (instr->Mask(FPFixedPointConvertMask)) {
+ case FCVTZS_ws_fixed:
+ case FCVTZS_xs_fixed:
+ case FCVTZS_wd_fixed:
+ case FCVTZS_xd_fixed: mnemonic = "fcvtzs"; break;
+ case FCVTZU_ws_fixed:
+ case FCVTZU_xs_fixed:
+ case FCVTZU_wd_fixed:
+ case FCVTZU_xd_fixed: mnemonic = "fcvtzu"; break;
+ case SCVTF_sw_fixed:
+ case SCVTF_sx_fixed:
+ case SCVTF_dw_fixed:
+ case SCVTF_dx_fixed: mnemonic = "scvtf"; form = form_fr; break;
+ case UCVTF_sw_fixed:
+ case UCVTF_sx_fixed:
+ case UCVTF_dw_fixed:
+ case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitSystem(Instruction* instr) {
+ // Some system instructions hijack their Op and Cp fields to represent a
+ // range of immediates instead of indicating a different instruction. This
+ // makes the decoding tricky.
+ const char *mnemonic = "unimplemented";
+ const char *form = "(System)";
+
+ if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
+ switch (instr->Mask(SystemSysRegMask)) {
+ case MRS: {
+ mnemonic = "mrs";
+ switch (instr->ImmSystemRegister()) {
+ case NZCV: form = "'Xt, nzcv"; break;
+ case FPCR: form = "'Xt, fpcr"; break;
+ default: form = "'Xt, (unknown)"; break;
+ }
+ break;
+ }
+ case MSR: {
+ mnemonic = "msr";
+ switch (instr->ImmSystemRegister()) {
+ case NZCV: form = "nzcv, 'Xt"; break;
+ case FPCR: form = "fpcr, 'Xt"; break;
+ default: form = "(unknown), 'Xt"; break;
+ }
+ break;
+ }
+ }
+ } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
+ ASSERT(instr->Mask(SystemHintMask) == HINT);
+ switch (instr->ImmHint()) {
+ case NOP: {
+ mnemonic = "nop";
+ form = NULL;
+ break;
+ }
+ }
+ }
+
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitException(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'IDebug";
+
+ switch (instr->Mask(ExceptionMask)) {
+ case HLT: mnemonic = "hlt"; break;
+ case BRK: mnemonic = "brk"; break;
+ case SVC: mnemonic = "svc"; break;
+ case HVC: mnemonic = "hvc"; break;
+ case SMC: mnemonic = "smc"; break;
+ case DCPS1: mnemonic = "dcps1"; form = "{'IDebug}"; break;
+ case DCPS2: mnemonic = "dcps2"; form = "{'IDebug}"; break;
+ case DCPS3: mnemonic = "dcps3"; form = "{'IDebug}"; break;
+ default: form = "(Exception)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitUnimplemented(Instruction* instr) {
+ Format(instr, "unimplemented", "(Unimplemented)");
+}
+
+
+void Disassembler::VisitUnallocated(Instruction* instr) {
+ Format(instr, "unallocated", "(Unallocated)");
+}
+
+
+void Disassembler::ProcessOutput(Instruction* /*instr*/) {
+ // The base disasm does nothing more than disassembling into a buffer.
+}
+
+
+void Disassembler::Format(Instruction* instr, const char* mnemonic,
+ const char* format) {
+ ASSERT(mnemonic != NULL);
+ ResetOutput();
+ Substitute(instr, mnemonic);
+ if (format != NULL) {
+ buffer_[buffer_pos_++] = ' ';
+ Substitute(instr, format);
+ }
+ buffer_[buffer_pos_] = 0;
+ ProcessOutput(instr);
+}
+
+
+void Disassembler::Substitute(Instruction* instr, const char* string) {
+ char chr = *string++;
+ while (chr != '\0') {
+ if (chr == '\'') {
+ string += SubstituteField(instr, string);
+ } else {
+ buffer_[buffer_pos_++] = chr;
+ }
+ chr = *string++;
+ }
+}
+
+
+int Disassembler::SubstituteField(Instruction* instr, const char* format) {
+ switch (format[0]) {
+ case 'R': // Register. X or W, selected by sf bit.
+ case 'F': // FP Register. S or D, selected by type field.
+ case 'W':
+ case 'X':
+ case 'S':
+ case 'D': return SubstituteRegisterField(instr, format);
+ case 'I': return SubstituteImmediateField(instr, format);
+ case 'L': return SubstituteLiteralField(instr, format);
+ case 'H': return SubstituteShiftField(instr, format);
+ case 'P': return SubstitutePrefetchField(instr, format);
+ case 'C': return SubstituteConditionField(instr, format);
+ case 'E': return SubstituteExtendField(instr, format);
+ case 'A': return SubstitutePCRelAddressField(instr, format);
+ case 'B': return SubstituteBranchTargetField(instr, format);
+ case 'O': return SubstituteLSRegOffsetField(instr, format);
+ default: {
+ UNREACHABLE();
+ return 1;
+ }
+ }
+}
+
+
+int Disassembler::SubstituteRegisterField(Instruction* instr,
+ const char* format) {
+ unsigned reg_num = 0;
+ unsigned field_len = 2;
+ switch (format[1]) {
+ case 'd': reg_num = instr->Rd(); break;
+ case 'n': reg_num = instr->Rn(); break;
+ case 'm': reg_num = instr->Rm(); break;
+ case 'a': reg_num = instr->Ra(); break;
+ case 't': {
+ if (format[2] == '2') {
+ reg_num = instr->Rt2();
+ field_len = 3;
+ } else {
+ reg_num = instr->Rt();
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+
+ // Increase field length for registers tagged as stack.
+ if (format[2] == 's') {
+ field_len = 3;
+ }
+
+ char reg_type;
+ if (format[0] == 'R') {
+ // Register type is R: use sf bit to choose X and W.
+ reg_type = instr->SixtyFourBits() ? 'x' : 'w';
+ } else if (format[0] == 'F') {
+ // Floating-point register: use type field to choose S or D.
+ reg_type = ((instr->FPType() & 1) == 0) ? 's' : 'd';
+ } else {
+ // Register type is specified. Make it lower case.
+ reg_type = format[0] + 0x20;
+ }
+
+ if ((reg_num != kZeroRegCode) || (reg_type == 's') || (reg_type == 'd')) {
+ // A normal register: w0 - w30, x0 - x30, s0 - s31, d0 - d31.
+ AppendToOutput("%c%d", reg_type, reg_num);
+ } else if (format[2] == 's') {
+ // Disassemble w31/x31 as stack pointer wsp/sp.
+ AppendToOutput("%s", (reg_type == 'w') ? "wsp" : "sp");
+ } else {
+ // Disassemble w31/x31 as zero register wzr/xzr.
+ AppendToOutput("%czr", reg_type);
+ }
+
+ return field_len;
+}
+
+
+int Disassembler::SubstituteImmediateField(Instruction* instr,
+ const char* format) {
+ ASSERT(format[0] == 'I');
+
+ switch (format[1]) {
+ case 'M': { // IMoveImm or IMoveLSL.
+ if (format[5] == 'I') {
+ uint64_t imm = instr->ImmMoveWide() << (16 * instr->ShiftMoveWide());
+ AppendToOutput("#0x%" PRIx64, imm);
+ } else {
+ ASSERT(format[5] == 'L');
+ AppendToOutput("#0x%" PRIx64, instr->ImmMoveWide());
+ if (instr->ShiftMoveWide() > 0) {
+ AppendToOutput(", lsl #%d", 16 * instr->ShiftMoveWide());
+ }
+ }
+ return 8;
+ }
+ case 'L': {
+ switch (format[2]) {
+ case 'L': { // ILLiteral - Immediate Load Literal.
+ AppendToOutput("pc%+" PRId64,
+ instr->ImmLLiteral() << kLiteralEntrySizeLog2);
+ return 9;
+ }
+ case 'S': { // ILS - Immediate Load/Store.
+ if (instr->ImmLS() != 0) {
+ AppendToOutput(", #%" PRId64, instr->ImmLS());
+ }
+ return 3;
+ }
+ case 'P': { // ILPx - Immediate Load/Store Pair, x = access size.
+ if (instr->ImmLSPair() != 0) {
+ // format[3] is the scale value. Convert to a number.
+ int scale = format[3] - 0x30;
+ AppendToOutput(", #%" PRId64, instr->ImmLSPair() * scale);
+ }
+ return 4;
+ }
+ case 'U': { // ILU - Immediate Load/Store Unsigned.
+ if (instr->ImmLSUnsigned() != 0) {
+ AppendToOutput(", #%" PRIu64,
+ instr->ImmLSUnsigned() << instr->SizeLS());
+ }
+ return 3;
+ }
+ }
+ }
+ case 'C': { // ICondB - Immediate Conditional Branch.
+ int64_t offset = instr->ImmCondBranch() << 2;
+ char sign = (offset >= 0) ? '+' : '-';
+ AppendToOutput("#%c0x%" PRIx64, sign, offset);
+ return 6;
+ }
+ case 'A': { // IAddSub.
+ ASSERT(instr->ShiftAddSub() <= 1);
+ int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub());
+ AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm);
+ return 7;
+ }
+ case 'F': { // IFPSingle, IFPDouble or IFPFBits.
+ if (format[3] == 'F') { // IFPFbits.
+ AppendToOutput("#%d", 64 - instr->FPScale());
+ return 8;
+ } else {
+ AppendToOutput("#0x%" PRIx64 " (%.4f)", instr->ImmFP(),
+ format[3] == 'S' ? instr->ImmFP32() : instr->ImmFP64());
+ return 9;
+ }
+ }
+ case 'T': { // ITri - Immediate Triangular Encoded.
+ AppendToOutput("#0x%" PRIx64, instr->ImmLogical());
+ return 4;
+ }
+ case 'N': { // INzcv.
+ int nzcv = (instr->Nzcv() << Flags_offset);
+ AppendToOutput("#%c%c%c%c", ((nzcv & NFlag) == 0) ? 'n' : 'N',
+ ((nzcv & ZFlag) == 0) ? 'z' : 'Z',
+ ((nzcv & CFlag) == 0) ? 'c' : 'C',
+ ((nzcv & VFlag) == 0) ? 'v' : 'V');
+ return 5;
+ }
+ case 'P': { // IP - Conditional compare.
+ AppendToOutput("#%d", instr->ImmCondCmp());
+ return 2;
+ }
+ case 'B': { // Bitfields.
+ return SubstituteBitfieldImmediateField(instr, format);
+ }
+ case 'E': { // IExtract.
+ AppendToOutput("#%d", instr->ImmS());
+ return 8;
+ }
+ case 'S': { // IS - Test and branch bit.
+ AppendToOutput("#%d", (instr->ImmTestBranchBit5() << 5) |
+ instr->ImmTestBranchBit40());
+ return 2;
+ }
+ case 'D': { // IDebug - HLT and BRK instructions.
+ AppendToOutput("#0x%x", instr->ImmException());
+ return 6;
+ }
+ default: {
+ UNIMPLEMENTED();
+ return 0;
+ }
+ }
+}
+
+
+int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
+ const char* format) {
+ ASSERT((format[0] == 'I') && (format[1] == 'B'));
+ unsigned r = instr->ImmR();
+ unsigned s = instr->ImmS();
+
+ switch (format[2]) {
+ case 'r': { // IBr.
+ AppendToOutput("#%d", r);
+ return 3;
+ }
+ case 's': { // IBs+1 or IBs-r+1.
+ if (format[3] == '+') {
+ AppendToOutput("#%d", s + 1);
+ return 5;
+ } else {
+ ASSERT(format[3] == '-');
+ AppendToOutput("#%d", s - r + 1);
+ return 7;
+ }
+ }
+ case 'Z': { // IBZ-r.
+ ASSERT((format[3] == '-') && (format[4] == 'r'));
+ unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize;
+ AppendToOutput("#%d", reg_size - r);
+ return 5;
+ }
+ default: {
+ UNREACHABLE();
+ return 0;
+ }
+ }
+}
+
+
+int Disassembler::SubstituteLiteralField(Instruction* instr,
+ const char* format) {
+ ASSERT(strncmp(format, "LValue", 6) == 0);
+ USE(format);
+
+ switch (instr->Mask(LoadLiteralMask)) {
+ case LDR_w_lit:
+ case LDR_x_lit:
+ case LDR_s_lit:
+ case LDR_d_lit: AppendToOutput("(addr %p)", instr->LiteralAddress()); break;
+ default: UNREACHABLE();
+ }
+
+ return 6;
+}
+
+
+int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) {
+ ASSERT(format[0] == 'H');
+ ASSERT(instr->ShiftDP() <= 0x3);
+
+ switch (format[1]) {
+ case 'D': { // HDP.
+ ASSERT(instr->ShiftDP() != ROR);
+ } // Fall through.
+ case 'L': { // HLo.
+ if (instr->ImmDPShift() != 0) {
+ const char* shift_type[] = {"lsl", "lsr", "asr", "ror"};
+ AppendToOutput(", %s #%" PRId64, shift_type[instr->ShiftDP()],
+ instr->ImmDPShift());
+ }
+ return 3;
+ }
+ default:
+ UNIMPLEMENTED();
+ return 0;
+ }
+}
+
+
+int Disassembler::SubstituteConditionField(Instruction* instr,
+ const char* format) {
+ ASSERT(format[0] == 'C');
+ const char* condition_code[] = { "eq", "ne", "hs", "lo",
+ "mi", "pl", "vs", "vc",
+ "hi", "ls", "ge", "lt",
+ "gt", "le", "al", "nv" };
+ int cond;
+ switch (format[1]) {
+ case 'B': cond = instr->ConditionBranch(); break;
+ case 'I': {
+ cond = InvertCondition(static_cast<Condition>(instr->Condition()));
+ break;
+ }
+ default: cond = instr->Condition();
+ }
+ AppendToOutput("%s", condition_code[cond]);
+ return 4;
+}
+
+
+int Disassembler::SubstitutePCRelAddressField(Instruction* instr,
+ const char* format) {
+ USE(format);
+ ASSERT(strncmp(format, "AddrPCRel", 9) == 0);
+
+ int offset = instr->ImmPCRel();
+
+ // Only ADR (AddrPCRelByte) is supported.
+ ASSERT(strcmp(format, "AddrPCRelByte") == 0);
+
+ char sign = '+';
+ if (offset < 0) {
+ offset = -offset;
+ sign = '-';
+ }
+ // TODO: Extend this to support printing the target address.
+ AppendToOutput("#%c0x%x", sign, offset);
+ return 13;
+}
+
+
+int Disassembler::SubstituteBranchTargetField(Instruction* instr,
+ const char* format) {
+ ASSERT(strncmp(format, "BImm", 4) == 0);
+
+ int64_t offset = 0;
+ switch (format[5]) {
+ // BImmUncn - unconditional branch immediate.
+ case 'n': offset = instr->ImmUncondBranch(); break;
+ // BImmCond - conditional branch immediate.
+ case 'o': offset = instr->ImmCondBranch(); break;
+ // BImmCmpa - compare and branch immediate.
+ case 'm': offset = instr->ImmCmpBranch(); break;
+ // BImmTest - test and branch immediate.
+ case 'e': offset = instr->ImmTestBranch(); break;
+ default: UNIMPLEMENTED();
+ }
+ offset <<= kInstructionSizeLog2;
+ char sign = '+';
+ if (offset < 0) {
+ offset = -offset;
+ sign = '-';
+ }
+ AppendToOutput("#%c0x%" PRIx64, sign, offset);
+ return 8;
+}
+
+
+int Disassembler::SubstituteExtendField(Instruction* instr,
+ const char* format) {
+ ASSERT(strncmp(format, "Ext", 3) == 0);
+ ASSERT(instr->ExtendMode() <= 7);
+ USE(format);
+
+ const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx",
+ "sxtb", "sxth", "sxtw", "sxtx" };
+
+ // If rd or rn is SP, uxtw on 32-bit registers and uxtx on 64-bit
+ // registers becomes lsl.
+ if (((instr->Rd() == kZeroRegCode) || (instr->Rn() == kZeroRegCode)) &&
+ (((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) ||
+ (instr->ExtendMode() == UXTX))) {
+ if (instr->ImmExtendShift() > 0) {
+ AppendToOutput(", lsl #%d", instr->ImmExtendShift());
+ }
+ } else {
+ AppendToOutput(", %s", extend_mode[instr->ExtendMode()]);
+ if (instr->ImmExtendShift() > 0) {
+ AppendToOutput(" #%d", instr->ImmExtendShift());
+ }
+ }
+ return 3;
+}
+
+
+int Disassembler::SubstituteLSRegOffsetField(Instruction* instr,
+ const char* format) {
+ ASSERT(strncmp(format, "Offsetreg", 9) == 0);
+ const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl",
+ "undefined", "undefined", "sxtw", "sxtx" };
+ USE(format);
+
+ unsigned shift = instr->ImmShiftLS();
+ Extend ext = static_cast<Extend>(instr->ExtendMode());
+ char reg_type = ((ext == UXTW) || (ext == SXTW)) ? 'w' : 'x';
+
+ unsigned rm = instr->Rm();
+ if (rm == kZeroRegCode) {
+ AppendToOutput("%czr", reg_type);
+ } else {
+ AppendToOutput("%c%d", reg_type, rm);
+ }
+
+ // Extend mode UXTX is an alias for shift mode LSL here.
+ if (!((ext == UXTX) && (shift == 0))) {
+ AppendToOutput(", %s", extend_mode[ext]);
+ if (shift != 0) {
+ AppendToOutput(" #%d", instr->SizeLS());
+ }
+ }
+ return 9;
+}
+
+
+int Disassembler::SubstitutePrefetchField(Instruction* instr,
+ const char* format) {
+ ASSERT(format[0] == 'P');
+ USE(format);
+
+ int prefetch_mode = instr->PrefetchMode();
+
+ const char* ls = (prefetch_mode & 0x10) ? "st" : "ld";
+ int level = (prefetch_mode >> 1) + 1;
+ const char* ks = (prefetch_mode & 1) ? "strm" : "keep";
+
+ AppendToOutput("p%sl%d%s", ls, level, ks);
+ return 6;
+}
+
+
+void Disassembler::ResetOutput() {
+ buffer_pos_ = 0;
+ buffer_[buffer_pos_] = 0;
+}
+
+
+void Disassembler::AppendToOutput(const char* format, ...) {
+ va_list args;
+ va_start(args, format);
+ buffer_pos_ += vsnprintf(&buffer_[buffer_pos_], buffer_size_, format, args);
+ va_end(args);
+}
+
+
+void PrintDisassembler::ProcessOutput(Instruction* instr) {
+ fprintf(stream_, "0x%016" PRIx64 " %08" PRIx32 "\t\t%s\n",
+ reinterpret_cast<uint64_t>(instr),
+ instr->InstructionBits(),
+ GetOutput());
+}
+} // namespace vixl
new file mode 100644
@@ -0,0 +1,109 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_DISASM_A64_H
+#define VIXL_A64_DISASM_A64_H
+
+#include "globals.h"
+#include "utils.h"
+#include "instructions-a64.h"
+#include "decoder-a64.h"
+
+namespace vixl {
+
+class Disassembler: public DecoderVisitor {
+ public:
+ Disassembler();
+ Disassembler(char* text_buffer, int buffer_size);
+ virtual ~Disassembler();
+ char* GetOutput();
+
+ // Declare all Visitor functions.
+ #define DECLARE(A) void Visit##A(Instruction* instr);
+ VISITOR_LIST(DECLARE)
+ #undef DECLARE
+
+ protected:
+ virtual void ProcessOutput(Instruction* instr);
+
+ private:
+ void Format(Instruction* instr, const char* mnemonic, const char* format);
+ void Substitute(Instruction* instr, const char* string);
+ int SubstituteField(Instruction* instr, const char* format);
+ int SubstituteRegisterField(Instruction* instr, const char* format);
+ int SubstituteImmediateField(Instruction* instr, const char* format);
+ int SubstituteLiteralField(Instruction* instr, const char* format);
+ int SubstituteBitfieldImmediateField(Instruction* instr, const char* format);
+ int SubstituteShiftField(Instruction* instr, const char* format);
+ int SubstituteExtendField(Instruction* instr, const char* format);
+ int SubstituteConditionField(Instruction* instr, const char* format);
+ int SubstitutePCRelAddressField(Instruction* instr, const char* format);
+ int SubstituteBranchTargetField(Instruction* instr, const char* format);
+ int SubstituteLSRegOffsetField(Instruction* instr, const char* format);
+ int SubstitutePrefetchField(Instruction* instr, const char* format);
+
+ inline bool RdIsZROrSP(Instruction* instr) const {
+ return (instr->Rd() == kZeroRegCode);
+ }
+
+ inline bool RnIsZROrSP(Instruction* instr) const {
+ return (instr->Rn() == kZeroRegCode);
+ }
+
+ inline bool RmIsZROrSP(Instruction* instr) const {
+ return (instr->Rm() == kZeroRegCode);
+ }
+
+ inline bool RaIsZROrSP(Instruction* instr) const {
+ return (instr->Ra() == kZeroRegCode);
+ }
+
+ bool IsMovzMovnImm(unsigned reg_size, uint64_t value);
+
+ void ResetOutput();
+ void AppendToOutput(const char* string, ...);
+
+ char* buffer_;
+ uint32_t buffer_pos_;
+ uint32_t buffer_size_;
+ bool own_buffer_;
+};
+
+
+class PrintDisassembler: public Disassembler {
+ public:
+ explicit PrintDisassembler(FILE* stream) : stream_(stream) { }
+ ~PrintDisassembler() { }
+
+ protected:
+ virtual void ProcessOutput(Instruction* instr);
+
+ private:
+ FILE *stream_;
+};
+} // namespace vixl
+
+#endif // VIXL_A64_DISASM_A64_H
new file mode 100644
@@ -0,0 +1,238 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "a64/instructions-a64.h"
+#include "a64/assembler-a64.h"
+
+namespace vixl {
+
+
+static uint64_t RotateRight(uint64_t value,
+ unsigned int rotate,
+ unsigned int width) {
+ ASSERT(width <= 64);
+ rotate &= 63;
+ return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
+ (value >> rotate);
+}
+
+
+static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
+ uint64_t value,
+ unsigned width) {
+ ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
+ (width == 32));
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ uint64_t result = value & ((1UL << width) - 1UL);
+ for (unsigned i = width; i < reg_size; i *= 2) {
+ result |= (result << i);
+ }
+ return result;
+}
+
+
+// Logical immediates can't encode zero, so a return value of zero is used to
+// indicate a failure case. Specifically, where the constraints on imm_s are
+// not met.
+uint64_t Instruction::ImmLogical() {
+ unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t n = BitN();
+ int64_t imm_s = ImmSetBits();
+ int64_t imm_r = ImmRotate();
+
+ // An integer is constructed from the n, imm_s and imm_r bits according to
+ // the following table:
+ //
+ // N imms immr size S R
+ // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
+ // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
+ // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
+ // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
+ // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
+ // 0 11110s xxxxxr 2 UInt(s) UInt(r)
+ // (s bits must not be all set)
+ //
+ // A pattern is constructed of size bits, where the least significant S+1
+ // bits are set. The pattern is rotated right by R, and repeated across a
+ // 32 or 64-bit value, depending on destination register width.
+ //
+
+ if (n == 1) {
+ if (imm_s == 0x3F) {
+ return 0;
+ }
+ uint64_t bits = (1UL << (imm_s + 1)) - 1;
+ return RotateRight(bits, imm_r, 64);
+ } else {
+ if ((imm_s >> 1) == 0x1F) {
+ return 0;
+ }
+ for (int width = 0x20; width >= 0x2; width >>= 1) {
+ if ((imm_s & width) == 0) {
+ int mask = width - 1;
+ if ((imm_s & mask) == mask) {
+ return 0;
+ }
+ uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
+ return RepeatBitsAcrossReg(reg_size,
+ RotateRight(bits, imm_r & mask, width),
+ width);
+ }
+ }
+ }
+ UNREACHABLE();
+ return 0;
+}
+
+
+float Instruction::ImmFP32() {
+ // ImmFP: abcdefgh (8 bits)
+ // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
+ // where B is b ^ 1
+ uint32_t bits = ImmFP();
+ uint32_t bit7 = (bits >> 7) & 0x1;
+ uint32_t bit6 = (bits >> 6) & 0x1;
+ uint32_t bit5_to_0 = bits & 0x3f;
+ uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
+
+ return rawbits_to_float(result);
+}
+
+
+double Instruction::ImmFP64() {
+ // ImmFP: abcdefgh (8 bits)
+ // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
+ // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
+ // where B is b ^ 1
+ uint32_t bits = ImmFP();
+ uint64_t bit7 = (bits >> 7) & 0x1;
+ uint64_t bit6 = (bits >> 6) & 0x1;
+ uint64_t bit5_to_0 = bits & 0x3f;
+ uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
+
+ return rawbits_to_double(result);
+}
+
+
+LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
+ switch (op) {
+ case STP_x:
+ case LDP_x:
+ case STP_d:
+ case LDP_d: return LSDoubleWord;
+ default: return LSWord;
+ }
+}
+
+
+Instruction* Instruction::ImmPCOffsetTarget() {
+ ptrdiff_t offset;
+ if (IsPCRelAddressing()) {
+ // PC-relative addressing. Only ADR is supported.
+ offset = ImmPCRel();
+ } else {
+ // All PC-relative branches.
+ ASSERT(BranchType() != UnknownBranchType);
+ // Relative branch offsets are instruction-size-aligned.
+ offset = ImmBranch() << kInstructionSizeLog2;
+ }
+ return this + offset;
+}
+
+
+inline int Instruction::ImmBranch() const {
+ switch (BranchType()) {
+ case CondBranchType: return ImmCondBranch();
+ case UncondBranchType: return ImmUncondBranch();
+ case CompareBranchType: return ImmCmpBranch();
+ case TestBranchType: return ImmTestBranch();
+ default: UNREACHABLE();
+ }
+ return 0;
+}
+
+
+void Instruction::SetImmPCOffsetTarget(Instruction* target) {
+ if (IsPCRelAddressing()) {
+ SetPCRelImmTarget(target);
+ } else {
+ SetBranchImmTarget(target);
+ }
+}
+
+
+void Instruction::SetPCRelImmTarget(Instruction* target) {
+ // ADRP is not supported, so 'this' must point to an ADR instruction.
+ ASSERT(Mask(PCRelAddressingMask) == ADR);
+
+ Instr imm = Assembler::ImmPCRelAddress(target - this);
+
+ SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
+}
+
+
+void Instruction::SetBranchImmTarget(Instruction* target) {
+ ASSERT(((target - this) & 3) == 0);
+ Instr branch_imm = 0;
+ uint32_t imm_mask = 0;
+ int offset = (target - this) >> kInstructionSizeLog2;
+ switch (BranchType()) {
+ case CondBranchType: {
+ branch_imm = Assembler::ImmCondBranch(offset);
+ imm_mask = ImmCondBranch_mask;
+ break;
+ }
+ case UncondBranchType: {
+ branch_imm = Assembler::ImmUncondBranch(offset);
+ imm_mask = ImmUncondBranch_mask;
+ break;
+ }
+ case CompareBranchType: {
+ branch_imm = Assembler::ImmCmpBranch(offset);
+ imm_mask = ImmCmpBranch_mask;
+ break;
+ }
+ case TestBranchType: {
+ branch_imm = Assembler::ImmTestBranch(offset);
+ imm_mask = ImmTestBranch_mask;
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ SetInstructionBits(Mask(~imm_mask) | branch_imm);
+}
+
+
+void Instruction::SetImmLLiteral(Instruction* source) {
+ ASSERT(((source - this) & 3) == 0);
+ int offset = (source - this) >> kLiteralEntrySizeLog2;
+ Instr imm = Assembler::ImmLLiteral(offset);
+ Instr mask = ImmLLiteral_mask;
+
+ SetInstructionBits(Mask(~mask) | imm);
+}
+} // namespace vixl
+
new file mode 100644
@@ -0,0 +1,344 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
+#define VIXL_A64_INSTRUCTIONS_A64_H_
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/constants-a64.h"
+
+namespace vixl {
+// ISA constants. --------------------------------------------------------------
+
+typedef uint32_t Instr;
+const unsigned kInstructionSize = 4;
+const unsigned kInstructionSizeLog2 = 2;
+const unsigned kLiteralEntrySize = 4;
+const unsigned kLiteralEntrySizeLog2 = 2;
+const unsigned kMaxLoadLiteralRange = 1 * MBytes;
+
+const unsigned kWRegSize = 32;
+const unsigned kWRegSizeLog2 = 5;
+const unsigned kWRegSizeInBytes = kWRegSize / 8;
+const unsigned kXRegSize = 64;
+const unsigned kXRegSizeLog2 = 6;
+const unsigned kXRegSizeInBytes = kXRegSize / 8;
+const unsigned kSRegSize = 32;
+const unsigned kSRegSizeLog2 = 5;
+const unsigned kSRegSizeInBytes = kSRegSize / 8;
+const unsigned kDRegSize = 64;
+const unsigned kDRegSizeLog2 = 6;
+const unsigned kDRegSizeInBytes = kDRegSize / 8;
+const int64_t kWRegMask = 0x00000000ffffffffL;
+const int64_t kXRegMask = 0xffffffffffffffffL;
+const int64_t kSRegMask = 0x00000000ffffffffL;
+const int64_t kDRegMask = 0xffffffffffffffffL;
+const int64_t kXSignMask = 0x1L << 63;
+const int64_t kWSignMask = 0x1L << 31;
+const int64_t kByteMask = 0xffL;
+const int64_t kHalfWordMask = 0xffffL;
+const int64_t kWordMask = 0xffffffffL;
+const uint64_t kXMaxUInt = 0xffffffffffffffffUL;
+const uint64_t kWMaxUInt = 0xffffffffUL;
+const int64_t kXMaxInt = 0x7fffffffffffffffL;
+const int64_t kXMinInt = 0x8000000000000000L;
+const int32_t kWMaxInt = 0x7fffffff;
+const int32_t kWMinInt = 0x80000000;
+const unsigned kLinkRegCode = 30;
+const unsigned kZeroRegCode = 31;
+const unsigned kSPRegInternalCode = 63;
+const unsigned kRegCodeMask = 0x1f;
+
+// AArch64 floating-point specifics. These match IEEE-754.
+const unsigned kDoubleMantissaBits = 52;
+const unsigned kDoubleExponentBits = 11;
+const unsigned kFloatMantissaBits = 23;
+const unsigned kFloatExponentBits = 8;
+
+const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
+const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
+const double kFP64PositiveInfinity = rawbits_to_double(0x7ff0000000000000UL);
+const double kFP64NegativeInfinity = rawbits_to_double(0xfff0000000000000UL);
+
+// This value is a signalling NaN as both a double and as a float (taking the
+// least-significant word).
+static const double kFP64SignallingNaN = rawbits_to_double(0x7ff000007f800001);
+static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001);
+
+// A similar value, but as a quiet NaN.
+static const double kFP64QuietNaN = rawbits_to_double(0x7ff800007fc00001);
+static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001);
+
+enum LSDataSize {
+ LSByte = 0,
+ LSHalfword = 1,
+ LSWord = 2,
+ LSDoubleWord = 3
+};
+
+LSDataSize CalcLSPairDataSize(LoadStorePairOp op);
+
+enum ImmBranchType {
+ UnknownBranchType = 0,
+ CondBranchType = 1,
+ UncondBranchType = 2,
+ CompareBranchType = 3,
+ TestBranchType = 4
+};
+
+enum AddrMode {
+ Offset,
+ PreIndex,
+ PostIndex
+};
+
+enum FPRounding {
+ // The first four values are encodable directly by FPCR<RMode>.
+ FPTieEven = 0x0,
+ FPPositiveInfinity = 0x1,
+ FPNegativeInfinity = 0x2,
+ FPZero = 0x3,
+
+ // The final rounding mode is only available when explicitly specified by the
+ // instruction (such as with fcvta). It cannot be set in FPCR.
+ FPTieAway
+};
+
+enum Reg31Mode {
+ Reg31IsStackPointer,
+ Reg31IsZeroRegister
+};
+
+// Instructions. ---------------------------------------------------------------
+
+class Instruction {
+ public:
+ inline Instr InstructionBits() const {
+ return *(reinterpret_cast<const Instr*>(this));
+ }
+
+ inline void SetInstructionBits(Instr new_instr) {
+ *(reinterpret_cast<Instr*>(this)) = new_instr;
+ }
+
+ inline int Bit(int pos) const {
+ return (InstructionBits() >> pos) & 1;
+ }
+
+ inline uint32_t Bits(int msb, int lsb) const {
+ return unsigned_bitextract_32(msb, lsb, InstructionBits());
+ }
+
+ inline int32_t SignedBits(int msb, int lsb) const {
+ int32_t bits = *(reinterpret_cast<const int32_t*>(this));
+ return signed_bitextract_32(msb, lsb, bits);
+ }
+
+ inline Instr Mask(uint32_t mask) const {
+ return InstructionBits() & mask;
+ }
+
+ #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
+ inline int64_t Name() const { return Func(HighBit, LowBit); }
+ INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
+ #undef DEFINE_GETTER
+
+ // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
+ // formed from ImmPCRelLo and ImmPCRelHi.
+ int ImmPCRel() const {
+ int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
+ int const width = ImmPCRelLo_width + ImmPCRelHi_width;
+ return signed_bitextract_32(width-1, 0, offset);
+ }
+
+ uint64_t ImmLogical();
+ float ImmFP32();
+ double ImmFP64();
+
+ inline LSDataSize SizeLSPair() const {
+ return CalcLSPairDataSize(
+ static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
+ }
+
+ // Helpers.
+ inline bool IsCondBranchImm() const {
+ return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
+ }
+
+ inline bool IsUncondBranchImm() const {
+ return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
+ }
+
+ inline bool IsCompareBranch() const {
+ return Mask(CompareBranchFMask) == CompareBranchFixed;
+ }
+
+ inline bool IsTestBranch() const {
+ return Mask(TestBranchFMask) == TestBranchFixed;
+ }
+
+ inline bool IsPCRelAddressing() const {
+ return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
+ }
+
+ inline bool IsLogicalImmediate() const {
+ return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
+ }
+
+ inline bool IsAddSubImmediate() const {
+ return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
+ }
+
+ inline bool IsAddSubExtended() const {
+ return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
+ }
+
+ inline bool IsLoadOrStore() const {
+ return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
+ }
+
+ inline bool IsMovn() const {
+ return (Mask(MoveWideImmediateMask) == MOVN_x) ||
+ (Mask(MoveWideImmediateMask) == MOVN_w);
+ }
+
+ // Indicate whether Rd can be the stack pointer or the zero register. This
+ // does not check that the instruction actually has an Rd field.
+ inline Reg31Mode RdMode() const {
+ // The following instructions use sp or wsp as Rd:
+ // Add/sub (immediate) when not setting the flags.
+ // Add/sub (extended) when not setting the flags.
+ // Logical (immediate) when not setting the flags.
+ // Otherwise, r31 is the zero register.
+ if (IsAddSubImmediate() || IsAddSubExtended()) {
+ if (Mask(AddSubSetFlagsBit)) {
+ return Reg31IsZeroRegister;
+ } else {
+ return Reg31IsStackPointer;
+ }
+ }
+ if (IsLogicalImmediate()) {
+ // Of the logical (immediate) instructions, only ANDS (and its aliases)
+ // can set the flags. The others can all write into sp.
+ // Note that some logical operations are not available to
+ // immediate-operand instructions, so we have to combine two masks here.
+ if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
+ return Reg31IsZeroRegister;
+ } else {
+ return Reg31IsStackPointer;
+ }
+ }
+ return Reg31IsZeroRegister;
+ }
+
+ // Indicate whether Rn can be the stack pointer or the zero register. This
+ // does not check that the instruction actually has an Rn field.
+ inline Reg31Mode RnMode() const {
+ // The following instructions use sp or wsp as Rn:
+ // All loads and stores.
+ // Add/sub (immediate).
+ // Add/sub (extended).
+ // Otherwise, r31 is the zero register.
+ if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
+ return Reg31IsStackPointer;
+ }
+ return Reg31IsZeroRegister;
+ }
+
+ inline ImmBranchType BranchType() const {
+ if (IsCondBranchImm()) {
+ return CondBranchType;
+ } else if (IsUncondBranchImm()) {
+ return UncondBranchType;
+ } else if (IsCompareBranch()) {
+ return CompareBranchType;
+ } else if (IsTestBranch()) {
+ return TestBranchType;
+ } else {
+ return UnknownBranchType;
+ }
+ }
+
+ // Find the target of this instruction. 'this' may be a branch or a
+ // PC-relative addressing instruction.
+ Instruction* ImmPCOffsetTarget();
+
+ // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
+ // a PC-relative addressing instruction.
+ void SetImmPCOffsetTarget(Instruction* target);
+ // Patch a literal load instruction to load from 'source'.
+ void SetImmLLiteral(Instruction* source);
+
+ inline uint8_t* LiteralAddress() {
+ int offset = ImmLLiteral() << kLiteralEntrySizeLog2;
+ return reinterpret_cast<uint8_t*>(this) + offset;
+ }
+
+ inline uint32_t Literal32() {
+ uint32_t literal;
+ memcpy(&literal, LiteralAddress(), sizeof(literal));
+
+ return literal;
+ }
+
+ inline uint64_t Literal64() {
+ uint64_t literal;
+ memcpy(&literal, LiteralAddress(), sizeof(literal));
+
+ return literal;
+ }
+
+ inline float LiteralFP32() {
+ return rawbits_to_float(Literal32());
+ }
+
+ inline double LiteralFP64() {
+ return rawbits_to_double(Literal64());
+ }
+
+ inline Instruction* NextInstruction() {
+ return this + kInstructionSize;
+ }
+
+ inline Instruction* InstructionAtOffset(int64_t offset) {
+ ASSERT(IsWordAligned(this + offset));
+ return this + offset;
+ }
+
+ template<typename T> static inline Instruction* Cast(T src) {
+ return reinterpret_cast<Instruction*>(src);
+ }
+
+ private:
+ inline int ImmBranch() const;
+
+ void SetPCRelImmTarget(Instruction* target);
+ void SetBranchImmTarget(Instruction* target);
+};
+} // namespace vixl
+
+#endif // VIXL_A64_INSTRUCTIONS_A64_H_
new file mode 100644
@@ -0,0 +1,638 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "a64/instrument-a64.h"
+
+namespace vixl {
+
+Counter::Counter(const char* name, CounterType type)
+ : count_(0), enabled_(false), type_(type) {
+ ASSERT(name != NULL);
+ strncpy(name_, name, kCounterNameMaxLength);
+}
+
+
+void Counter::Enable() {
+ enabled_ = true;
+}
+
+
+void Counter::Disable() {
+ enabled_ = false;
+}
+
+
+bool Counter::IsEnabled() {
+ return enabled_;
+}
+
+
+void Counter::Increment() {
+ if (enabled_) {
+ count_++;
+ }
+}
+
+
+uint64_t Counter::count() {
+ uint64_t result = count_;
+ if (type_ == Gauge) {
+ // If the counter is a Gauge, reset the count after reading.
+ count_ = 0;
+ }
+ return result;
+}
+
+
+const char* Counter::name() {
+ return name_;
+}
+
+
+CounterType Counter::type() {
+ return type_;
+}
+
+
+typedef struct {
+ const char* name;
+ CounterType type;
+} CounterDescriptor;
+
+
+static const CounterDescriptor kCounterList[] = {
+ {"Instruction", Cumulative},
+
+ {"Move Immediate", Gauge},
+ {"Add/Sub DP", Gauge},
+ {"Logical DP", Gauge},
+ {"Other Int DP", Gauge},
+ {"FP DP", Gauge},
+
+ {"Conditional Select", Gauge},
+ {"Conditional Compare", Gauge},
+
+ {"Unconditional Branch", Gauge},
+ {"Compare and Branch", Gauge},
+ {"Test and Branch", Gauge},
+ {"Conditional Branch", Gauge},
+
+ {"Load Integer", Gauge},
+ {"Load FP", Gauge},
+ {"Load Pair", Gauge},
+ {"Load Literal", Gauge},
+
+ {"Store Integer", Gauge},
+ {"Store FP", Gauge},
+ {"Store Pair", Gauge},
+
+ {"PC Addressing", Gauge},
+ {"Other", Gauge},
+};
+
+
+Instrument::Instrument(const char* datafile, uint64_t sample_period)
+ : output_stream_(stdout), sample_period_(sample_period) {
+
+ // Set up the output stream. If datafile is non-NULL, use that file. If it
+ // can't be opened, or datafile is NULL, use stdout.
+ if (datafile != NULL) {
+ output_stream_ = fopen(datafile, "w");
+ if (output_stream_ == NULL) {
+ printf("Can't open output file %s. Using stdout.\n", datafile);
+ output_stream_ = stdout;
+ }
+ }
+
+ static const int num_counters =
+ sizeof(kCounterList) / sizeof(CounterDescriptor);
+
+ // Dump an instrumentation description comment at the top of the file.
+ fprintf(output_stream_, "# counters=%d\n", num_counters);
+ fprintf(output_stream_, "# sample_period=%" PRIu64 "\n", sample_period_);
+
+ // Construct Counter objects from counter description array.
+ for (int i = 0; i < num_counters; i++) {
+ Counter* counter = new Counter(kCounterList[i].name, kCounterList[i].type);
+ counters_.push_back(counter);
+ }
+
+ DumpCounterNames();
+}
+
+
+Instrument::~Instrument() {
+ // Dump any remaining instruction data to the output file.
+ DumpCounters();
+
+ // Free all the counter objects.
+ std::list<Counter*>::iterator it;
+ for (it = counters_.begin(); it != counters_.end(); it++) {
+ free(*it);
+ }
+
+ if (output_stream_ != stdout) {
+ fclose(output_stream_);
+ }
+}
+
+
+void Instrument::Update() {
+ // Increment the instruction counter, and dump all counters if a sample period
+ // has elapsed.
+ static Counter* counter = GetCounter("Instruction");
+ ASSERT(counter->type() == Cumulative);
+ counter->Increment();
+
+ if (counter->IsEnabled() && (counter->count() % sample_period_) == 0) {
+ DumpCounters();
+ }
+}
+
+
+void Instrument::DumpCounters() {
+ // Iterate through the counter objects, dumping their values to the output
+ // stream.
+ std::list<Counter*>::const_iterator it;
+ for (it = counters_.begin(); it != counters_.end(); it++) {
+ fprintf(output_stream_, "%" PRIu64 ",", (*it)->count());
+ }
+ fprintf(output_stream_, "\n");
+ fflush(output_stream_);
+}
+
+
+void Instrument::DumpCounterNames() {
+ // Iterate through the counter objects, dumping the counter names to the
+ // output stream.
+ std::list<Counter*>::const_iterator it;
+ for (it = counters_.begin(); it != counters_.end(); it++) {
+ fprintf(output_stream_, "%s,", (*it)->name());
+ }
+ fprintf(output_stream_, "\n");
+ fflush(output_stream_);
+}
+
+
+void Instrument::HandleInstrumentationEvent(unsigned event) {
+ switch (event) {
+ case InstrumentStateEnable: Enable(); break;
+ case InstrumentStateDisable: Disable(); break;
+ default: DumpEventMarker(event);
+ }
+}
+
+
+void Instrument::DumpEventMarker(unsigned marker) {
+ // Dumpan event marker to the output stream as a specially formatted comment
+ // line.
+ static Counter* counter = GetCounter("Instruction");
+
+ fprintf(output_stream_, "# %c%c @ %" PRId64 "\n", marker & 0xff,
+ (marker >> 8) & 0xff, counter->count());
+}
+
+
+Counter* Instrument::GetCounter(const char* name) {
+ // Get a Counter object by name from the counter list.
+ std::list<Counter*>::const_iterator it;
+ for (it = counters_.begin(); it != counters_.end(); it++) {
+ if (strcmp((*it)->name(), name) == 0) {
+ return *it;
+ }
+ }
+
+ // A Counter by that name does not exist: print an error message to stderr
+ // and the output file, and exit.
+ static const char* error_message =
+ "# Error: Unknown counter \"%s\". Exiting.\n";
+ fprintf(stderr, error_message, name);
+ fprintf(output_stream_, error_message, name);
+ exit(1);
+}
+
+
+void Instrument::Enable() {
+ std::list<Counter*>::iterator it;
+ for (it = counters_.begin(); it != counters_.end(); it++) {
+ (*it)->Enable();
+ }
+}
+
+
+void Instrument::Disable() {
+ std::list<Counter*>::iterator it;
+ for (it = counters_.begin(); it != counters_.end(); it++) {
+ (*it)->Disable();
+ }
+}
+
+
+void Instrument::VisitPCRelAddressing(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("PC Addressing");
+ counter->Increment();
+}
+
+
+void Instrument::VisitAddSubImmediate(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Add/Sub DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitLogicalImmediate(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Logical DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitMoveWideImmediate(Instruction* instr) {
+ Update();
+ static Counter* counter = GetCounter("Move Immediate");
+
+ if (instr->IsMovn() && (instr->Rd() == kZeroRegCode)) {
+ unsigned imm = instr->ImmMoveWide();
+ HandleInstrumentationEvent(imm);
+ } else {
+ counter->Increment();
+ }
+}
+
+
+void Instrument::VisitBitfield(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Other Int DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitExtract(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Other Int DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitUnconditionalBranch(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Unconditional Branch");
+ counter->Increment();
+}
+
+
+void Instrument::VisitUnconditionalBranchToRegister(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Unconditional Branch");
+ counter->Increment();
+}
+
+
+void Instrument::VisitCompareBranch(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Compare and Branch");
+ counter->Increment();
+}
+
+
+void Instrument::VisitTestBranch(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Test and Branch");
+ counter->Increment();
+}
+
+
+void Instrument::VisitConditionalBranch(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Conditional Branch");
+ counter->Increment();
+}
+
+
+void Instrument::VisitSystem(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Other");
+ counter->Increment();
+}
+
+
+void Instrument::VisitException(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Other");
+ counter->Increment();
+}
+
+
+void Instrument::InstrumentLoadStorePair(Instruction* instr) {
+ static Counter* load_pair_counter = GetCounter("Load Pair");
+ static Counter* store_pair_counter = GetCounter("Store Pair");
+
+ if (instr->Mask(LoadStorePairLBit) != 0) {
+ load_pair_counter->Increment();
+ } else {
+ store_pair_counter->Increment();
+ }
+}
+
+
+void Instrument::VisitLoadStorePairPostIndex(Instruction* instr) {
+ USE(instr);
+ Update();
+ InstrumentLoadStorePair(instr);
+}
+
+
+void Instrument::VisitLoadStorePairOffset(Instruction* instr) {
+ USE(instr);
+ Update();
+ InstrumentLoadStorePair(instr);
+}
+
+
+void Instrument::VisitLoadStorePairPreIndex(Instruction* instr) {
+ USE(instr);
+ Update();
+ InstrumentLoadStorePair(instr);
+}
+
+
+void Instrument::VisitLoadStorePairNonTemporal(Instruction* instr) {
+ USE(instr);
+ Update();
+ InstrumentLoadStorePair(instr);
+}
+
+
+void Instrument::VisitLoadLiteral(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Load Literal");
+ counter->Increment();
+}
+
+
+void Instrument::InstrumentLoadStore(Instruction* instr) {
+ static Counter* load_int_counter = GetCounter("Load Integer");
+ static Counter* store_int_counter = GetCounter("Store Integer");
+ static Counter* load_fp_counter = GetCounter("Load FP");
+ static Counter* store_fp_counter = GetCounter("Store FP");
+
+ switch (instr->Mask(LoadStoreOpMask)) {
+ case STRB_w: // Fall through.
+ case STRH_w: // Fall through.
+ case STR_w: // Fall through.
+ case STR_x: store_int_counter->Increment(); break;
+ case STR_s: // Fall through.
+ case STR_d: store_fp_counter->Increment(); break;
+ case LDRB_w: // Fall through.
+ case LDRH_w: // Fall through.
+ case LDR_w: // Fall through.
+ case LDR_x: // Fall through.
+ case LDRSB_x: // Fall through.
+ case LDRSH_x: // Fall through.
+ case LDRSW_x: // Fall through.
+ case LDRSB_w: // Fall through.
+ case LDRSH_w: load_int_counter->Increment(); break;
+ case LDR_s: // Fall through.
+ case LDR_d: load_fp_counter->Increment(); break;
+ }
+}
+
+
+void Instrument::VisitLoadStoreUnscaledOffset(Instruction* instr) {
+ Update();
+ InstrumentLoadStore(instr);
+}
+
+
+void Instrument::VisitLoadStorePostIndex(Instruction* instr) {
+ USE(instr);
+ Update();
+ InstrumentLoadStore(instr);
+}
+
+
+void Instrument::VisitLoadStorePreIndex(Instruction* instr) {
+ Update();
+ InstrumentLoadStore(instr);
+}
+
+
+void Instrument::VisitLoadStoreRegisterOffset(Instruction* instr) {
+ Update();
+ InstrumentLoadStore(instr);
+}
+
+
+void Instrument::VisitLoadStoreUnsignedOffset(Instruction* instr) {
+ Update();
+ InstrumentLoadStore(instr);
+}
+
+
+void Instrument::VisitLogicalShifted(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Logical DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitAddSubShifted(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Add/Sub DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitAddSubExtended(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Add/Sub DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitAddSubWithCarry(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Add/Sub DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitConditionalCompareRegister(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Conditional Compare");
+ counter->Increment();
+}
+
+
+void Instrument::VisitConditionalCompareImmediate(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Conditional Compare");
+ counter->Increment();
+}
+
+
+void Instrument::VisitConditionalSelect(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Conditional Select");
+ counter->Increment();
+}
+
+
+void Instrument::VisitDataProcessing1Source(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Other Int DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitDataProcessing2Source(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Other Int DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitDataProcessing3Source(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Other Int DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitFPCompare(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("FP DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitFPConditionalCompare(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Conditional Compare");
+ counter->Increment();
+}
+
+
+void Instrument::VisitFPConditionalSelect(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Conditional Select");
+ counter->Increment();
+}
+
+
+void Instrument::VisitFPImmediate(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("FP DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitFPDataProcessing1Source(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("FP DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitFPDataProcessing2Source(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("FP DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitFPDataProcessing3Source(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("FP DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitFPIntegerConvert(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("FP DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitFPFixedPointConvert(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("FP DP");
+ counter->Increment();
+}
+
+
+void Instrument::VisitUnallocated(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Other");
+ counter->Increment();
+}
+
+
+void Instrument::VisitUnimplemented(Instruction* instr) {
+ USE(instr);
+ Update();
+ static Counter* counter = GetCounter("Other");
+ counter->Increment();
+}
+
+
+} // namespace v8::internal
new file mode 100644
@@ -0,0 +1,108 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_INSTRUMENT_A64_H_
+#define VIXL_A64_INSTRUMENT_A64_H_
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/decoder-a64.h"
+#include "a64/constants-a64.h"
+#include "a64/instrument-a64.h"
+
+namespace vixl {
+
+const int kCounterNameMaxLength = 256;
+const uint64_t kDefaultInstrumentationSamplingPeriod = 1 << 22;
+
+
+enum InstrumentState {
+ InstrumentStateDisable = 0,
+ InstrumentStateEnable = 1
+};
+
+
+enum CounterType {
+ Gauge = 0, // Gauge counters reset themselves after reading.
+ Cumulative = 1 // Cumulative counters keep their value after reading.
+};
+
+
+class Counter {
+ public:
+ Counter(const char* name, CounterType type = Gauge);
+ ~Counter();
+
+ void Increment();
+ void Enable();
+ void Disable();
+ bool IsEnabled();
+ uint64_t count();
+ const char* name();
+ CounterType type();
+
+ private:
+ char name_[kCounterNameMaxLength];
+ uint64_t count_;
+ bool enabled_;
+ CounterType type_;
+};
+
+
+class Instrument: public DecoderVisitor {
+ public:
+ explicit Instrument(const char* datafile = NULL,
+ uint64_t sample_period = kDefaultInstrumentationSamplingPeriod);
+ ~Instrument();
+
+ void Enable();
+ void Disable();
+
+ // Declare all Visitor functions.
+ #define DECLARE(A) void Visit##A(Instruction* instr);
+ VISITOR_LIST(DECLARE)
+ #undef DECLARE
+
+ private:
+ void Update();
+ void DumpCounters();
+ void DumpCounterNames();
+ void DumpEventMarker(unsigned marker);
+ void HandleInstrumentationEvent(unsigned event);
+ Counter* GetCounter(const char* name);
+
+ void InstrumentLoadStore(Instruction* instr);
+ void InstrumentLoadStorePair(Instruction* instr);
+
+ std::list<Counter*> counters_;
+
+ FILE *output_stream_;
+ uint64_t sample_period_;
+};
+
+} // namespace vixl
+
+#endif // VIXL_A64_INSTRUMENT_A64_H_
new file mode 100644
@@ -0,0 +1,1108 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "a64/macro-assembler-a64.h"
+namespace vixl {
+
+void MacroAssembler::And(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ ASSERT(allow_macro_instructions_);
+ LogicalMacro(rd, rn, operand, (S == SetFlags) ? ANDS : AND);
+}
+
+
+void MacroAssembler::Tst(const Register& rn,
+ const Operand& operand) {
+ ASSERT(allow_macro_instructions_);
+ And(AppropriateZeroRegFor(rn), rn, operand, SetFlags);
+}
+
+
+void MacroAssembler::Bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ ASSERT(allow_macro_instructions_);
+ LogicalMacro(rd, rn, operand, (S == SetFlags) ? BICS : BIC);
+}
+
+
+void MacroAssembler::Orr(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ ASSERT(allow_macro_instructions_);
+ LogicalMacro(rd, rn, operand, ORR);
+}
+
+
+void MacroAssembler::Orn(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ ASSERT(allow_macro_instructions_);
+ LogicalMacro(rd, rn, operand, ORN);
+}
+
+
+void MacroAssembler::Eor(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ ASSERT(allow_macro_instructions_);
+ LogicalMacro(rd, rn, operand, EOR);
+}
+
+
+void MacroAssembler::Eon(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ ASSERT(allow_macro_instructions_);
+ LogicalMacro(rd, rn, operand, EON);
+}
+
+
+void MacroAssembler::LogicalMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ LogicalOp op) {
+ if (operand.IsImmediate()) {
+ int64_t immediate = operand.immediate();
+ unsigned reg_size = rd.size();
+ ASSERT(rd.Is64Bits() || is_uint32(immediate));
+
+ // If the operation is NOT, invert the operation and immediate.
+ if ((op & NOT) == NOT) {
+ op = static_cast<LogicalOp>(op & ~NOT);
+ immediate = ~immediate;
+ if (rd.Is32Bits()) {
+ immediate &= kWRegMask;
+ }
+ }
+
+ // Special cases for all set or all clear immediates.
+ if (immediate == 0) {
+ switch (op) {
+ case AND:
+ Mov(rd, 0);
+ return;
+ case ORR: // Fall through.
+ case EOR:
+ Mov(rd, rn);
+ return;
+ case ANDS: // Fall through.
+ case BICS:
+ break;
+ default:
+ UNREACHABLE();
+ }
+ } else if ((rd.Is64Bits() && (immediate == -1L)) ||
+ (rd.Is32Bits() && (immediate == 0xffffffffL))) {
+ switch (op) {
+ case AND:
+ Mov(rd, rn);
+ return;
+ case ORR:
+ Mov(rd, immediate);
+ return;
+ case EOR:
+ Mvn(rd, rn);
+ return;
+ case ANDS: // Fall through.
+ case BICS:
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+
+ unsigned n, imm_s, imm_r;
+ if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
+ // Immediate can be encoded in the instruction.
+ LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
+ } else {
+ // Immediate can't be encoded: synthesize using move immediate.
+ Register temp = AppropriateTempFor(rn);
+ Mov(temp, immediate);
+ if (rd.Is(sp)) {
+ // If rd is the stack pointer we cannot use it as the destination
+ // register so we use the temp register as an intermediate again.
+ Logical(temp, rn, Operand(temp), op);
+ Mov(sp, temp);
+ } else {
+ Logical(rd, rn, Operand(temp), op);
+ }
+ }
+ } else if (operand.IsExtendedRegister()) {
+ ASSERT(operand.reg().size() <= rd.size());
+ // Add/sub extended supports shift <= 4. We want to support exactly the
+ // same modes here.
+ ASSERT(operand.shift_amount() <= 4);
+ ASSERT(operand.reg().Is64Bits() ||
+ ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
+ Register temp = AppropriateTempFor(rn, operand.reg());
+ EmitExtendShift(temp, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ Logical(rd, rn, Operand(temp), op);
+ } else {
+ // The operand can be encoded in the instruction.
+ ASSERT(operand.IsShiftedRegister());
+ Logical(rd, rn, operand, op);
+ }
+}
+
+
+void MacroAssembler::Mov(const Register& rd, const Operand& operand) {
+ ASSERT(allow_macro_instructions_);
+ if (operand.IsImmediate()) {
+ // Call the macro assembler for generic immediates.
+ Mov(rd, operand.immediate());
+ } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
+ // Emit a shift instruction if moving a shifted register. This operation
+ // could also be achieved using an orr instruction (like orn used by Mvn),
+ // but using a shift instruction makes the disassembly clearer.
+ EmitShift(rd, operand.reg(), operand.shift(), operand.shift_amount());
+ } else if (operand.IsExtendedRegister()) {
+ // Emit an extend instruction if moving an extended register. This handles
+ // extend with post-shift operations, too.
+ EmitExtendShift(rd, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ } else {
+ // Otherwise, emit a register move only if the registers are distinct, or
+ // if they are not X registers. Note that mov(w0, w0) is not a no-op
+ // because it clears the top word of x0.
+ // If the sp is an operand, add #0 is emitted, otherwise, orr #0.
+ if (!rd.Is(operand.reg()) || !rd.Is64Bits()) {
+ mov(rd, operand.reg());
+ }
+ }
+}
+
+
+void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
+ ASSERT(allow_macro_instructions_);
+ if (operand.IsImmediate()) {
+ // Call the macro assembler for generic immediates.
+ Mvn(rd, operand.immediate());
+ } else if (operand.IsExtendedRegister()) {
+ // Emit two instructions for the extend case. This differs from Mov, as
+ // the extend and invert can't be achieved in one instruction.
+ Register temp = AppropriateTempFor(rd, operand.reg());
+ EmitExtendShift(temp, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ mvn(rd, Operand(temp));
+ } else {
+ // Otherwise, register and shifted register cases can be handled by the
+ // assembler directly, using orn.
+ mvn(rd, operand);
+ }
+}
+
+
+void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
+
+ // Immediates on Aarch64 can be produced using an initial value, and zero to
+ // three move keep operations.
+ //
+ // Initial values can be generated with:
+ // 1. 64-bit move zero (movz).
+ // 2. 32-bit move negative (movn).
+ // 3. 64-bit move negative.
+ // 4. 32-bit orr immediate.
+ // 5. 64-bit orr immediate.
+ // Move-keep may then be used to modify each of the 16-bit nybbles.
+ //
+ // The code below supports all five initial value generators, and
+ // applying move-keep operations to move-zero initial values only.
+
+ unsigned reg_size = rd.size();
+ unsigned n, imm_s, imm_r;
+ if (IsImmMovz(imm, reg_size) && !rd.IsSP()) {
+ // Immediate can be represented in a move zero instruction.
+ movz(rd, imm);
+ } else if (IsImmMovn(imm, reg_size) && !rd.IsSP()) {
+ // Immediate can be represented in a move negative instruction. Movn can't
+ // write to the stack pointer.
+ movn(rd, rd.Is64Bits() ? ~imm : (~imm & kWRegMask));
+ } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
+ // Immediate can be represented in a logical orr instruction.
+ ASSERT(!rd.IsZero());
+ LogicalImmediate(rd, AppropriateZeroRegFor(rd), n, imm_s, imm_r, ORR);
+ } else {
+ // Generic immediate case. Imm will be represented by
+ // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
+ // A move-zero is generated for the first non-zero immX, and a move-keep
+ // for subsequent non-zero immX.
+
+ // Use a temporary register when moving to the stack pointer.
+ Register temp = rd.IsSP() ? AppropriateTempFor(rd) : rd;
+
+ ASSERT((reg_size % 16) == 0);
+ bool first_mov_done = false;
+ for (unsigned i = 0; i < (temp.size() / 16); i++) {
+ uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
+ if (imm16 != 0) {
+ if (!first_mov_done) {
+ // Move the first non-zero 16-bit chunk into the destination register.
+ movz(temp, imm16, 16 * i);
+ first_mov_done = true;
+ } else {
+ // Construct a wider constant.
+ movk(temp, imm16, 16 * i);
+ }
+ }
+ }
+
+ if (rd.IsSP()) {
+ mov(rd, temp);
+ }
+
+ ASSERT(first_mov_done);
+ }
+}
+
+
+// The movz instruction can generate immediates containing an arbitrary 16-bit
+// value, with remaining bits set, eg. 0x00001234, 0x0000123400000000.
+bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
+ if (reg_size == kXRegSize) {
+ if (((imm & 0xffffffffffff0000UL) == 0UL) ||
+ ((imm & 0xffffffff0000ffffUL) == 0UL) ||
+ ((imm & 0xffff0000ffffffffUL) == 0UL) ||
+ ((imm & 0x0000ffffffffffffUL) == 0UL)) {
+ return true;
+ }
+ } else {
+ ASSERT(reg_size == kWRegSize);
+ imm &= kWRegMask;
+ if (((imm & 0xffff0000) == 0) ||
+ ((imm & 0x0000ffff) == 0)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+
+// The movn instruction can generate immediates containing an arbitrary 16-bit
+// value, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
+bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
+ return IsImmMovz(~imm, reg_size);
+}
+
+
+void MacroAssembler::Ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ConditionalCompareMacro(rn, operand, nzcv, cond, CCMP);
+}
+
+
+void MacroAssembler::Ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ConditionalCompareMacro(rn, operand, nzcv, cond, CCMN);
+}
+
+
+void MacroAssembler::ConditionalCompareMacro(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op) {
+ ASSERT((cond != al) && (cond != nv));
+ if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
+ (operand.IsImmediate() && IsImmConditionalCompare(operand.immediate()))) {
+ // The immediate can be encoded in the instruction, or the operand is an
+ // unshifted register: call the assembler.
+ ConditionalCompare(rn, operand, nzcv, cond, op);
+ } else {
+ // The operand isn't directly supported by the instruction: perform the
+ // operation on a temporary register.
+ Register temp(NoReg);
+ if (operand.IsImmediate()) {
+ temp = AppropriateTempFor(rn);
+ Mov(temp, operand.immediate());
+ } else if (operand.IsShiftedRegister()) {
+ ASSERT(operand.shift() != ROR);
+ ASSERT(is_uintn(rn.size() == kXRegSize ? kXRegSizeLog2 : kWRegSizeLog2,
+ operand.shift_amount()));
+ temp = AppropriateTempFor(rn, operand.reg());
+ EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
+ } else {
+ ASSERT(operand.IsExtendedRegister());
+ ASSERT(operand.reg().size() <= rn.size());
+ // Add/sub extended support a shift <= 4. We want to support exactly the
+ // same modes.
+ ASSERT(operand.shift_amount() <= 4);
+ ASSERT(operand.reg().Is64Bits() ||
+ ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
+ temp = AppropriateTempFor(rn, operand.reg());
+ EmitExtendShift(temp, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ }
+ ConditionalCompare(rn, Operand(temp), nzcv, cond, op);
+ }
+}
+
+
+void MacroAssembler::Add(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ ASSERT(allow_macro_instructions_);
+ if (operand.IsImmediate() && (operand.immediate() < 0)) {
+ AddSubMacro(rd, rn, -operand.immediate(), S, SUB);
+ } else {
+ AddSubMacro(rd, rn, operand, S, ADD);
+ }
+}
+
+
+void MacroAssembler::Sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ ASSERT(allow_macro_instructions_);
+ if (operand.IsImmediate() && (operand.immediate() < 0)) {
+ AddSubMacro(rd, rn, -operand.immediate(), S, ADD);
+ } else {
+ AddSubMacro(rd, rn, operand, S, SUB);
+ }
+}
+
+
+void MacroAssembler::Cmn(const Register& rn, const Operand& operand) {
+ ASSERT(allow_macro_instructions_);
+ Add(AppropriateZeroRegFor(rn), rn, operand, SetFlags);
+}
+
+
+void MacroAssembler::Cmp(const Register& rn, const Operand& operand) {
+ ASSERT(allow_macro_instructions_);
+ Sub(AppropriateZeroRegFor(rn), rn, operand, SetFlags);
+}
+
+
+void MacroAssembler::Neg(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S) {
+ ASSERT(allow_macro_instructions_);
+ if (operand.IsImmediate()) {
+ Mov(rd, -operand.immediate());
+ } else {
+ Sub(rd, AppropriateZeroRegFor(rd), operand, S);
+ }
+}
+
+
+void MacroAssembler::AddSubMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op) {
+ if ((operand.IsImmediate() && !IsImmAddSub(operand.immediate())) ||
+ (rn.IsZero() && !operand.IsShiftedRegister()) ||
+ (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
+ Register temp = AppropriateTempFor(rn);
+ Mov(temp, operand);
+ AddSub(rd, rn, temp, S, op);
+ } else {
+ AddSub(rd, rn, operand, S, op);
+ }
+}
+
+
+void MacroAssembler::Adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ ASSERT(allow_macro_instructions_);
+ AddSubWithCarryMacro(rd, rn, operand, S, ADC);
+}
+
+
+void MacroAssembler::Sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ ASSERT(allow_macro_instructions_);
+ AddSubWithCarryMacro(rd, rn, operand, S, SBC);
+}
+
+
+void MacroAssembler::Ngc(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S) {
+ ASSERT(allow_macro_instructions_);
+ Register zr = AppropriateZeroRegFor(rd);
+ Sbc(rd, zr, operand, S);
+}
+
+
+void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op) {
+ ASSERT(rd.size() == rn.size());
+
+ if (operand.IsImmediate() ||
+ (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
+ // Add/sub with carry (immediate or ROR shifted register.)
+ Register temp = AppropriateTempFor(rn);
+ Mov(temp, operand);
+ AddSubWithCarry(rd, rn, Operand(temp), S, op);
+ } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
+ // Add/sub with carry (shifted register).
+ ASSERT(operand.reg().size() == rd.size());
+ ASSERT(operand.shift() != ROR);
+ ASSERT(is_uintn(rd.size() == kXRegSize ? kXRegSizeLog2 : kWRegSizeLog2,
+ operand.shift_amount()));
+ Register temp = AppropriateTempFor(rn, operand.reg());
+ EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
+ AddSubWithCarry(rd, rn, Operand(temp), S, op);
+ } else if (operand.IsExtendedRegister()) {
+ // Add/sub with carry (extended register).
+ ASSERT(operand.reg().size() <= rd.size());
+ // Add/sub extended supports a shift <= 4. We want to support exactly the
+ // same modes.
+ ASSERT(operand.shift_amount() <= 4);
+ ASSERT(operand.reg().Is64Bits() ||
+ ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
+ Register temp = AppropriateTempFor(rn, operand.reg());
+ EmitExtendShift(temp, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ AddSubWithCarry(rd, rn, Operand(temp), S, op);
+ } else {
+ // The addressing mode is directly supported by the instruction.
+ AddSubWithCarry(rd, rn, operand, S, op);
+ }
+}
+
+
+#define DEFINE_FUNCTION(FN, REGTYPE, REG, OP) \
+void MacroAssembler::FN(const REGTYPE REG, const MemOperand& addr) { \
+ LoadStoreMacro(REG, addr, OP); \
+}
+LS_MACRO_LIST(DEFINE_FUNCTION)
+#undef DEFINE_FUNCTION
+
+void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op) {
+ int64_t offset = addr.offset();
+ LSDataSize size = CalcLSDataSize(op);
+
+ // Check if an immediate offset fits in the immediate field of the
+ // appropriate instruction. If not, emit two instructions to perform
+ // the operation.
+ if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
+ !IsImmLSUnscaled(offset)) {
+ // Immediate offset that can't be encoded using unsigned or unscaled
+ // addressing modes.
+ Register temp = AppropriateTempFor(addr.base());
+ Mov(temp, addr.offset());
+ LoadStore(rt, MemOperand(addr.base(), temp), op);
+ } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
+ // Post-index beyond unscaled addressing range.
+ LoadStore(rt, MemOperand(addr.base()), op);
+ Add(addr.base(), addr.base(), Operand(offset));
+ } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
+ // Pre-index beyond unscaled addressing range.
+ Add(addr.base(), addr.base(), Operand(offset));
+ LoadStore(rt, MemOperand(addr.base()), op);
+ } else {
+ // Encodable in one load/store instruction.
+ LoadStore(rt, addr, op);
+ }
+}
+
+
+void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
+ const CPURegister& src2, const CPURegister& src3) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
+ ASSERT(src0.IsValid());
+
+ int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
+ int size = src0.SizeInBytes();
+
+ PrepareForPush(count, size);
+ PushHelper(count, size, src0, src1, src2, src3);
+}
+
+
+void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
+ const CPURegister& dst2, const CPURegister& dst3) {
+ // It is not valid to pop into the same register more than once in one
+ // instruction, not even into the zero register.
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!AreAliased(dst0, dst1, dst2, dst3));
+ ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
+ ASSERT(dst0.IsValid());
+
+ int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
+ int size = dst0.SizeInBytes();
+
+ PrepareForPop(count, size);
+ PopHelper(count, size, dst0, dst1, dst2, dst3);
+}
+
+
+void MacroAssembler::PushCPURegList(CPURegList registers) {
+ int size = registers.RegisterSizeInBytes();
+
+ PrepareForPush(registers.Count(), size);
+ // Push up to four registers at a time because if the current stack pointer is
+ // sp and reg_size is 32, registers must be pushed in blocks of four in order
+ // to maintain the 16-byte alignment for sp.
+ ASSERT(allow_macro_instructions_);
+ while (!registers.IsEmpty()) {
+ int count_before = registers.Count();
+ const CPURegister& src0 = registers.PopHighestIndex();
+ const CPURegister& src1 = registers.PopHighestIndex();
+ const CPURegister& src2 = registers.PopHighestIndex();
+ const CPURegister& src3 = registers.PopHighestIndex();
+ int count = count_before - registers.Count();
+ PushHelper(count, size, src0, src1, src2, src3);
+ }
+}
+
+
+void MacroAssembler::PopCPURegList(CPURegList registers) {
+ int size = registers.RegisterSizeInBytes();
+
+ PrepareForPop(registers.Count(), size);
+ // Pop up to four registers at a time because if the current stack pointer is
+ // sp and reg_size is 32, registers must be pushed in blocks of four in order
+ // to maintain the 16-byte alignment for sp.
+ ASSERT(allow_macro_instructions_);
+ while (!registers.IsEmpty()) {
+ int count_before = registers.Count();
+ const CPURegister& dst0 = registers.PopLowestIndex();
+ const CPURegister& dst1 = registers.PopLowestIndex();
+ const CPURegister& dst2 = registers.PopLowestIndex();
+ const CPURegister& dst3 = registers.PopLowestIndex();
+ int count = count_before - registers.Count();
+ PopHelper(count, size, dst0, dst1, dst2, dst3);
+ }
+}
+
+
+void MacroAssembler::PushMultipleTimes(int count, Register src) {
+ ASSERT(allow_macro_instructions_);
+ int size = src.SizeInBytes();
+
+ PrepareForPush(count, size);
+ // Push up to four registers at a time if possible because if the current
+ // stack pointer is sp and the register size is 32, registers must be pushed
+ // in blocks of four in order to maintain the 16-byte alignment for sp.
+ while (count >= 4) {
+ PushHelper(4, size, src, src, src, src);
+ count -= 4;
+ }
+ if (count >= 2) {
+ PushHelper(2, size, src, src, NoReg, NoReg);
+ count -= 2;
+ }
+ if (count == 1) {
+ PushHelper(1, size, src, NoReg, NoReg, NoReg);
+ count -= 1;
+ }
+ ASSERT(count == 0);
+}
+
+
+void MacroAssembler::PushHelper(int count, int size,
+ const CPURegister& src0,
+ const CPURegister& src1,
+ const CPURegister& src2,
+ const CPURegister& src3) {
+ // Ensure that we don't unintentionally modify scratch or debug registers.
+ InstructionAccurateScope scope(this);
+
+ ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
+ ASSERT(size == src0.SizeInBytes());
+
+ // When pushing multiple registers, the store order is chosen such that
+ // Push(a, b) is equivalent to Push(a) followed by Push(b).
+ switch (count) {
+ case 1:
+ ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone());
+ str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
+ break;
+ case 2:
+ ASSERT(src2.IsNone() && src3.IsNone());
+ stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
+ break;
+ case 3:
+ ASSERT(src3.IsNone());
+ stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
+ str(src0, MemOperand(StackPointer(), 2 * size));
+ break;
+ case 4:
+ // Skip over 4 * size, then fill in the gap. This allows four W registers
+ // to be pushed using sp, whilst maintaining 16-byte alignment for sp at
+ // all times.
+ stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
+ stp(src1, src0, MemOperand(StackPointer(), 2 * size));
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void MacroAssembler::PopHelper(int count, int size,
+ const CPURegister& dst0,
+ const CPURegister& dst1,
+ const CPURegister& dst2,
+ const CPURegister& dst3) {
+ // Ensure that we don't unintentionally modify scratch or debug registers.
+ InstructionAccurateScope scope(this);
+
+ ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
+ ASSERT(size == dst0.SizeInBytes());
+
+ // When popping multiple registers, the load order is chosen such that
+ // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
+ switch (count) {
+ case 1:
+ ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
+ ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
+ break;
+ case 2:
+ ASSERT(dst2.IsNone() && dst3.IsNone());
+ ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
+ break;
+ case 3:
+ ASSERT(dst3.IsNone());
+ ldr(dst2, MemOperand(StackPointer(), 2 * size));
+ ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
+ break;
+ case 4:
+ // Load the higher addresses first, then load the lower addresses and skip
+ // the whole block in the second instruction. This allows four W registers
+ // to be popped using sp, whilst maintaining 16-byte alignment for sp at
+ // all times.
+ ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
+ ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void MacroAssembler::PrepareForPush(int count, int size) {
+ if (sp.Is(StackPointer())) {
+ // If the current stack pointer is sp, then it must be aligned to 16 bytes
+ // on entry and the total size of the specified registers must also be a
+ // multiple of 16 bytes.
+ ASSERT((count * size) % 16 == 0);
+ } else {
+ // Even if the current stack pointer is not the system stack pointer (sp),
+ // the system stack pointer will still be modified in order to comply with
+ // ABI rules about accessing memory below the system stack pointer.
+ BumpSystemStackPointer(count * size);
+ }
+}
+
+
+void MacroAssembler::PrepareForPop(int count, int size) {
+ USE(count);
+ USE(size);
+ if (sp.Is(StackPointer())) {
+ // If the current stack pointer is sp, then it must be aligned to 16 bytes
+ // on entry and the total size of the specified registers must also be a
+ // multiple of 16 bytes.
+ ASSERT((count * size) % 16 == 0);
+ }
+}
+
+void MacroAssembler::Poke(const Register& src, const Operand& offset) {
+ ASSERT(allow_macro_instructions_);
+ if (offset.IsImmediate()) {
+ ASSERT(offset.immediate() >= 0);
+ }
+
+ Str(src, MemOperand(StackPointer(), offset));
+}
+
+
+void MacroAssembler::Peek(const Register& dst, const Operand& offset) {
+ ASSERT(allow_macro_instructions_);
+ if (offset.IsImmediate()) {
+ ASSERT(offset.immediate() >= 0);
+ }
+
+ Ldr(dst, MemOperand(StackPointer(), offset));
+}
+
+
+void MacroAssembler::Claim(const Operand& size) {
+ ASSERT(allow_macro_instructions_);
+ if (size.IsImmediate()) {
+ ASSERT(size.immediate() >= 0);
+ if (sp.Is(StackPointer())) {
+ ASSERT((size.immediate() % 16) == 0);
+ }
+ }
+
+ if (!sp.Is(StackPointer())) {
+ BumpSystemStackPointer(size);
+ }
+
+ Sub(StackPointer(), StackPointer(), size);
+}
+
+
+void MacroAssembler::Drop(const Operand& size) {
+ ASSERT(allow_macro_instructions_);
+ if (size.IsImmediate()) {
+ ASSERT(size.immediate() >= 0);
+ if (sp.Is(StackPointer())) {
+ ASSERT((size.immediate() % 16) == 0);
+ }
+ }
+
+ Add(StackPointer(), StackPointer(), size);
+}
+
+
+void MacroAssembler::PushCalleeSavedRegisters() {
+ // Ensure that the macro-assembler doesn't use any scratch registers.
+ InstructionAccurateScope scope(this);
+
+ // This method must not be called unless the current stack pointer is sp.
+ ASSERT(sp.Is(StackPointer()));
+
+ MemOperand tos(sp, -2 * kXRegSizeInBytes, PreIndex);
+
+ stp(d14, d15, tos);
+ stp(d12, d13, tos);
+ stp(d10, d11, tos);
+ stp(d8, d9, tos);
+
+ stp(x29, x30, tos);
+ stp(x27, x28, tos);
+ stp(x25, x26, tos);
+ stp(x23, x24, tos);
+ stp(x21, x22, tos);
+ stp(x19, x20, tos);
+}
+
+
+void MacroAssembler::PopCalleeSavedRegisters() {
+ // Ensure that the macro-assembler doesn't use any scratch registers.
+ InstructionAccurateScope scope(this);
+
+ // This method must not be called unless the current stack pointer is sp.
+ ASSERT(sp.Is(StackPointer()));
+
+ MemOperand tos(sp, 2 * kXRegSizeInBytes, PostIndex);
+
+ ldp(x19, x20, tos);
+ ldp(x21, x22, tos);
+ ldp(x23, x24, tos);
+ ldp(x25, x26, tos);
+ ldp(x27, x28, tos);
+ ldp(x29, x30, tos);
+
+ ldp(d8, d9, tos);
+ ldp(d10, d11, tos);
+ ldp(d12, d13, tos);
+ ldp(d14, d15, tos);
+}
+
+void MacroAssembler::BumpSystemStackPointer(const Operand& space) {
+ ASSERT(!sp.Is(StackPointer()));
+ // TODO: Several callers rely on this not using scratch registers, so we use
+ // the assembler directly here. However, this means that large immediate
+ // values of 'space' cannot be handled.
+ InstructionAccurateScope scope(this);
+ sub(sp, StackPointer(), space);
+}
+
+
+// This is the main Printf implementation. All callee-saved registers are
+// preserved, but NZCV and the caller-saved registers may be clobbered.
+void MacroAssembler::PrintfNoPreserve(const char * format,
+ const CPURegister& arg0,
+ const CPURegister& arg1,
+ const CPURegister& arg2,
+ const CPURegister& arg3) {
+ // We cannot handle a caller-saved stack pointer. It doesn't make much sense
+ // in most cases anyway, so this restriction shouldn't be too serious.
+ ASSERT(!kCallerSaved.IncludesAliasOf(StackPointer()));
+
+ // We cannot print Tmp0() or Tmp1() as they're used internally by the macro
+ // assembler. We cannot print the stack pointer because it is typically used
+ // to preserve caller-saved registers (using other Printf variants which
+ // depend on this helper).
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg0));
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg1));
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg2));
+ ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg3));
+
+ static const int kMaxArgCount = 4;
+ // Assume that we have the maximum number of arguments until we know
+ // otherwise.
+ int arg_count = kMaxArgCount;
+
+ // The provided arguments.
+ CPURegister args[kMaxArgCount] = {arg0, arg1, arg2, arg3};
+
+ // The PCS registers where the arguments need to end up.
+ CPURegister pcs[kMaxArgCount];
+
+ // Promote FP arguments to doubles, and integer arguments to X registers.
+ // Note that FP and integer arguments cannot be mixed, but we'll check
+ // AreSameSizeAndType once we've processed these promotions.
+ for (int i = 0; i < kMaxArgCount; i++) {
+ if (args[i].IsRegister()) {
+ // Note that we use x1 onwards, because x0 will hold the format string.
+ pcs[i] = Register::XRegFromCode(i + 1);
+ // For simplicity, we handle all integer arguments as X registers. An X
+ // register argument takes the same space as a W register argument in the
+ // PCS anyway. The only limitation is that we must explicitly clear the
+ // top word for W register arguments as the callee will expect it to be
+ // clear.
+ if (!args[i].Is64Bits()) {
+ const Register& as_x = args[i].X();
+ And(as_x, as_x, 0x00000000ffffffff);
+ args[i] = as_x;
+ }
+ } else if (args[i].IsFPRegister()) {
+ pcs[i] = FPRegister::DRegFromCode(i);
+ // C and C++ varargs functions (such as printf) implicitly promote float
+ // arguments to doubles.
+ if (!args[i].Is64Bits()) {
+ FPRegister s(args[i]);
+ const FPRegister& as_d = args[i].D();
+ Fcvt(as_d, s);
+ args[i] = as_d;
+ }
+ } else {
+ // This is the first empty (NoCPUReg) argument, so use it to set the
+ // argument count and bail out.
+ arg_count = i;
+ break;
+ }
+ }
+ ASSERT((arg_count >= 0) && (arg_count <= kMaxArgCount));
+ // Check that every remaining argument is NoCPUReg.
+ for (int i = arg_count; i < kMaxArgCount; i++) {
+ ASSERT(args[i].IsNone());
+ }
+ ASSERT((arg_count == 0) || AreSameSizeAndType(args[0], args[1],
+ args[2], args[3],
+ pcs[0], pcs[1],
+ pcs[2], pcs[3]));
+
+ // Move the arguments into the appropriate PCS registers.
+ //
+ // Arranging an arbitrary list of registers into x1-x4 (or d0-d3) is
+ // surprisingly complicated.
+ //
+ // * For even numbers of registers, we push the arguments and then pop them
+ // into their final registers. This maintains 16-byte stack alignment in
+ // case sp is the stack pointer, since we're only handling X or D registers
+ // at this point.
+ //
+ // * For odd numbers of registers, we push and pop all but one register in
+ // the same way, but the left-over register is moved directly, since we
+ // can always safely move one register without clobbering any source.
+ if (arg_count >= 4) {
+ Push(args[3], args[2], args[1], args[0]);
+ } else if (arg_count >= 2) {
+ Push(args[1], args[0]);
+ }
+
+ if ((arg_count % 2) != 0) {
+ // Move the left-over register directly.
+ const CPURegister& leftover_arg = args[arg_count - 1];
+ const CPURegister& leftover_pcs = pcs[arg_count - 1];
+ if (leftover_arg.IsRegister()) {
+ Mov(Register(leftover_pcs), Register(leftover_arg));
+ } else {
+ Fmov(FPRegister(leftover_pcs), FPRegister(leftover_arg));
+ }
+ }
+
+ if (arg_count >= 4) {
+ Pop(pcs[0], pcs[1], pcs[2], pcs[3]);
+ } else if (arg_count >= 2) {
+ Pop(pcs[0], pcs[1]);
+ }
+
+ // Load the format string into x0, as per the procedure-call standard.
+ //
+ // To make the code as portable as possible, the format string is encoded
+ // directly in the instruction stream. It might be cleaner to encode it in a
+ // literal pool, but since Printf is usually used for debugging, it is
+ // beneficial for it to be minimally dependent on other features.
+ Label format_address;
+ Adr(x0, &format_address);
+
+ // Emit the format string directly in the instruction stream.
+ { BlockLiteralPoolScope scope(this);
+ Label after_data;
+ B(&after_data);
+ Bind(&format_address);
+ EmitStringData(format);
+ Unreachable();
+ Bind(&after_data);
+ }
+
+ // We don't pass any arguments on the stack, but we still need to align the C
+ // stack pointer to a 16-byte boundary for PCS compliance.
+ if (!sp.Is(StackPointer())) {
+ Bic(sp, StackPointer(), 0xf);
+ }
+
+ // Actually call printf. This part needs special handling for the simulator,
+ // since the system printf function will use a different instruction set and
+ // the procedure-call standard will not be compatible.
+#ifdef USE_SIMULATOR
+ { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
+ hlt(kPrintfOpcode);
+ dc32(pcs[0].type());
+ }
+#else
+ Mov(Tmp0(), reinterpret_cast<uintptr_t>(printf));
+ Blr(Tmp0());
+#endif
+}
+
+
+void MacroAssembler::Printf(const char * format,
+ const CPURegister& arg0,
+ const CPURegister& arg1,
+ const CPURegister& arg2,
+ const CPURegister& arg3) {
+ // Preserve all caller-saved registers as well as NZCV.
+ // If sp is the stack pointer, PushCPURegList asserts that the size of each
+ // list is a multiple of 16 bytes.
+ PushCPURegList(kCallerSaved);
+ PushCPURegList(kCallerSavedFP);
+ // Use Tmp0() as a scratch register. It is not accepted by Printf so it will
+ // never overlap an argument register.
+ Mrs(Tmp0(), NZCV);
+ Push(Tmp0(), xzr);
+
+ PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
+
+ Pop(xzr, Tmp0());
+ Msr(NZCV, Tmp0());
+ PopCPURegList(kCallerSavedFP);
+ PopCPURegList(kCallerSaved);
+}
+
+void MacroAssembler::Trace(TraceParameters parameters, TraceCommand command) {
+ ASSERT(allow_macro_instructions_);
+
+#ifdef USE_SIMULATOR
+ // The arguments to the trace pseudo instruction need to be contiguous in
+ // memory, so make sure we don't try to emit a literal pool.
+ InstructionAccurateScope scope(this, kTraceLength / kInstructionSize);
+
+ Label start;
+ bind(&start);
+
+ // Refer to instructions-a64.h for a description of the marker and its
+ // arguments.
+ hlt(kTraceOpcode);
+
+ ASSERT(SizeOfCodeGeneratedSince(&start) == kTraceParamsOffset);
+ dc32(parameters);
+
+ ASSERT(SizeOfCodeGeneratedSince(&start) == kTraceCommandOffset);
+ dc32(command);
+#else
+ // Emit nothing on real hardware.
+ USE(parameters);
+ USE(command);
+#endif
+}
+
+
+void MacroAssembler::Log(TraceParameters parameters) {
+ ASSERT(allow_macro_instructions_);
+
+#ifdef USE_SIMULATOR
+ // The arguments to the log pseudo instruction need to be contiguous in
+ // memory, so make sure we don't try to emit a literal pool.
+ InstructionAccurateScope scope(this, kLogLength / kInstructionSize);
+
+ Label start;
+ bind(&start);
+
+ // Refer to instructions-a64.h for a description of the marker and its
+ // arguments.
+ hlt(kLogOpcode);
+
+ ASSERT(SizeOfCodeGeneratedSince(&start) == kLogParamsOffset);
+ dc32(parameters);
+#else
+ // Emit nothing on real hardware.
+ USE(parameters);
+#endif
+}
+
+
+void MacroAssembler::EnableInstrumentation() {
+ ASSERT(!isprint(InstrumentStateEnable));
+ InstructionAccurateScope scope(this, 1);
+ movn(xzr, InstrumentStateEnable);
+}
+
+
+void MacroAssembler::DisableInstrumentation() {
+ ASSERT(!isprint(InstrumentStateDisable));
+ InstructionAccurateScope scope(this, 1);
+ movn(xzr, InstrumentStateDisable);
+}
+
+
+void MacroAssembler::AnnotateInstrumentation(const char* marker_name) {
+ ASSERT(strlen(marker_name) == 2);
+
+ // We allow only printable characters in the marker names. Unprintable
+ // characters are reserved for controlling features of the instrumentation.
+ ASSERT(isprint(marker_name[0]) && isprint(marker_name[1]));
+
+ InstructionAccurateScope scope(this, 1);
+ movn(xzr, (marker_name[1] << 8) | marker_name[0]);
+}
+
+} // namespace vixl
new file mode 100644
@@ -0,0 +1,1175 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_MACRO_ASSEMBLER_A64_H_
+#define VIXL_A64_MACRO_ASSEMBLER_A64_H_
+
+#include "globals.h"
+#include "a64/assembler-a64.h"
+#include "a64/debugger-a64.h"
+
+
+#define LS_MACRO_LIST(V) \
+ V(Ldrb, Register&, rt, LDRB_w) \
+ V(Strb, Register&, rt, STRB_w) \
+ V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
+ V(Ldrh, Register&, rt, LDRH_w) \
+ V(Strh, Register&, rt, STRH_w) \
+ V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
+ V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
+ V(Str, CPURegister&, rt, StoreOpFor(rt)) \
+ V(Ldrsw, Register&, rt, LDRSW_x)
+
+namespace vixl {
+
+class MacroAssembler : public Assembler {
+ public:
+ MacroAssembler(byte * buffer, unsigned buffer_size)
+ : Assembler(buffer, buffer_size),
+#ifdef DEBUG
+ allow_macro_instructions_(true),
+#endif
+ sp_(sp), tmp0_(ip0), tmp1_(ip1), fptmp0_(d31) {}
+
+ // Logical macros.
+ void And(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+ void Bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+ void Orr(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ void Orn(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ void Eor(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ void Eon(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+ void Tst(const Register& rn, const Operand& operand);
+ void LogicalMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ LogicalOp op);
+
+ // Add and sub macros.
+ void Add(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+ void Sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+ void Cmn(const Register& rn, const Operand& operand);
+ void Cmp(const Register& rn, const Operand& operand);
+ void Neg(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+ void AddSubMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op);
+
+ // Add/sub with carry macros.
+ void Adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+ void Sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+ void Ngc(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+ void AddSubWithCarryMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op);
+
+ // Move macros.
+ void Mov(const Register& rd, uint64_t imm);
+ void Mov(const Register& rd, const Operand& operand);
+ void Mvn(const Register& rd, uint64_t imm) {
+ Mov(rd, ~imm);
+ };
+ void Mvn(const Register& rd, const Operand& operand);
+ bool IsImmMovn(uint64_t imm, unsigned reg_size);
+ bool IsImmMovz(uint64_t imm, unsigned reg_size);
+
+ // Conditional compare macros.
+ void Ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+ void Ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+ void ConditionalCompareMacro(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op);
+
+ // Load/store macros.
+#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
+ void FN(const REGTYPE REG, const MemOperand& addr);
+ LS_MACRO_LIST(DECLARE_FUNCTION)
+#undef DECLARE_FUNCTION
+
+ void LoadStoreMacro(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op);
+
+ // Push or pop up to 4 registers of the same width to or from the stack,
+ // using the current stack pointer as set by SetStackPointer.
+ //
+ // If an argument register is 'NoReg', all further arguments are also assumed
+ // to be 'NoReg', and are thus not pushed or popped.
+ //
+ // Arguments are ordered such that "Push(a, b);" is functionally equivalent
+ // to "Push(a); Push(b);".
+ //
+ // It is valid to push the same register more than once, and there is no
+ // restriction on the order in which registers are specified.
+ //
+ // It is not valid to pop into the same register more than once in one
+ // operation, not even into the zero register.
+ //
+ // If the current stack pointer (as set by SetStackPointer) is sp, then it
+ // must be aligned to 16 bytes on entry and the total size of the specified
+ // registers must also be a multiple of 16 bytes.
+ //
+ // Even if the current stack pointer is not the system stack pointer (sp),
+ // Push (and derived methods) will still modify the system stack pointer in
+ // order to comply with ABI rules about accessing memory below the system
+ // stack pointer.
+ //
+ // Other than the registers passed into Pop, the stack pointer and (possibly)
+ // the system stack pointer, these methods do not modify any other registers.
+ // Scratch registers such as Tmp0() and Tmp1() are preserved.
+ void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
+ const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
+ void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
+ const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
+
+ // Alternative forms of Push and Pop, taking a RegList or CPURegList that
+ // specifies the registers that are to be pushed or popped. Higher-numbered
+ // registers are associated with higher memory addresses (as in the A32 push
+ // and pop instructions).
+ //
+ // (Push|Pop)SizeRegList allow you to specify the register size as a
+ // parameter. Only kXRegSize, kWRegSize, kDRegSize and kSRegSize are
+ // supported.
+ //
+ // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
+ void PushCPURegList(CPURegList registers);
+ void PopCPURegList(CPURegList registers);
+
+ void PushSizeRegList(RegList registers, unsigned reg_size,
+ CPURegister::RegisterType type = CPURegister::kRegister) {
+ PushCPURegList(CPURegList(type, reg_size, registers));
+ }
+ void PopSizeRegList(RegList registers, unsigned reg_size,
+ CPURegister::RegisterType type = CPURegister::kRegister) {
+ PopCPURegList(CPURegList(type, reg_size, registers));
+ }
+ void PushXRegList(RegList regs) {
+ PushSizeRegList(regs, kXRegSize);
+ }
+ void PopXRegList(RegList regs) {
+ PopSizeRegList(regs, kXRegSize);
+ }
+ void PushWRegList(RegList regs) {
+ PushSizeRegList(regs, kWRegSize);
+ }
+ void PopWRegList(RegList regs) {
+ PopSizeRegList(regs, kWRegSize);
+ }
+ inline void PushDRegList(RegList regs) {
+ PushSizeRegList(regs, kDRegSize, CPURegister::kFPRegister);
+ }
+ inline void PopDRegList(RegList regs) {
+ PopSizeRegList(regs, kDRegSize, CPURegister::kFPRegister);
+ }
+ inline void PushSRegList(RegList regs) {
+ PushSizeRegList(regs, kSRegSize, CPURegister::kFPRegister);
+ }
+ inline void PopSRegList(RegList regs) {
+ PopSizeRegList(regs, kSRegSize, CPURegister::kFPRegister);
+ }
+
+ // Push the specified register 'count' times.
+ void PushMultipleTimes(int count, Register src);
+
+ // Poke 'src' onto the stack. The offset is in bytes.
+ //
+ // If the current stack pointer (as set by SetStackPointer) is sp, then sp
+ // must be aligned to 16 bytes.
+ void Poke(const Register& src, const Operand& offset);
+
+ // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
+ //
+ // If the current stack pointer (as set by SetStackPointer) is sp, then sp
+ // must be aligned to 16 bytes.
+ void Peek(const Register& dst, const Operand& offset);
+
+ // Claim or drop stack space without actually accessing memory.
+ //
+ // If the current stack pointer (as set by SetStackPointer) is sp, then it
+ // must be aligned to 16 bytes and the size claimed or dropped must be a
+ // multiple of 16 bytes.
+ void Claim(const Operand& size);
+ void Drop(const Operand& size);
+
+ // Preserve the callee-saved registers (as defined by AAPCS64).
+ //
+ // Higher-numbered registers are pushed before lower-numbered registers, and
+ // thus get higher addresses.
+ // Floating-point registers are pushed before general-purpose registers, and
+ // thus get higher addresses.
+ //
+ // This method must not be called unless StackPointer() is sp, and it is
+ // aligned to 16 bytes.
+ void PushCalleeSavedRegisters();
+
+ // Restore the callee-saved registers (as defined by AAPCS64).
+ //
+ // Higher-numbered registers are popped after lower-numbered registers, and
+ // thus come from higher addresses.
+ // Floating-point registers are popped after general-purpose registers, and
+ // thus come from higher addresses.
+ //
+ // This method must not be called unless StackPointer() is sp, and it is
+ // aligned to 16 bytes.
+ void PopCalleeSavedRegisters();
+
+ // Remaining instructions are simple pass-through calls to the assembler.
+ void Adr(const Register& rd, Label* label) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ adr(rd, label);
+ }
+ void Asr(const Register& rd, const Register& rn, unsigned shift) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ asr(rd, rn, shift);
+ }
+ void Asr(const Register& rd, const Register& rn, const Register& rm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ asrv(rd, rn, rm);
+ }
+ void B(Label* label) {
+ b(label);
+ }
+ void B(Label* label, Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT((cond != al) && (cond != nv));
+ b(label, cond);
+ }
+ void Bfi(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ bfi(rd, rn, lsb, width);
+ }
+ void Bfxil(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ bfxil(rd, rn, lsb, width);
+ }
+ void Bind(Label* label) {
+ ASSERT(allow_macro_instructions_);
+ bind(label);
+ }
+ void Bl(Label* label) {
+ ASSERT(allow_macro_instructions_);
+ bl(label);
+ }
+ void Blr(const Register& xn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!xn.IsZero());
+ blr(xn);
+ }
+ void Br(const Register& xn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!xn.IsZero());
+ br(xn);
+ }
+ void Brk(int code = 0) {
+ ASSERT(allow_macro_instructions_);
+ brk(code);
+ }
+ void Cbnz(const Register& rt, Label* label) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rt.IsZero());
+ cbnz(rt, label);
+ }
+ void Cbz(const Register& rt, Label* label) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rt.IsZero());
+ cbz(rt, label);
+ }
+ void Cinc(const Register& rd, const Register& rn, Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ cinc(rd, rn, cond);
+ }
+ void Cinv(const Register& rd, const Register& rn, Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ cinv(rd, rn, cond);
+ }
+ void Cls(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ cls(rd, rn);
+ }
+ void Clz(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ clz(rd, rn);
+ }
+ void Cneg(const Register& rd, const Register& rn, Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ cneg(rd, rn, cond);
+ }
+ void Csel(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ ASSERT((cond != al) && (cond != nv));
+ csel(rd, rn, rm, cond);
+ }
+ void Cset(const Register& rd, Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ cset(rd, cond);
+ }
+ void Csetm(const Register& rd, Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ csetm(rd, cond);
+ }
+ void Csinc(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ ASSERT((cond != al) && (cond != nv));
+ csinc(rd, rn, rm, cond);
+ }
+ void Csinv(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ ASSERT((cond != al) && (cond != nv));
+ csinv(rd, rn, rm, cond);
+ }
+ void Csneg(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ ASSERT((cond != al) && (cond != nv));
+ csneg(rd, rn, rm, cond);
+ }
+ void Extr(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ unsigned lsb) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ extr(rd, rn, rm, lsb);
+ }
+ void Fabs(const FPRegister& fd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ fabs(fd, fn);
+ }
+ void Fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) {
+ ASSERT(allow_macro_instructions_);
+ fadd(fd, fn, fm);
+ }
+ void Fccmp(const FPRegister& fn,
+ const FPRegister& fm,
+ StatusFlags nzcv,
+ Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT((cond != al) && (cond != nv));
+ fccmp(fn, fm, nzcv, cond);
+ }
+ void Fcmp(const FPRegister& fn, const FPRegister& fm) {
+ ASSERT(allow_macro_instructions_);
+ fcmp(fn, fm);
+ }
+ void Fcmp(const FPRegister& fn, double value) {
+ ASSERT(allow_macro_instructions_);
+ if (value != 0.0) {
+ FPRegister tmp = AppropriateTempFor(fn);
+ Fmov(tmp, value);
+ fcmp(fn, tmp);
+ } else {
+ fcmp(fn, value);
+ }
+ }
+ void Fcsel(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ Condition cond) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT((cond != al) && (cond != nv));
+ fcsel(fd, fn, fm, cond);
+ }
+ void Fcvt(const FPRegister& fd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ fcvt(fd, fn);
+ }
+ void Fcvtms(const Register& rd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ fcvtms(rd, fn);
+ }
+ void Fcvtmu(const Register& rd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ fcvtmu(rd, fn);
+ }
+ void Fcvtns(const Register& rd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ fcvtns(rd, fn);
+ }
+ void Fcvtnu(const Register& rd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ fcvtnu(rd, fn);
+ }
+ void Fcvtzs(const Register& rd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ fcvtzs(rd, fn);
+ }
+ void Fcvtzu(const Register& rd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ fcvtzu(rd, fn);
+ }
+ void Fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) {
+ ASSERT(allow_macro_instructions_);
+ fdiv(fd, fn, fm);
+ }
+ void Fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) {
+ ASSERT(allow_macro_instructions_);
+ fmax(fd, fn, fm);
+ }
+ void Fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) {
+ ASSERT(allow_macro_instructions_);
+ fmin(fd, fn, fm);
+ }
+ void Fmov(FPRegister fd, FPRegister fn) {
+ ASSERT(allow_macro_instructions_);
+ // Only emit an instruction if fd and fn are different, and they are both D
+ // registers. fmov(s0, s0) is not a no-op because it clears the top word of
+ // d0. Technically, fmov(d0, d0) is not a no-op either because it clears
+ // the top of q0, but FPRegister does not currently support Q registers.
+ if (!fd.Is(fn) || !fd.Is64Bits()) {
+ fmov(fd, fn);
+ }
+ }
+ void Fmov(FPRegister fd, Register rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rn.IsZero());
+ fmov(fd, rn);
+ }
+ void Fmov(FPRegister fd, double imm) {
+ ASSERT(allow_macro_instructions_);
+ fmov(fd, imm);
+ }
+ void Fmov(Register rd, FPRegister fn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ fmov(rd, fn);
+ }
+ void Fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) {
+ ASSERT(allow_macro_instructions_);
+ fmul(fd, fn, fm);
+ }
+ void Fmsub(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa) {
+ ASSERT(allow_macro_instructions_);
+ fmsub(fd, fn, fm, fa);
+ }
+ void Fneg(const FPRegister& fd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ fneg(fd, fn);
+ }
+ void Frintn(const FPRegister& fd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ frintn(fd, fn);
+ }
+ void Frintz(const FPRegister& fd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ frintz(fd, fn);
+ }
+ void Fsqrt(const FPRegister& fd, const FPRegister& fn) {
+ ASSERT(allow_macro_instructions_);
+ fsqrt(fd, fn);
+ }
+ void Fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm) {
+ ASSERT(allow_macro_instructions_);
+ fsub(fd, fn, fm);
+ }
+ void Hint(SystemHint code) {
+ ASSERT(allow_macro_instructions_);
+ hint(code);
+ }
+ void Hlt(int code) {
+ ASSERT(allow_macro_instructions_);
+ hlt(code);
+ }
+ void Ldnp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& src) {
+ ASSERT(allow_macro_instructions_);
+ ldnp(rt, rt2, src);
+ }
+ void Ldp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& src) {
+ ASSERT(allow_macro_instructions_);
+ ldp(rt, rt2, src);
+ }
+ void Ldpsw(const Register& rt, const Register& rt2, const MemOperand& src) {
+ ASSERT(allow_macro_instructions_);
+ ldpsw(rt, rt2, src);
+ }
+ void Ldr(const FPRegister& ft, double imm) {
+ ASSERT(allow_macro_instructions_);
+ ldr(ft, imm);
+ }
+ void Ldr(const Register& rt, uint64_t imm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rt.IsZero());
+ ldr(rt, imm);
+ }
+ void Lsl(const Register& rd, const Register& rn, unsigned shift) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ lsl(rd, rn, shift);
+ }
+ void Lsl(const Register& rd, const Register& rn, const Register& rm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ lslv(rd, rn, rm);
+ }
+ void Lsr(const Register& rd, const Register& rn, unsigned shift) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ lsr(rd, rn, shift);
+ }
+ void Lsr(const Register& rd, const Register& rn, const Register& rm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ lsrv(rd, rn, rm);
+ }
+ void Madd(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ ASSERT(!ra.IsZero());
+ madd(rd, rn, rm, ra);
+ }
+ void Mneg(const Register& rd, const Register& rn, const Register& rm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ mneg(rd, rn, rm);
+ }
+ void Mov(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ mov(rd, rn);
+ }
+ void Mrs(const Register& rt, SystemRegister sysreg) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rt.IsZero());
+ mrs(rt, sysreg);
+ }
+ void Msr(SystemRegister sysreg, const Register& rt) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rt.IsZero());
+ msr(sysreg, rt);
+ }
+ void Msub(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ ASSERT(!ra.IsZero());
+ msub(rd, rn, rm, ra);
+ }
+ void Mul(const Register& rd, const Register& rn, const Register& rm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ mul(rd, rn, rm);
+ }
+ void Nop() {
+ ASSERT(allow_macro_instructions_);
+ nop();
+ }
+ void Rbit(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ rbit(rd, rn);
+ }
+ void Ret(const Register& xn = lr) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!xn.IsZero());
+ ret(xn);
+ }
+ void Rev(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ rev(rd, rn);
+ }
+ void Rev16(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ rev16(rd, rn);
+ }
+ void Rev32(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ rev32(rd, rn);
+ }
+ void Ror(const Register& rd, const Register& rs, unsigned shift) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rs.IsZero());
+ ror(rd, rs, shift);
+ }
+ void Ror(const Register& rd, const Register& rn, const Register& rm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ rorv(rd, rn, rm);
+ }
+ void Sbfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ sbfiz(rd, rn, lsb, width);
+ }
+ void Sbfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ sbfx(rd, rn, lsb, width);
+ }
+ void Scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rn.IsZero());
+ scvtf(fd, rn, fbits);
+ }
+ void Sdiv(const Register& rd, const Register& rn, const Register& rm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ sdiv(rd, rn, rm);
+ }
+ void Smaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ ASSERT(!ra.IsZero());
+ smaddl(rd, rn, rm, ra);
+ }
+ void Smsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ ASSERT(!ra.IsZero());
+ smsubl(rd, rn, rm, ra);
+ }
+ void Smull(const Register& rd, const Register& rn, const Register& rm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ smull(rd, rn, rm);
+ }
+ void Smulh(const Register& xd, const Register& xn, const Register& xm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!xd.IsZero());
+ ASSERT(!xn.IsZero());
+ ASSERT(!xm.IsZero());
+ smulh(xd, xn, xm);
+ }
+ void Stnp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& dst) {
+ ASSERT(allow_macro_instructions_);
+ stnp(rt, rt2, dst);
+ }
+ void Stp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& dst) {
+ ASSERT(allow_macro_instructions_);
+ stp(rt, rt2, dst);
+ }
+ void Sxtb(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ sxtb(rd, rn);
+ }
+ void Sxth(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ sxth(rd, rn);
+ }
+ void Sxtw(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ sxtw(rd, rn);
+ }
+ void Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rt.IsZero());
+ tbnz(rt, bit_pos, label);
+ }
+ void Tbz(const Register& rt, unsigned bit_pos, Label* label) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rt.IsZero());
+ tbz(rt, bit_pos, label);
+ }
+ void Ubfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ubfiz(rd, rn, lsb, width);
+ }
+ void Ubfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ubfx(rd, rn, lsb, width);
+ }
+ void Ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rn.IsZero());
+ ucvtf(fd, rn, fbits);
+ }
+ void Udiv(const Register& rd, const Register& rn, const Register& rm) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ udiv(rd, rn, rm);
+ }
+ void Umaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ ASSERT(!ra.IsZero());
+ umaddl(rd, rn, rm, ra);
+ }
+ void Umsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ ASSERT(!rm.IsZero());
+ ASSERT(!ra.IsZero());
+ umsubl(rd, rn, rm, ra);
+ }
+ void Unreachable() {
+ ASSERT(allow_macro_instructions_);
+#ifdef USE_SIMULATOR
+ hlt(kUnreachableOpcode);
+#else
+ // Branch to 0 to generate a segfault.
+ // lr - kInstructionSize is the address of the offending instruction.
+ blr(xzr);
+#endif
+ }
+ void Uxtb(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ uxtb(rd, rn);
+ }
+ void Uxth(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ uxth(rd, rn);
+ }
+ void Uxtw(const Register& rd, const Register& rn) {
+ ASSERT(allow_macro_instructions_);
+ ASSERT(!rd.IsZero());
+ ASSERT(!rn.IsZero());
+ uxtw(rd, rn);
+ }
+
+ // Push the system stack pointer (sp) down to allow the same to be done to
+ // the current stack pointer (according to StackPointer()). This must be
+ // called _before_ accessing the memory.
+ //
+ // This is necessary when pushing or otherwise adding things to the stack, to
+ // satisfy the AAPCS64 constraint that the memory below the system stack
+ // pointer is not accessed.
+ //
+ // This method asserts that StackPointer() is not sp, since the call does
+ // not make sense in that context.
+ //
+ // TODO: This method can only accept values of 'space' that can be encoded in
+ // one instruction. Refer to the implementation for details.
+ void BumpSystemStackPointer(const Operand& space);
+
+#if DEBUG
+ void SetAllowMacroInstructions(bool value) {
+ allow_macro_instructions_ = value;
+ }
+
+ bool AllowMacroInstructions() const {
+ return allow_macro_instructions_;
+ }
+#endif
+
+ // Set the current stack pointer, but don't generate any code.
+ // Note that this does not directly affect LastStackPointer().
+ void SetStackPointer(const Register& stack_pointer) {
+ ASSERT(!AreAliased(stack_pointer, Tmp0(), Tmp1()));
+ sp_ = stack_pointer;
+ }
+
+ // Return the current stack pointer, as set by SetStackPointer.
+ const Register& StackPointer() const {
+ return sp_;
+ }
+
+ // Set the registers used internally by the MacroAssembler as scratch
+ // registers. These registers are used to implement behaviours which are not
+ // directly supported by A64, and where an intermediate result is required.
+ //
+ // Both tmp0 and tmp1 may be set to any X register except for xzr, sp,
+ // and StackPointer(). Also, they must not be the same register (though they
+ // may both be NoReg).
+ //
+ // It is valid to set either or both of these registers to NoReg if you don't
+ // want the MacroAssembler to use any scratch registers. In a debug build, the
+ // Assembler will assert that any registers it uses are valid. Be aware that
+ // this check is not present in release builds. If this is a problem, use the
+ // Assembler directly.
+ void SetScratchRegisters(const Register& tmp0, const Register& tmp1) {
+ ASSERT(!AreAliased(xzr, sp, tmp0, tmp1));
+ ASSERT(!AreAliased(StackPointer(), tmp0, tmp1));
+ tmp0_ = tmp0;
+ tmp1_ = tmp1;
+ }
+
+ const Register& Tmp0() const {
+ return tmp0_;
+ }
+
+ const Register& Tmp1() const {
+ return tmp1_;
+ }
+
+ void SetFPScratchRegister(const FPRegister& fptmp0) {
+ fptmp0_ = fptmp0;
+ }
+
+ const FPRegister& FPTmp0() const {
+ return fptmp0_;
+ }
+
+ const Register AppropriateTempFor(
+ const Register& target,
+ const CPURegister& forbidden = NoCPUReg) const {
+ Register candidate = forbidden.Is(Tmp0()) ? Tmp1() : Tmp0();
+ ASSERT(!candidate.Is(target));
+ return Register(candidate.code(), target.size());
+ }
+
+ const FPRegister AppropriateTempFor(
+ const FPRegister& target,
+ const CPURegister& forbidden = NoCPUReg) const {
+ USE(forbidden);
+ FPRegister candidate = FPTmp0();
+ ASSERT(!candidate.Is(forbidden));
+ ASSERT(!candidate.Is(target));
+ return FPRegister(candidate.code(), target.size());
+ }
+
+ // Like printf, but print at run-time from generated code.
+ //
+ // The caller must ensure that arguments for floating-point placeholders
+ // (such as %e, %f or %g) are FPRegisters, and that arguments for integer
+ // placeholders are Registers.
+ //
+ // A maximum of four arguments may be given to any single Printf call. The
+ // arguments must be of the same type, but they do not need to have the same
+ // size.
+ //
+ // The following registers cannot be printed:
+ // Tmp0(), Tmp1(), StackPointer(), sp.
+ //
+ // This function automatically preserves caller-saved registers so that
+ // calling code can use Printf at any point without having to worry about
+ // corruption. The preservation mechanism generates a lot of code. If this is
+ // a problem, preserve the important registers manually and then call
+ // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
+ // implicitly preserved.
+ //
+ // This function assumes (and asserts) that the current stack pointer is
+ // callee-saved, not caller-saved. This is most likely the case anyway, as a
+ // caller-saved stack pointer doesn't make a lot of sense.
+ void Printf(const char * format,
+ const CPURegister& arg0 = NoCPUReg,
+ const CPURegister& arg1 = NoCPUReg,
+ const CPURegister& arg2 = NoCPUReg,
+ const CPURegister& arg3 = NoCPUReg);
+
+ // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
+ //
+ // The return code from the system printf call will be returned in x0.
+ void PrintfNoPreserve(const char * format,
+ const CPURegister& arg0 = NoCPUReg,
+ const CPURegister& arg1 = NoCPUReg,
+ const CPURegister& arg2 = NoCPUReg,
+ const CPURegister& arg3 = NoCPUReg);
+
+ // Trace control when running the debug simulator.
+ //
+ // For example:
+ //
+ // __ Trace(LOG_REGS, TRACE_ENABLE);
+ // Will add registers to the trace if it wasn't already the case.
+ //
+ // __ Trace(LOG_DISASM, TRACE_DISABLE);
+ // Will stop logging disassembly. It has no effect if the disassembly wasn't
+ // already being logged.
+ void Trace(TraceParameters parameters, TraceCommand command);
+
+ // Log the requested data independently of what is being traced.
+ //
+ // For example:
+ //
+ // __ Log(LOG_FLAGS)
+ // Will output the flags.
+ void Log(TraceParameters parameters);
+
+ // Enable or disable instrumentation when an Instrument visitor is attached to
+ // the simulator.
+ void EnableInstrumentation();
+ void DisableInstrumentation();
+
+ // Add a marker to the instrumentation data produced by an Instrument visitor.
+ // The name is a two character string that will be attached to the marker in
+ // the output data.
+ void AnnotateInstrumentation(const char* marker_name);
+
+ private:
+ // The actual Push and Pop implementations. These don't generate any code
+ // other than that required for the push or pop. This allows
+ // (Push|Pop)CPURegList to bundle together setup code for a large block of
+ // registers.
+ //
+ // Note that size is per register, and is specified in bytes.
+ void PushHelper(int count, int size,
+ const CPURegister& src0, const CPURegister& src1,
+ const CPURegister& src2, const CPURegister& src3);
+ void PopHelper(int count, int size,
+ const CPURegister& dst0, const CPURegister& dst1,
+ const CPURegister& dst2, const CPURegister& dst3);
+
+ // Perform necessary maintenance operations before a push or pop.
+ //
+ // Note that size is per register, and is specified in bytes.
+ void PrepareForPush(int count, int size);
+ void PrepareForPop(int count, int size);
+
+#if DEBUG
+ // Tell whether any of the macro instruction can be used. When false the
+ // MacroAssembler will assert if a method which can emit a variable number
+ // of instructions is called.
+ bool allow_macro_instructions_;
+#endif
+
+ // The register to use as a stack pointer for stack operations.
+ Register sp_;
+
+ // Scratch registers used internally by the MacroAssembler.
+ Register tmp0_;
+ Register tmp1_;
+ FPRegister fptmp0_;
+};
+
+
+// Use this scope when you need a one-to-one mapping between methods and
+// instructions. This scope prevents the MacroAssembler from being called and
+// literal pools from being emitted. It also asserts the number of instructions
+// emitted is what you specified when creating the scope.
+class InstructionAccurateScope {
+ public:
+ explicit InstructionAccurateScope(MacroAssembler* masm)
+ : masm_(masm), size_(0) {
+ masm_->BlockLiteralPool();
+#ifdef DEBUG
+ old_allow_macro_instructions_ = masm_->AllowMacroInstructions();
+ masm_->SetAllowMacroInstructions(false);
+#endif
+ }
+
+ InstructionAccurateScope(MacroAssembler* masm, int count)
+ : masm_(masm), size_(count * kInstructionSize) {
+ masm_->BlockLiteralPool();
+#ifdef DEBUG
+ masm_->bind(&start_);
+ old_allow_macro_instructions_ = masm_->AllowMacroInstructions();
+ masm_->SetAllowMacroInstructions(false);
+#endif
+ }
+
+ ~InstructionAccurateScope() {
+ masm_->ReleaseLiteralPool();
+#ifdef DEBUG
+ if (start_.IsBound()) {
+ ASSERT(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
+ }
+ masm_->SetAllowMacroInstructions(old_allow_macro_instructions_);
+#endif
+ }
+
+ private:
+ MacroAssembler* masm_;
+ uint64_t size_;
+#ifdef DEBUG
+ Label start_;
+ bool old_allow_macro_instructions_;
+#endif
+};
+
+
+} // namespace vixl
+
+#endif // VIXL_A64_MACRO_ASSEMBLER_A64_H_
new file mode 100644
@@ -0,0 +1,2077 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <math.h>
+#include "a64/simulator-a64.h"
+
+namespace vixl {
+
+const Instruction* Simulator::kEndOfSimAddress = NULL;
+
+void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) {
+ int width = msb - lsb + 1;
+ ASSERT(is_uintn(width, bits) || is_intn(width, bits));
+
+ bits <<= lsb;
+ uint32_t mask = ((1 << width) - 1) << lsb;
+ ASSERT((mask & write_ignore_mask_) == 0);
+
+ value_ = (value_ & ~mask) | (bits & mask);
+}
+
+
+SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) {
+ switch (id) {
+ case NZCV:
+ return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask);
+ case FPCR:
+ return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask);
+ default:
+ UNREACHABLE();
+ return SimSystemRegister();
+ }
+}
+
+
+Simulator::Simulator(Decoder* decoder, FILE* stream) {
+ // Ensure shift operations act as the simulator expects.
+ ASSERT((static_cast<int32_t>(-1) >> 1) == -1);
+ ASSERT((static_cast<uint32_t>(-1) >> 1) == 0x7FFFFFFF);
+
+ // Setup the decoder.
+ decoder_ = decoder;
+ decoder_->AppendVisitor(this);
+
+ ResetState();
+
+ // Allocate and setup the simulator stack.
+ stack_ = reinterpret_cast<byte*>(malloc(stack_size_));
+ stack_limit_ = stack_ + stack_protection_size_;
+ byte* tos = stack_ + stack_size_ - stack_protection_size_;
+ // The stack pointer must be 16 bytes aligned.
+ set_sp(reinterpret_cast<int64_t>(tos) & ~0xfUL);
+
+ stream_ = stream;
+ print_disasm_ = new PrintDisassembler(stream_);
+ coloured_trace_ = false;
+ disasm_trace_ = false;
+
+ // Set the sample period to 10, as the VIXL examples and tests are short.
+ instrumentation_ = new Instrument("vixl_stats.csv", 10);
+}
+
+
+void Simulator::ResetState() {
+ // Reset the system registers.
+ nzcv_ = SimSystemRegister::DefaultValueFor(NZCV);
+ fpcr_ = SimSystemRegister::DefaultValueFor(FPCR);
+
+ // Reset registers to 0.
+ pc_ = NULL;
+ pc_modified_ = false;
+ for (unsigned i = 0; i < kNumberOfRegisters; i++) {
+ set_xreg(i, 0xbadbeef);
+ }
+ for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
+ // Set FP registers to a value that is NaN in both 32-bit and 64-bit FP.
+ set_dreg_bits(i, 0x7ff000007f800001UL);
+ }
+ // Returning to address 0 exits the Simulator.
+ set_lr(reinterpret_cast<int64_t>(kEndOfSimAddress));
+}
+
+
+Simulator::~Simulator() {
+ free(stack_);
+ // The decoder may outlive the simulator.
+ decoder_->RemoveVisitor(print_disasm_);
+ delete print_disasm_;
+
+ decoder_->RemoveVisitor(instrumentation_);
+ delete instrumentation_;
+}
+
+
+void Simulator::Run() {
+ while (pc_ != kEndOfSimAddress) {
+ ExecuteInstruction();
+ }
+}
+
+
+void Simulator::RunFrom(Instruction* first) {
+ pc_ = first;
+ pc_modified_ = false;
+ Run();
+}
+
+
+const char* Simulator::xreg_names[] = {
+"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
+"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
+"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
+"x24", "x25", "x26", "x27", "x28", "x29", "lr", "xzr", "sp"};
+
+
+const char* Simulator::wreg_names[] = {
+"w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7",
+"w8", "w9", "w10", "w11", "w12", "w13", "w14", "w15",
+"w16", "w17", "w18", "w19", "w20", "w21", "w22", "w23",
+"w24", "w25", "w26", "w27", "w28", "w29", "w30", "wzr", "wsp"};
+
+const char* Simulator::sreg_names[] = {
+"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
+"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
+"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
+"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"};
+
+const char* Simulator::dreg_names[] = {
+"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
+"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
+"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
+"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"};
+
+const char* Simulator::vreg_names[] = {
+"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
+"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
+"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
+"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"};
+
+
+
+const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) {
+ ASSERT(code < kNumberOfRegisters);
+ // If the code represents the stack pointer, index the name after zr.
+ if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
+ code = kZeroRegCode + 1;
+ }
+ return wreg_names[code];
+}
+
+
+const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) {
+ ASSERT(code < kNumberOfRegisters);
+ // If the code represents the stack pointer, index the name after zr.
+ if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
+ code = kZeroRegCode + 1;
+ }
+ return xreg_names[code];
+}
+
+
+const char* Simulator::SRegNameForCode(unsigned code) {
+ ASSERT(code < kNumberOfFPRegisters);
+ return sreg_names[code];
+}
+
+
+const char* Simulator::DRegNameForCode(unsigned code) {
+ ASSERT(code < kNumberOfFPRegisters);
+ return dreg_names[code];
+}
+
+
+const char* Simulator::VRegNameForCode(unsigned code) {
+ ASSERT(code < kNumberOfFPRegisters);
+ return vreg_names[code];
+}
+
+
+// Helpers ---------------------------------------------------------------------
+int64_t Simulator::AddWithCarry(unsigned reg_size,
+ bool set_flags,
+ int64_t src1,
+ int64_t src2,
+ int64_t carry_in) {
+ ASSERT((carry_in == 0) || (carry_in == 1));
+ ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize));
+
+ uint64_t u1, u2;
+ int64_t result;
+ int64_t signed_sum = src1 + src2 + carry_in;
+
+ uint32_t N, Z, C, V;
+
+ if (reg_size == kWRegSize) {
+ u1 = static_cast<uint64_t>(src1) & kWRegMask;
+ u2 = static_cast<uint64_t>(src2) & kWRegMask;
+
+ result = signed_sum & kWRegMask;
+ // Compute the C flag by comparing the sum to the max unsigned integer.
+ C = ((kWMaxUInt - u1) < (u2 + carry_in)) ||
+ ((kWMaxUInt - u1 - carry_in) < u2);
+ // Overflow iff the sign bit is the same for the two inputs and different
+ // for the result.
+ int64_t s_src1 = src1 << (kXRegSize - kWRegSize);
+ int64_t s_src2 = src2 << (kXRegSize - kWRegSize);
+ int64_t s_result = result << (kXRegSize - kWRegSize);
+ V = ((s_src1 ^ s_src2) >= 0) && ((s_src1 ^ s_result) < 0);
+
+ } else {
+ u1 = static_cast<uint64_t>(src1);
+ u2 = static_cast<uint64_t>(src2);
+
+ result = signed_sum;
+ // Compute the C flag by comparing the sum to the max unsigned integer.
+ C = ((kXMaxUInt - u1) < (u2 + carry_in)) ||
+ ((kXMaxUInt - u1 - carry_in) < u2);
+ // Overflow iff the sign bit is the same for the two inputs and different
+ // for the result.
+ V = ((src1 ^ src2) >= 0) && ((src1 ^ result) < 0);
+ }
+
+ N = CalcNFlag(result, reg_size);
+ Z = CalcZFlag(result);
+
+ if (set_flags) {
+ nzcv().SetN(N);
+ nzcv().SetZ(Z);
+ nzcv().SetC(C);
+ nzcv().SetV(V);
+ }
+ return result;
+}
+
+
+int64_t Simulator::ShiftOperand(unsigned reg_size,
+ int64_t value,
+ Shift shift_type,
+ unsigned amount) {
+ if (amount == 0) {
+ return value;
+ }
+ int64_t mask = reg_size == kXRegSize ? kXRegMask : kWRegMask;
+ switch (shift_type) {
+ case LSL:
+ return (value << amount) & mask;
+ case LSR:
+ return static_cast<uint64_t>(value) >> amount;
+ case ASR: {
+ // Shift used to restore the sign.
+ unsigned s_shift = kXRegSize - reg_size;
+ // Value with its sign restored.
+ int64_t s_value = (value << s_shift) >> s_shift;
+ return (s_value >> amount) & mask;
+ }
+ case ROR: {
+ if (reg_size == kWRegSize) {
+ value &= kWRegMask;
+ }
+ return (static_cast<uint64_t>(value) >> amount) |
+ ((value & ((1L << amount) - 1L)) << (reg_size - amount));
+ }
+ default:
+ UNIMPLEMENTED();
+ return 0;
+ }
+}
+
+
+int64_t Simulator::ExtendValue(unsigned reg_size,
+ int64_t value,
+ Extend extend_type,
+ unsigned left_shift) {
+ switch (extend_type) {
+ case UXTB:
+ value &= kByteMask;
+ break;
+ case UXTH:
+ value &= kHalfWordMask;
+ break;
+ case UXTW:
+ value &= kWordMask;
+ break;
+ case SXTB:
+ value = (value << 56) >> 56;
+ break;
+ case SXTH:
+ value = (value << 48) >> 48;
+ break;
+ case SXTW:
+ value = (value << 32) >> 32;
+ break;
+ case UXTX:
+ case SXTX:
+ break;
+ default:
+ UNREACHABLE();
+ }
+ int64_t mask = (reg_size == kXRegSize) ? kXRegMask : kWRegMask;
+ return (value << left_shift) & mask;
+}
+
+
+void Simulator::FPCompare(double val0, double val1) {
+ AssertSupportedFPCR();
+
+ // TODO: This assumes that the C++ implementation handles comparisons in the
+ // way that we expect (as per AssertSupportedFPCR()).
+ if ((isnan(val0) != 0) || (isnan(val1) != 0)) {
+ nzcv().SetRawValue(FPUnorderedFlag);
+ } else if (val0 < val1) {
+ nzcv().SetRawValue(FPLessThanFlag);
+ } else if (val0 > val1) {
+ nzcv().SetRawValue(FPGreaterThanFlag);
+ } else if (val0 == val1) {
+ nzcv().SetRawValue(FPEqualFlag);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+void Simulator::PrintSystemRegisters(bool print_all) {
+ static bool first_run = true;
+
+ // Define some colour codes to use for the register dump.
+ // TODO: Find a more elegant way of defining these.
+ char const * const clr_normal = (coloured_trace_) ? ("\033[m") : ("");
+ char const * const clr_flag_name = (coloured_trace_) ? ("\033[1;30m") : ("");
+ char const * const clr_flag_value = (coloured_trace_) ? ("\033[1;37m") : ("");
+
+ static SimSystemRegister last_nzcv;
+ if (print_all || first_run || (last_nzcv.RawValue() != nzcv().RawValue())) {
+ fprintf(stream_, "# %sFLAGS: %sN:%d Z:%d C:%d V:%d%s\n",
+ clr_flag_name,
+ clr_flag_value,
+ N(), Z(), C(), V(),
+ clr_normal);
+ }
+ last_nzcv = nzcv();
+
+ static SimSystemRegister last_fpcr;
+ if (print_all || first_run || (last_fpcr.RawValue() != fpcr().RawValue())) {
+ static const char * rmode[] = {
+ "0b00 (Round to Nearest)",
+ "0b01 (Round towards Plus Infinity)",
+ "0b10 (Round towards Minus Infinity)",
+ "0b11 (Round towards Zero)"
+ };
+ ASSERT(fpcr().RMode() <= (sizeof(rmode) / sizeof(rmode[0])));
+ fprintf(stream_, "# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n",
+ clr_flag_name,
+ clr_flag_value,
+ fpcr().AHP(), fpcr().DN(), fpcr().FZ(), rmode[fpcr().RMode()],
+ clr_normal);
+ }
+ last_fpcr = fpcr();
+
+ first_run = false;
+}
+
+
+void Simulator::PrintRegisters(bool print_all_regs) {
+ static bool first_run = true;
+ static int64_t last_regs[kNumberOfRegisters];
+
+ // Define some colour codes to use for the register dump.
+ // TODO: Find a more elegant way of defining these.
+ char const * const clr_normal = (coloured_trace_) ? ("\033[m") : ("");
+ char const * const clr_reg_name = (coloured_trace_) ? ("\033[1;34m") : ("");
+ char const * const clr_reg_value = (coloured_trace_) ? ("\033[1;36m") : ("");
+
+ for (unsigned i = 0; i < kNumberOfRegisters; i++) {
+ if (print_all_regs || first_run || (last_regs[i] != registers_[i].x)) {
+ fprintf(stream_,
+ "# %s%4s:%s 0x%016" PRIx64 "%s\n",
+ clr_reg_name,
+ XRegNameForCode(i, Reg31IsStackPointer),
+ clr_reg_value,
+ registers_[i].x,
+ clr_normal);
+ }
+ // Cache the new register value so the next run can detect any changes.
+ last_regs[i] = registers_[i].x;
+ }
+ first_run = false;
+}
+
+
+void Simulator::PrintFPRegisters(bool print_all_regs) {
+ static bool first_run = true;
+ static uint64_t last_regs[kNumberOfFPRegisters];
+
+ // Define some colour codes to use for the register dump.
+ // TODO: Find a more elegant way of defining these.
+ char const * const clr_normal = (coloured_trace_) ? ("\033[m") : ("");
+ char const * const clr_reg_name = (coloured_trace_) ? ("\033[1;33m") : ("");
+ char const * const clr_reg_value = (coloured_trace_) ? ("\033[1;35m") : ("");
+
+ // Print as many rows of registers as necessary, keeping each individual
+ // register in the same column each time (to make it easy to visually scan
+ // for changes).
+ for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
+ if (print_all_regs || first_run ||
+ (last_regs[i] != double_to_rawbits(fpregisters_[i].d))) {
+ fprintf(stream_,
+ "# %s %4s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n",
+ clr_reg_name,
+ VRegNameForCode(i),
+ clr_reg_value,
+ double_to_rawbits(fpregisters_[i].d),
+ clr_normal,
+ clr_reg_name,
+ DRegNameForCode(i),
+ clr_reg_value,
+ fpregisters_[i].d,
+ clr_reg_name,
+ SRegNameForCode(i),
+ clr_reg_value,
+ fpregisters_[i].s,
+ clr_normal);
+ }
+ // Cache the new register value so the next run can detect any changes.
+ last_regs[i] = double_to_rawbits(fpregisters_[i].d);
+ }
+ first_run = false;
+}
+
+
+void Simulator::PrintProcessorState() {
+ PrintSystemRegisters();
+ PrintRegisters();
+ PrintFPRegisters();
+}
+
+
+// Visitors---------------------------------------------------------------------
+
+void Simulator::VisitUnimplemented(Instruction* instr) {
+ printf("Unimplemented instruction at 0x%p: 0x%08" PRIx32 "\n",
+ reinterpret_cast<void*>(instr), instr->InstructionBits());
+ UNIMPLEMENTED();
+}
+
+
+void Simulator::VisitUnallocated(Instruction* instr) {
+ printf("Unallocated instruction at 0x%p: 0x%08" PRIx32 "\n",
+ reinterpret_cast<void*>(instr), instr->InstructionBits());
+ UNIMPLEMENTED();
+}
+
+
+void Simulator::VisitPCRelAddressing(Instruction* instr) {
+ switch (instr->Mask(PCRelAddressingMask)) {
+ case ADR:
+ set_reg(kXRegSize,
+ instr->Rd(),
+ reinterpret_cast<int64_t>(instr->ImmPCOffsetTarget()));
+ break;
+ case ADRP: // Not implemented in the assembler.
+ UNIMPLEMENTED();
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void Simulator::VisitUnconditionalBranch(Instruction* instr) {
+ switch (instr->Mask(UnconditionalBranchMask)) {
+ case BL:
+ set_lr(reinterpret_cast<int64_t>(instr->NextInstruction()));
+ // Fall through.
+ case B:
+ set_pc(instr->ImmPCOffsetTarget());
+ break;
+ default: UNREACHABLE();
+ }
+}
+
+
+void Simulator::VisitConditionalBranch(Instruction* instr) {
+ ASSERT(instr->Mask(ConditionalBranchMask) == B_cond);
+ if (ConditionPassed(static_cast<Condition>(instr->ConditionBranch()))) {
+ set_pc(instr->ImmPCOffsetTarget());
+ }
+}
+
+
+void Simulator::VisitUnconditionalBranchToRegister(Instruction* instr) {
+ Instruction* target = Instruction::Cast(xreg(instr->Rn()));
+
+ switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
+ case BLR:
+ set_lr(reinterpret_cast<int64_t>(instr->NextInstruction()));
+ // Fall through.
+ case BR:
+ case RET: set_pc(target); break;
+ default: UNREACHABLE();
+ }
+}
+
+
+void Simulator::VisitTestBranch(Instruction* instr) {
+ unsigned bit_pos = (instr->ImmTestBranchBit5() << 5) |
+ instr->ImmTestBranchBit40();
+ bool take_branch = ((xreg(instr->Rt()) & (1UL << bit_pos)) == 0);
+ switch (instr->Mask(TestBranchMask)) {
+ case TBZ: break;
+ case TBNZ: take_branch = !take_branch; break;
+ default: UNIMPLEMENTED();
+ }
+ if (take_branch) {
+ set_pc(instr->ImmPCOffsetTarget());
+ }
+}
+
+
+void Simulator::VisitCompareBranch(Instruction* instr) {
+ unsigned rt = instr->Rt();
+ bool take_branch = false;
+ switch (instr->Mask(CompareBranchMask)) {
+ case CBZ_w: take_branch = (wreg(rt) == 0); break;
+ case CBZ_x: take_branch = (xreg(rt) == 0); break;
+ case CBNZ_w: take_branch = (wreg(rt) != 0); break;
+ case CBNZ_x: take_branch = (xreg(rt) != 0); break;
+ default: UNIMPLEMENTED();
+ }
+ if (take_branch) {
+ set_pc(instr->ImmPCOffsetTarget());
+ }
+}
+
+
+void Simulator::AddSubHelper(Instruction* instr, int64_t op2) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ bool set_flags = instr->FlagsUpdate();
+ int64_t new_val = 0;
+ Instr operation = instr->Mask(AddSubOpMask);
+
+ switch (operation) {
+ case ADD:
+ case ADDS: {
+ new_val = AddWithCarry(reg_size,
+ set_flags,
+ reg(reg_size, instr->Rn(), instr->RnMode()),
+ op2);
+ break;
+ }
+ case SUB:
+ case SUBS: {
+ new_val = AddWithCarry(reg_size,
+ set_flags,
+ reg(reg_size, instr->Rn(), instr->RnMode()),
+ ~op2,
+ 1);
+ break;
+ }
+ default: UNREACHABLE();
+ }
+
+ set_reg(reg_size, instr->Rd(), new_val, instr->RdMode());
+}
+
+
+void Simulator::VisitAddSubShifted(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t op2 = ShiftOperand(reg_size,
+ reg(reg_size, instr->Rm()),
+ static_cast<Shift>(instr->ShiftDP()),
+ instr->ImmDPShift());
+ AddSubHelper(instr, op2);
+}
+
+
+void Simulator::VisitAddSubImmediate(Instruction* instr) {
+ int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0);
+ AddSubHelper(instr, op2);
+}
+
+
+void Simulator::VisitAddSubExtended(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t op2 = ExtendValue(reg_size,
+ reg(reg_size, instr->Rm()),
+ static_cast<Extend>(instr->ExtendMode()),
+ instr->ImmExtendShift());
+ AddSubHelper(instr, op2);
+}
+
+
+void Simulator::VisitAddSubWithCarry(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t op2 = reg(reg_size, instr->Rm());
+ int64_t new_val;
+
+ if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) {
+ op2 = ~op2;
+ }
+
+ new_val = AddWithCarry(reg_size,
+ instr->FlagsUpdate(),
+ reg(reg_size, instr->Rn()),
+ op2,
+ C());
+
+ set_reg(reg_size, instr->Rd(), new_val);
+}
+
+
+void Simulator::VisitLogicalShifted(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ Shift shift_type = static_cast<Shift>(instr->ShiftDP());
+ unsigned shift_amount = instr->ImmDPShift();
+ int64_t op2 = ShiftOperand(reg_size, reg(reg_size, instr->Rm()), shift_type,
+ shift_amount);
+ if (instr->Mask(NOT) == NOT) {
+ op2 = ~op2;
+ }
+ LogicalHelper(instr, op2);
+}
+
+
+void Simulator::VisitLogicalImmediate(Instruction* instr) {
+ LogicalHelper(instr, instr->ImmLogical());
+}
+
+
+void Simulator::LogicalHelper(Instruction* instr, int64_t op2) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t op1 = reg(reg_size, instr->Rn());
+ int64_t result = 0;
+ bool update_flags = false;
+
+ // Switch on the logical operation, stripping out the NOT bit, as it has a
+ // different meaning for logical immediate instructions.
+ switch (instr->Mask(LogicalOpMask & ~NOT)) {
+ case ANDS: update_flags = true; // Fall through.
+ case AND: result = op1 & op2; break;
+ case ORR: result = op1 | op2; break;
+ case EOR: result = op1 ^ op2; break;
+ default:
+ UNIMPLEMENTED();
+ }
+
+ if (update_flags) {
+ nzcv().SetN(CalcNFlag(result, reg_size));
+ nzcv().SetZ(CalcZFlag(result));
+ nzcv().SetC(0);
+ nzcv().SetV(0);
+ }
+
+ set_reg(reg_size, instr->Rd(), result, instr->RdMode());
+}
+
+
+void Simulator::VisitConditionalCompareRegister(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ ConditionalCompareHelper(instr, reg(reg_size, instr->Rm()));
+}
+
+
+void Simulator::VisitConditionalCompareImmediate(Instruction* instr) {
+ ConditionalCompareHelper(instr, instr->ImmCondCmp());
+}
+
+
+void Simulator::ConditionalCompareHelper(Instruction* instr, int64_t op2) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t op1 = reg(reg_size, instr->Rn());
+
+ if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
+ // If the condition passes, set the status flags to the result of comparing
+ // the operands.
+ if (instr->Mask(ConditionalCompareMask) == CCMP) {
+ AddWithCarry(reg_size, true, op1, ~op2, 1);
+ } else {
+ ASSERT(instr->Mask(ConditionalCompareMask) == CCMN);
+ AddWithCarry(reg_size, true, op1, op2, 0);
+ }
+ } else {
+ // If the condition fails, set the status flags to the nzcv immediate.
+ nzcv().SetFlags(instr->Nzcv());
+ }
+}
+
+
+void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) {
+ int offset = instr->ImmLSUnsigned() << instr->SizeLS();
+ LoadStoreHelper(instr, offset, Offset);
+}
+
+
+void Simulator::VisitLoadStoreUnscaledOffset(Instruction* instr) {
+ LoadStoreHelper(instr, instr->ImmLS(), Offset);
+}
+
+
+void Simulator::VisitLoadStorePreIndex(Instruction* instr) {
+ LoadStoreHelper(instr, instr->ImmLS(), PreIndex);
+}
+
+
+void Simulator::VisitLoadStorePostIndex(Instruction* instr) {
+ LoadStoreHelper(instr, instr->ImmLS(), PostIndex);
+}
+
+
+void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) {
+ Extend ext = static_cast<Extend>(instr->ExtendMode());
+ ASSERT((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX));
+ unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS();
+
+ int64_t offset = ExtendValue(kXRegSize, xreg(instr->Rm()), ext,
+ shift_amount);
+ LoadStoreHelper(instr, offset, Offset);
+}
+
+
+void Simulator::LoadStoreHelper(Instruction* instr,
+ int64_t offset,
+ AddrMode addrmode) {
+ unsigned srcdst = instr->Rt();
+ uint8_t* address = AddressModeHelper(instr->Rn(), offset, addrmode);
+ int num_bytes = 1 << instr->SizeLS();
+
+ LoadStoreOp op = static_cast<LoadStoreOp>(instr->Mask(LoadStoreOpMask));
+ switch (op) {
+ case LDRB_w:
+ case LDRH_w:
+ case LDR_w:
+ case LDR_x: set_xreg(srcdst, MemoryRead(address, num_bytes)); break;
+ case STRB_w:
+ case STRH_w:
+ case STR_w:
+ case STR_x: MemoryWrite(address, xreg(srcdst), num_bytes); break;
+ case LDRSB_w: {
+ set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead8(address), SXTB));
+ break;
+ }
+ case LDRSB_x: {
+ set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead8(address), SXTB));
+ break;
+ }
+ case LDRSH_w: {
+ set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead16(address), SXTH));
+ break;
+ }
+ case LDRSH_x: {
+ set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead16(address), SXTH));
+ break;
+ }
+ case LDRSW_x: {
+ set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead32(address), SXTW));
+ break;
+ }
+ case LDR_s: set_sreg(srcdst, MemoryReadFP32(address)); break;
+ case LDR_d: set_dreg(srcdst, MemoryReadFP64(address)); break;
+ case STR_s: MemoryWriteFP32(address, sreg(srcdst)); break;
+ case STR_d: MemoryWriteFP64(address, dreg(srcdst)); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::VisitLoadStorePairOffset(Instruction* instr) {
+ LoadStorePairHelper(instr, Offset);
+}
+
+
+void Simulator::VisitLoadStorePairPreIndex(Instruction* instr) {
+ LoadStorePairHelper(instr, PreIndex);
+}
+
+
+void Simulator::VisitLoadStorePairPostIndex(Instruction* instr) {
+ LoadStorePairHelper(instr, PostIndex);
+}
+
+
+void Simulator::VisitLoadStorePairNonTemporal(Instruction* instr) {
+ LoadStorePairHelper(instr, Offset);
+}
+
+
+void Simulator::LoadStorePairHelper(Instruction* instr,
+ AddrMode addrmode) {
+ unsigned rt = instr->Rt();
+ unsigned rt2 = instr->Rt2();
+ int offset = instr->ImmLSPair() << instr->SizeLSPair();
+ uint8_t* address = AddressModeHelper(instr->Rn(), offset, addrmode);
+
+ LoadStorePairOp op =
+ static_cast<LoadStorePairOp>(instr->Mask(LoadStorePairMask));
+
+ // 'rt' and 'rt2' can only be aliased for stores.
+ ASSERT(((op & LoadStorePairLBit) == 0) || (rt != rt2));
+
+ switch (op) {
+ case LDP_w: {
+ set_wreg(rt, MemoryRead32(address));
+ set_wreg(rt2, MemoryRead32(address + kWRegSizeInBytes));
+ break;
+ }
+ case LDP_s: {
+ set_sreg(rt, MemoryReadFP32(address));
+ set_sreg(rt2, MemoryReadFP32(address + kSRegSizeInBytes));
+ break;
+ }
+ case LDP_x: {
+ set_xreg(rt, MemoryRead64(address));
+ set_xreg(rt2, MemoryRead64(address + kXRegSizeInBytes));
+ break;
+ }
+ case LDP_d: {
+ set_dreg(rt, MemoryReadFP64(address));
+ set_dreg(rt2, MemoryReadFP64(address + kDRegSizeInBytes));
+ break;
+ }
+ case LDPSW_x: {
+ set_xreg(rt, ExtendValue(kXRegSize, MemoryRead32(address), SXTW));
+ set_xreg(rt2, ExtendValue(kXRegSize,
+ MemoryRead32(address + kWRegSizeInBytes), SXTW));
+ break;
+ }
+ case STP_w: {
+ MemoryWrite32(address, wreg(rt));
+ MemoryWrite32(address + kWRegSizeInBytes, wreg(rt2));
+ break;
+ }
+ case STP_s: {
+ MemoryWriteFP32(address, sreg(rt));
+ MemoryWriteFP32(address + kSRegSizeInBytes, sreg(rt2));
+ break;
+ }
+ case STP_x: {
+ MemoryWrite64(address, xreg(rt));
+ MemoryWrite64(address + kXRegSizeInBytes, xreg(rt2));
+ break;
+ }
+ case STP_d: {
+ MemoryWriteFP64(address, dreg(rt));
+ MemoryWriteFP64(address + kDRegSizeInBytes, dreg(rt2));
+ break;
+ }
+ default: UNREACHABLE();
+ }
+}
+
+
+void Simulator::VisitLoadLiteral(Instruction* instr) {
+ uint8_t* address = instr->LiteralAddress();
+ unsigned rt = instr->Rt();
+
+ switch (instr->Mask(LoadLiteralMask)) {
+ case LDR_w_lit: set_wreg(rt, MemoryRead32(address)); break;
+ case LDR_x_lit: set_xreg(rt, MemoryRead64(address)); break;
+ case LDR_s_lit: set_sreg(rt, MemoryReadFP32(address)); break;
+ case LDR_d_lit: set_dreg(rt, MemoryReadFP64(address)); break;
+ default: UNREACHABLE();
+ }
+}
+
+
+uint8_t* Simulator::AddressModeHelper(unsigned addr_reg,
+ int64_t offset,
+ AddrMode addrmode) {
+ uint64_t address = xreg(addr_reg, Reg31IsStackPointer);
+ ASSERT((sizeof(uintptr_t) == kXRegSizeInBytes) ||
+ (address < 0x100000000UL));
+ if ((addr_reg == 31) && ((address % 16) != 0)) {
+ // When the base register is SP the stack pointer is required to be
+ // quadword aligned prior to the address calculation and write-backs.
+ // Misalignment will cause a stack alignment fault.
+ ALIGNMENT_EXCEPTION();
+ }
+ if ((addrmode == PreIndex) || (addrmode == PostIndex)) {
+ ASSERT(offset != 0);
+ set_xreg(addr_reg, address + offset, Reg31IsStackPointer);
+ }
+
+ if ((addrmode == Offset) || (addrmode == PreIndex)) {
+ address += offset;
+ }
+
+ return reinterpret_cast<uint8_t*>(address);
+}
+
+
+uint64_t Simulator::MemoryRead(const uint8_t* address, unsigned num_bytes) {
+ ASSERT(address != NULL);
+ ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t)));
+ uint64_t read = 0;
+ memcpy(&read, address, num_bytes);
+ return read;
+}
+
+
+uint8_t Simulator::MemoryRead8(uint8_t* address) {
+ return MemoryRead(address, sizeof(uint8_t));
+}
+
+
+uint16_t Simulator::MemoryRead16(uint8_t* address) {
+ return MemoryRead(address, sizeof(uint16_t));
+}
+
+
+uint32_t Simulator::MemoryRead32(uint8_t* address) {
+ return MemoryRead(address, sizeof(uint32_t));
+}
+
+
+float Simulator::MemoryReadFP32(uint8_t* address) {
+ return rawbits_to_float(MemoryRead32(address));
+}
+
+
+uint64_t Simulator::MemoryRead64(uint8_t* address) {
+ return MemoryRead(address, sizeof(uint64_t));
+}
+
+
+double Simulator::MemoryReadFP64(uint8_t* address) {
+ return rawbits_to_double(MemoryRead64(address));
+}
+
+
+void Simulator::MemoryWrite(uint8_t* address,
+ uint64_t value,
+ unsigned num_bytes) {
+ ASSERT(address != NULL);
+ ASSERT((num_bytes > 0) && (num_bytes <= sizeof(uint64_t)));
+ memcpy(address, &value, num_bytes);
+}
+
+
+void Simulator::MemoryWrite32(uint8_t* address, uint32_t value) {
+ MemoryWrite(address, value, sizeof(uint32_t));
+}
+
+
+void Simulator::MemoryWriteFP32(uint8_t* address, float value) {
+ MemoryWrite32(address, float_to_rawbits(value));
+}
+
+
+void Simulator::MemoryWrite64(uint8_t* address, uint64_t value) {
+ MemoryWrite(address, value, sizeof(uint64_t));
+}
+
+
+void Simulator::MemoryWriteFP64(uint8_t* address, double value) {
+ MemoryWrite64(address, double_to_rawbits(value));
+}
+
+
+void Simulator::VisitMoveWideImmediate(Instruction* instr) {
+ MoveWideImmediateOp mov_op =
+ static_cast<MoveWideImmediateOp>(instr->Mask(MoveWideImmediateMask));
+ int64_t new_xn_val = 0;
+
+ bool is_64_bits = instr->SixtyFourBits() == 1;
+ // Shift is limited for W operations.
+ ASSERT(is_64_bits || (instr->ShiftMoveWide() < 2));
+
+ // Get the shifted immediate.
+ int64_t shift = instr->ShiftMoveWide() * 16;
+ int64_t shifted_imm16 = instr->ImmMoveWide() << shift;
+
+ // Compute the new value.
+ switch (mov_op) {
+ case MOVN_w:
+ case MOVN_x: {
+ new_xn_val = ~shifted_imm16;
+ if (!is_64_bits) new_xn_val &= kWRegMask;
+ break;
+ }
+ case MOVK_w:
+ case MOVK_x: {
+ unsigned reg_code = instr->Rd();
+ int64_t prev_xn_val = is_64_bits ? xreg(reg_code)
+ : wreg(reg_code);
+ new_xn_val = (prev_xn_val & ~(0xffffL << shift)) | shifted_imm16;
+ break;
+ }
+ case MOVZ_w:
+ case MOVZ_x: {
+ new_xn_val = shifted_imm16;
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+
+ // Update the destination register.
+ set_xreg(instr->Rd(), new_xn_val);
+}
+
+
+void Simulator::VisitConditionalSelect(Instruction* instr) {
+ uint64_t new_val = xreg(instr->Rn());
+
+ if (ConditionFailed(static_cast<Condition>(instr->Condition()))) {
+ new_val = xreg(instr->Rm());
+ switch (instr->Mask(ConditionalSelectMask)) {
+ case CSEL_w:
+ case CSEL_x: break;
+ case CSINC_w:
+ case CSINC_x: new_val++; break;
+ case CSINV_w:
+ case CSINV_x: new_val = ~new_val; break;
+ case CSNEG_w:
+ case CSNEG_x: new_val = -new_val; break;
+ default: UNIMPLEMENTED();
+ }
+ }
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ set_reg(reg_size, instr->Rd(), new_val);
+}
+
+
+void Simulator::VisitDataProcessing1Source(Instruction* instr) {
+ unsigned dst = instr->Rd();
+ unsigned src = instr->Rn();
+
+ switch (instr->Mask(DataProcessing1SourceMask)) {
+ case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSize)); break;
+ case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSize)); break;
+ case REV16_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse16)); break;
+ case REV16_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse16)); break;
+ case REV_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse32)); break;
+ case REV32_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse32)); break;
+ case REV_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse64)); break;
+ case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSize)); break;
+ case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSize)); break;
+ case CLS_w: {
+ set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSize));
+ break;
+ }
+ case CLS_x: {
+ set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSize));
+ break;
+ }
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+uint64_t Simulator::ReverseBits(uint64_t value, unsigned num_bits) {
+ ASSERT((num_bits == kWRegSize) || (num_bits == kXRegSize));
+ uint64_t result = 0;
+ for (unsigned i = 0; i < num_bits; i++) {
+ result = (result << 1) | (value & 1);
+ value >>= 1;
+ }
+ return result;
+}
+
+
+uint64_t Simulator::ReverseBytes(uint64_t value, ReverseByteMode mode) {
+ // Split the 64-bit value into an 8-bit array, where b[0] is the least
+ // significant byte, and b[7] is the most significant.
+ uint8_t bytes[8];
+ uint64_t mask = 0xff00000000000000UL;
+ for (int i = 7; i >= 0; i--) {
+ bytes[i] = (value & mask) >> (i * 8);
+ mask >>= 8;
+ }
+
+ // Permutation tables for REV instructions.
+ // permute_table[Reverse16] is used by REV16_x, REV16_w
+ // permute_table[Reverse32] is used by REV32_x, REV_w
+ // permute_table[Reverse64] is used by REV_x
+ ASSERT((Reverse16 == 0) && (Reverse32 == 1) && (Reverse64 == 2));
+ static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1},
+ {4, 5, 6, 7, 0, 1, 2, 3},
+ {0, 1, 2, 3, 4, 5, 6, 7} };
+ uint64_t result = 0;
+ for (int i = 0; i < 8; i++) {
+ result <<= 8;
+ result |= bytes[permute_table[mode][i]];
+ }
+ return result;
+}
+
+
+void Simulator::VisitDataProcessing2Source(Instruction* instr) {
+ Shift shift_op = NO_SHIFT;
+ int64_t result = 0;
+ switch (instr->Mask(DataProcessing2SourceMask)) {
+ case SDIV_w: result = wreg(instr->Rn()) / wreg(instr->Rm()); break;
+ case SDIV_x: result = xreg(instr->Rn()) / xreg(instr->Rm()); break;
+ case UDIV_w: {
+ uint32_t rn = static_cast<uint32_t>(wreg(instr->Rn()));
+ uint32_t rm = static_cast<uint32_t>(wreg(instr->Rm()));
+ result = rn / rm;
+ break;
+ }
+ case UDIV_x: {
+ uint64_t rn = static_cast<uint64_t>(xreg(instr->Rn()));
+ uint64_t rm = static_cast<uint64_t>(xreg(instr->Rm()));
+ result = rn / rm;
+ break;
+ }
+ case LSLV_w:
+ case LSLV_x: shift_op = LSL; break;
+ case LSRV_w:
+ case LSRV_x: shift_op = LSR; break;
+ case ASRV_w:
+ case ASRV_x: shift_op = ASR; break;
+ case RORV_w:
+ case RORV_x: shift_op = ROR; break;
+ default: UNIMPLEMENTED();
+ }
+
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ if (shift_op != NO_SHIFT) {
+ // Shift distance encoded in the least-significant five/six bits of the
+ // register.
+ int mask = (instr->SixtyFourBits() == 1) ? 0x3f : 0x1f;
+ unsigned shift = wreg(instr->Rm()) & mask;
+ result = ShiftOperand(reg_size, reg(reg_size, instr->Rn()), shift_op,
+ shift);
+ }
+ set_reg(reg_size, instr->Rd(), result);
+}
+
+
+// The algorithm used is adapted from the one described in section 8.2 of
+// Hacker's Delight, by Henry S. Warren, Jr.
+// It assumes that a right shift on a signed integer is an arithmetic shift.
+static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
+ uint64_t u0, v0, w0;
+ int64_t u1, v1, w1, w2, t;
+
+ u0 = u & 0xffffffffL;
+ u1 = u >> 32;
+ v0 = v & 0xffffffffL;
+ v1 = v >> 32;
+
+ w0 = u0 * v0;
+ t = u1 * v0 + (w0 >> 32);
+ w1 = t & 0xffffffffL;
+ w2 = t >> 32;
+ w1 = u0 * v1 + w1;
+
+ return u1 * v1 + w2 + (w1 >> 32);
+}
+
+
+void Simulator::VisitDataProcessing3Source(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+
+ int64_t result = 0;
+ uint64_t rn;
+ uint64_t rm;
+ switch (instr->Mask(DataProcessing3SourceMask)) {
+ case MADD_w:
+ case MADD_x:
+ result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm()));
+ break;
+ case MSUB_w:
+ case MSUB_x:
+ result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm()));
+ break;
+ case SMADDL_x:
+ result = xreg(instr->Ra()) + (wreg(instr->Rn()) * wreg(instr->Rm()));
+ break;
+ case SMSUBL_x:
+ result = xreg(instr->Ra()) - (wreg(instr->Rn()) * wreg(instr->Rm()));
+ break;
+ case UMADDL_x:
+ rn = static_cast<uint32_t>(wreg(instr->Rn()));
+ rm = static_cast<uint32_t>(wreg(instr->Rm()));
+ result = xreg(instr->Ra()) + (rn * rm);
+ break;
+ case UMSUBL_x:
+ rn = static_cast<uint32_t>(wreg(instr->Rn()));
+ rm = static_cast<uint32_t>(wreg(instr->Rm()));
+ result = xreg(instr->Ra()) - (rn * rm);
+ break;
+ case SMULH_x:
+ result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm()));
+ break;
+ default: UNIMPLEMENTED();
+ }
+ set_reg(reg_size, instr->Rd(), result);
+}
+
+
+void Simulator::VisitBitfield(Instruction* instr) {
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t reg_mask = instr->SixtyFourBits() ? kXRegMask : kWRegMask;
+ int64_t R = instr->ImmR();
+ int64_t S = instr->ImmS();
+ int64_t diff = S - R;
+ int64_t mask;
+ if (diff >= 0) {
+ mask = diff < reg_size - 1 ? (1L << (diff + 1)) - 1
+ : reg_mask;
+ } else {
+ mask = ((1L << (S + 1)) - 1);
+ mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R));
+ diff += reg_size;
+ }
+
+ // inzero indicates if the extracted bitfield is inserted into the
+ // destination register value or in zero.
+ // If extend is true, extend the sign of the extracted bitfield.
+ bool inzero = false;
+ bool extend = false;
+ switch (instr->Mask(BitfieldMask)) {
+ case BFM_x:
+ case BFM_w:
+ break;
+ case SBFM_x:
+ case SBFM_w:
+ inzero = true;
+ extend = true;
+ break;
+ case UBFM_x:
+ case UBFM_w:
+ inzero = true;
+ break;
+ default:
+ UNIMPLEMENTED();
+ }
+
+ int64_t dst = inzero ? 0 : reg(reg_size, instr->Rd());
+ int64_t src = reg(reg_size, instr->Rn());
+ // Rotate source bitfield into place.
+ int64_t result = (static_cast<uint64_t>(src) >> R) | (src << (reg_size - R));
+ // Determine the sign extension.
+ int64_t topbits = ((1L << (reg_size - diff - 1)) - 1) << (diff + 1);
+ int64_t signbits = extend && ((src >> S) & 1) ? topbits : 0;
+
+ // Merge sign extension, dest/zero and bitfield.
+ result = signbits | (result & mask) | (dst & ~mask);
+
+ set_reg(reg_size, instr->Rd(), result);
+}
+
+
+void Simulator::VisitExtract(Instruction* instr) {
+ unsigned lsb = instr->ImmS();
+ unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize
+ : kWRegSize;
+ set_reg(reg_size,
+ instr->Rd(),
+ (static_cast<uint64_t>(reg(reg_size, instr->Rm())) >> lsb) |
+ (reg(reg_size, instr->Rn()) << (reg_size - lsb)));
+}
+
+
+void Simulator::VisitFPImmediate(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned dest = instr->Rd();
+ switch (instr->Mask(FPImmediateMask)) {
+ case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break;
+ case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break;
+ default: UNREACHABLE();
+ }
+}
+
+
+void Simulator::VisitFPIntegerConvert(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned dst = instr->Rd();
+ unsigned src = instr->Rn();
+
+ FPRounding round = RMode();
+
+ switch (instr->Mask(FPIntegerConvertMask)) {
+ case FCVTMS_ws:
+ set_wreg(dst, FPToInt32(sreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMS_xs:
+ set_xreg(dst, FPToInt64(sreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMS_wd:
+ set_wreg(dst, FPToInt32(dreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMS_xd:
+ set_xreg(dst, FPToInt64(dreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMU_ws:
+ set_wreg(dst, FPToUInt32(sreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMU_xs:
+ set_xreg(dst, FPToUInt64(sreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMU_wd:
+ set_wreg(dst, FPToUInt32(dreg(src), FPNegativeInfinity));
+ break;
+ case FCVTMU_xd:
+ set_xreg(dst, FPToUInt64(dreg(src), FPNegativeInfinity));
+ break;
+ case FCVTNS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieEven)); break;
+ case FCVTNS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieEven)); break;
+ case FCVTNS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieEven)); break;
+ case FCVTNS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieEven)); break;
+ case FCVTNU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieEven)); break;
+ case FCVTNU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieEven)); break;
+ case FCVTNU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieEven)); break;
+ case FCVTNU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieEven)); break;
+ case FCVTZS_ws: set_wreg(dst, FPToInt32(sreg(src), FPZero)); break;
+ case FCVTZS_xs: set_xreg(dst, FPToInt64(sreg(src), FPZero)); break;
+ case FCVTZS_wd: set_wreg(dst, FPToInt32(dreg(src), FPZero)); break;
+ case FCVTZS_xd: set_xreg(dst, FPToInt64(dreg(src), FPZero)); break;
+ case FCVTZU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPZero)); break;
+ case FCVTZU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPZero)); break;
+ case FCVTZU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPZero)); break;
+ case FCVTZU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPZero)); break;
+ case FMOV_ws: set_wreg(dst, sreg_bits(src)); break;
+ case FMOV_xd: set_xreg(dst, dreg_bits(src)); break;
+ case FMOV_sw: set_sreg_bits(dst, wreg(src)); break;
+ case FMOV_dx: set_dreg_bits(dst, xreg(src)); break;
+
+ // A 32-bit input can be handled in the same way as a 64-bit input, since
+ // the sign- or zero-extension will not affect the conversion.
+ case SCVTF_dx: set_dreg(dst, FixedToDouble(xreg(src), 0, round)); break;
+ case SCVTF_dw: set_dreg(dst, FixedToDouble(wreg(src), 0, round)); break;
+ case UCVTF_dx: set_dreg(dst, UFixedToDouble(xreg(src), 0, round)); break;
+ case UCVTF_dw: {
+ set_dreg(dst, UFixedToDouble(static_cast<uint32_t>(wreg(src)), 0, round));
+ break;
+ }
+ case SCVTF_sx: set_sreg(dst, FixedToFloat(xreg(src), 0, round)); break;
+ case SCVTF_sw: set_sreg(dst, FixedToFloat(wreg(src), 0, round)); break;
+ case UCVTF_sx: set_sreg(dst, UFixedToFloat(xreg(src), 0, round)); break;
+ case UCVTF_sw: {
+ set_sreg(dst, UFixedToFloat(static_cast<uint32_t>(wreg(src)), 0, round));
+ break;
+ }
+
+ default: UNREACHABLE();
+ }
+}
+
+
+void Simulator::VisitFPFixedPointConvert(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned dst = instr->Rd();
+ unsigned src = instr->Rn();
+ int fbits = 64 - instr->FPScale();
+
+ FPRounding round = RMode();
+
+ switch (instr->Mask(FPFixedPointConvertMask)) {
+ // A 32-bit input can be handled in the same way as a 64-bit input, since
+ // the sign- or zero-extension will not affect the conversion.
+ case SCVTF_dx_fixed:
+ set_dreg(dst, FixedToDouble(xreg(src), fbits, round));
+ break;
+ case SCVTF_dw_fixed:
+ set_dreg(dst, FixedToDouble(wreg(src), fbits, round));
+ break;
+ case UCVTF_dx_fixed:
+ set_dreg(dst, UFixedToDouble(xreg(src), fbits, round));
+ break;
+ case UCVTF_dw_fixed: {
+ set_dreg(dst,
+ UFixedToDouble(static_cast<uint32_t>(wreg(src)), fbits, round));
+ break;
+ }
+ case SCVTF_sx_fixed:
+ set_sreg(dst, FixedToFloat(xreg(src), fbits, round));
+ break;
+ case SCVTF_sw_fixed:
+ set_sreg(dst, FixedToFloat(wreg(src), fbits, round));
+ break;
+ case UCVTF_sx_fixed:
+ set_sreg(dst, UFixedToFloat(xreg(src), fbits, round));
+ break;
+ case UCVTF_sw_fixed: {
+ set_sreg(dst,
+ UFixedToFloat(static_cast<uint32_t>(wreg(src)), fbits, round));
+ break;
+ }
+ default: UNREACHABLE();
+ }
+}
+
+
+int32_t Simulator::FPToInt32(double value, FPRounding rmode) {
+ value = FPRoundInt(value, rmode);
+ if (value >= kWMaxInt) {
+ return kWMaxInt;
+ } else if (value < kWMinInt) {
+ return kWMinInt;
+ }
+ return isnan(value) ? 0 : static_cast<int32_t>(value);
+}
+
+
+int64_t Simulator::FPToInt64(double value, FPRounding rmode) {
+ value = FPRoundInt(value, rmode);
+ if (value >= kXMaxInt) {
+ return kXMaxInt;
+ } else if (value < kXMinInt) {
+ return kXMinInt;
+ }
+ return isnan(value) ? 0 : static_cast<int64_t>(value);
+}
+
+
+uint32_t Simulator::FPToUInt32(double value, FPRounding rmode) {
+ value = FPRoundInt(value, rmode);
+ if (value >= kWMaxUInt) {
+ return kWMaxUInt;
+ } else if (value < 0.0) {
+ return 0;
+ }
+ return isnan(value) ? 0 : static_cast<uint32_t>(value);
+}
+
+
+uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) {
+ value = FPRoundInt(value, rmode);
+ if (value >= kXMaxUInt) {
+ return kXMaxUInt;
+ } else if (value < 0.0) {
+ return 0;
+ }
+ return isnan(value) ? 0 : static_cast<uint64_t>(value);
+}
+
+
+void Simulator::VisitFPCompare(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned reg_size = instr->FPType() == FP32 ? kSRegSize : kDRegSize;
+ double fn_val = fpreg(reg_size, instr->Rn());
+
+ switch (instr->Mask(FPCompareMask)) {
+ case FCMP_s:
+ case FCMP_d: FPCompare(fn_val, fpreg(reg_size, instr->Rm())); break;
+ case FCMP_s_zero:
+ case FCMP_d_zero: FPCompare(fn_val, 0.0); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::VisitFPConditionalCompare(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ switch (instr->Mask(FPConditionalCompareMask)) {
+ case FCCMP_s:
+ case FCCMP_d: {
+ if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
+ // If the condition passes, set the status flags to the result of
+ // comparing the operands.
+ unsigned reg_size = instr->FPType() == FP32 ? kSRegSize : kDRegSize;
+ FPCompare(fpreg(reg_size, instr->Rn()), fpreg(reg_size, instr->Rm()));
+ } else {
+ // If the condition fails, set the status flags to the nzcv immediate.
+ nzcv().SetFlags(instr->Nzcv());
+ }
+ break;
+ }
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::VisitFPConditionalSelect(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned reg_size = instr->FPType() == FP32 ? kSRegSize : kDRegSize;
+
+ double selected_val;
+ if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
+ selected_val = fpreg(reg_size, instr->Rn());
+ } else {
+ selected_val = fpreg(reg_size, instr->Rm());
+ }
+
+ switch (instr->Mask(FPConditionalSelectMask)) {
+ case FCSEL_s:
+ case FCSEL_d: set_fpreg(reg_size, instr->Rd(), selected_val); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::VisitFPDataProcessing1Source(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned fd = instr->Rd();
+ unsigned fn = instr->Rn();
+
+ switch (instr->Mask(FPDataProcessing1SourceMask)) {
+ case FMOV_s: set_sreg(fd, sreg(fn)); break;
+ case FMOV_d: set_dreg(fd, dreg(fn)); break;
+ case FABS_s: set_sreg(fd, fabs(sreg(fn))); break;
+ case FABS_d: set_dreg(fd, fabs(dreg(fn))); break;
+ case FNEG_s: set_sreg(fd, -sreg(fn)); break;
+ case FNEG_d: set_dreg(fd, -dreg(fn)); break;
+ case FSQRT_s: set_sreg(fd, sqrt(sreg(fn))); break;
+ case FSQRT_d: set_dreg(fd, sqrt(dreg(fn))); break;
+ case FRINTN_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieEven)); break;
+ case FRINTN_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieEven)); break;
+ case FRINTZ_s: set_sreg(fd, FPRoundInt(sreg(fn), FPZero)); break;
+ case FRINTZ_d: set_dreg(fd, FPRoundInt(dreg(fn), FPZero)); break;
+ case FCVT_ds: set_dreg(fd, FPToDouble(sreg(fn))); break;
+ case FCVT_sd: set_sreg(fd, FPToFloat(dreg(fn), FPTieEven)); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+// Assemble the specified IEEE-754 components into the target type and apply
+// appropriate rounding.
+// sign: 0 = positive, 1 = negative
+// exponent: Unbiased IEEE-754 exponent.
+// mantissa: The mantissa of the input. The top bit (which is not encoded for
+// normal IEEE-754 values) must not be omitted. This bit has the
+// value 'pow(2, exponent)'.
+//
+// The input value is assumed to be a normalized value. That is, the input may
+// not be infinity or NaN. If the source value is subnormal, it must be
+// normalized before calling this function such that the highest set bit in the
+// mantissa has the value 'pow(2, exponent)'.
+//
+// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
+// calling a templated FPRound.
+template <class T, int ebits, int mbits>
+static T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa,
+ FPRounding round_mode) {
+ ASSERT((sign == 0) || (sign == 1));
+
+ // Only the FPTieEven rounding mode is implemented.
+ ASSERT(round_mode == FPTieEven);
+ USE(round_mode);
+
+ // Rounding can promote subnormals to normals, and normals to infinities. For
+ // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
+ // encodable as a float, but rounding based on the low-order mantissa bits
+ // could make it overflow. With ties-to-even rounding, this value would become
+ // an infinity.
+
+ // ---- Rounding Method ----
+ //
+ // The exponent is irrelevant in the rounding operation, so we treat the
+ // lowest-order bit that will fit into the result ('onebit') as having
+ // the value '1'. Similarly, the highest-order bit that won't fit into
+ // the result ('halfbit') has the value '0.5'. The 'point' sits between
+ // 'onebit' and 'halfbit':
+ //
+ // These bits fit into the result.
+ // |---------------------|
+ // mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+ // ||
+ // / |
+ // / halfbit
+ // onebit
+ //
+ // For subnormal outputs, the range of representable bits is smaller and
+ // the position of onebit and halfbit depends on the exponent of the
+ // input, but the method is otherwise similar.
+ //
+ // onebit(frac)
+ // |
+ // | halfbit(frac) halfbit(adjusted)
+ // | / /
+ // | | |
+ // 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00
+ // 0b00.0... -> 0b00.0... -> 0b00
+ // 0b00.1 (exact) -> 0b00.0111..111 -> 0b00
+ // 0b00.1... -> 0b00.1... -> 0b01
+ // 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01
+ // 0b01.0... -> 0b01.0... -> 0b01
+ // 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10
+ // 0b01.1... -> 0b01.1... -> 0b10
+ // 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10
+ // 0b10.0... -> 0b10.0... -> 0b10
+ // 0b10.1 (exact) -> 0b10.0111..111 -> 0b10
+ // 0b10.1... -> 0b10.1... -> 0b11
+ // 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11
+ // ... / | / |
+ // / | / |
+ // / |
+ // adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / |
+ //
+ // mantissa = (mantissa >> shift) + halfbit(adjusted);
+
+ static const int mantissa_offset = 0;
+ static const int exponent_offset = mantissa_offset + mbits;
+ static const int sign_offset = exponent_offset + ebits;
+ ASSERT(sign_offset == (sizeof(T) * 8 - 1));
+
+ // Bail out early for zero inputs.
+ if (mantissa == 0) {
+ return sign << sign_offset;
+ }
+
+ // If all bits in the exponent are set, the value is infinite or NaN.
+ // This is true for all binary IEEE-754 formats.
+ static const int infinite_exponent = (1 << ebits) - 1;
+ static const int max_normal_exponent = infinite_exponent - 1;
+
+ // Apply the exponent bias to encode it for the result. Doing this early makes
+ // it easy to detect values that will be infinite or subnormal.
+ exponent += max_normal_exponent >> 1;
+
+ if (exponent > max_normal_exponent) {
+ // Overflow: The input is too large for the result type to represent. The
+ // FPTieEven rounding mode handles overflows using infinities.
+ exponent = infinite_exponent;
+ mantissa = 0;
+ return (sign << sign_offset) |
+ (exponent << exponent_offset) |
+ (mantissa << mantissa_offset);
+ }
+
+ // Calculate the shift required to move the top mantissa bit to the proper
+ // place in the destination type.
+ const int highest_significant_bit = 63 - CountLeadingZeros(mantissa, 64);
+ int shift = highest_significant_bit - mbits;
+
+ if (exponent <= 0) {
+ // The output will be subnormal (before rounding).
+
+ // For subnormal outputs, the shift must be adjusted by the exponent. The +1
+ // is necessary because the exponent of a subnormal value (encoded as 0) is
+ // the same as the exponent of the smallest normal value (encoded as 1).
+ shift += -exponent + 1;
+
+ // Handle inputs that would produce a zero output.
+ //
+ // Shifts higher than highest_significant_bit+1 will always produce a zero
+ // result. A shift of exactly highest_significant_bit+1 might produce a
+ // non-zero result after rounding.
+ if (shift > (highest_significant_bit + 1)) {
+ // The result will always be +/-0.0.
+ return sign << sign_offset;
+ }
+
+ // Properly encode the exponent for a subnormal output.
+ exponent = 0;
+ } else {
+ // Clear the topmost mantissa bit, since this is not encoded in IEEE-754
+ // normal values.
+ mantissa &= ~(1UL << highest_significant_bit);
+ }
+
+ if (shift > 0) {
+ // We have to shift the mantissa to the right. Some precision is lost, so we
+ // need to apply rounding.
+ uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
+ uint64_t halfbit_mantissa = (mantissa >> (shift-1)) & 1;
+ uint64_t adjusted = mantissa - (halfbit_mantissa & ~onebit_mantissa);
+ T halfbit_adjusted = (adjusted >> (shift-1)) & 1;
+
+ T result = (sign << sign_offset) |
+ (exponent << exponent_offset) |
+ ((mantissa >> shift) << mantissa_offset);
+
+ // A very large mantissa can overflow during rounding. If this happens, the
+ // exponent should be incremented and the mantissa set to 1.0 (encoded as
+ // 0). Applying halfbit_adjusted after assembling the float has the nice
+ // side-effect that this case is handled for free.
+ //
+ // This also handles cases where a very large finite value overflows to
+ // infinity, or where a very large subnormal value overflows to become
+ // normal.
+ return result + halfbit_adjusted;
+ } else {
+ // We have to shift the mantissa to the left (or not at all). The input
+ // mantissa is exactly representable in the output mantissa, so apply no
+ // rounding correction.
+ return (sign << sign_offset) |
+ (exponent << exponent_offset) |
+ ((mantissa << -shift) << mantissa_offset);
+ }
+}
+
+
+// See FPRound for a description of this function.
+static inline double FPRoundToDouble(int64_t sign, int64_t exponent,
+ uint64_t mantissa, FPRounding round_mode) {
+ int64_t bits =
+ FPRound<int64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign,
+ exponent,
+ mantissa,
+ round_mode);
+ return rawbits_to_double(bits);
+}
+
+
+// See FPRound for a description of this function.
+static inline float FPRoundToFloat(int64_t sign, int64_t exponent,
+ uint64_t mantissa, FPRounding round_mode) {
+ int32_t bits =
+ FPRound<int32_t, kFloatExponentBits, kFloatMantissaBits>(sign,
+ exponent,
+ mantissa,
+ round_mode);
+ return rawbits_to_float(bits);
+}
+
+
+double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) {
+ if (src >= 0) {
+ return UFixedToDouble(src, fbits, round);
+ } else {
+ // This works for all negative values, including INT64_MIN.
+ return -UFixedToDouble(-src, fbits, round);
+ }
+}
+
+
+double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) {
+ // An input of 0 is a special case because the result is effectively
+ // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
+ if (src == 0) {
+ return 0.0;
+ }
+
+ // Calculate the exponent. The highest significant bit will have the value
+ // 2^exponent.
+ const int highest_significant_bit = 63 - CountLeadingZeros(src, 64);
+ const int64_t exponent = highest_significant_bit - fbits;
+
+ return FPRoundToDouble(0, exponent, src, round);
+}
+
+
+float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) {
+ if (src >= 0) {
+ return UFixedToFloat(src, fbits, round);
+ } else {
+ // This works for all negative values, including INT64_MIN.
+ return -UFixedToFloat(-src, fbits, round);
+ }
+}
+
+
+float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) {
+ // An input of 0 is a special case because the result is effectively
+ // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
+ if (src == 0) {
+ return 0.0f;
+ }
+
+ // Calculate the exponent. The highest significant bit will have the value
+ // 2^exponent.
+ const int highest_significant_bit = 63 - CountLeadingZeros(src, 64);
+ const int32_t exponent = highest_significant_bit - fbits;
+
+ return FPRoundToFloat(0, exponent, src, round);
+}
+
+
+double Simulator::FPRoundInt(double value, FPRounding round_mode) {
+ if ((value == 0.0) || (value == kFP64PositiveInfinity) ||
+ (value == kFP64NegativeInfinity) || isnan(value)) {
+ return value;
+ }
+
+ double int_result = floor(value);
+ double error = value - int_result;
+ switch (round_mode) {
+ case FPTieEven: {
+ // If the error is greater than 0.5, or is equal to 0.5 and the integer
+ // result is odd, round up.
+ if ((error > 0.5) ||
+ ((error == 0.5) && (fmod(int_result, 2) != 0))) {
+ int_result++;
+ }
+ break;
+ }
+ case FPZero: {
+ // If value>0 then we take floor(value)
+ // otherwise, ceil(value).
+ if (value < 0) {
+ int_result = ceil(value);
+ }
+ break;
+ }
+ case FPNegativeInfinity: {
+ // We always use floor(value).
+ break;
+ }
+ default: UNIMPLEMENTED();
+ }
+ return int_result;
+}
+
+
+double Simulator::FPToDouble(float value) {
+ switch (fpclassify(value)) {
+ case FP_NAN: {
+ // Convert NaNs as the processor would, assuming that FPCR.DN (default
+ // NaN) is not set:
+ // - The sign is propagated.
+ // - The payload (mantissa) is transferred entirely, except that the top
+ // bit is forced to '1', making the result a quiet NaN. The unused
+ // (low-order) payload bits are set to 0.
+ uint32_t raw = float_to_rawbits(value);
+
+ uint64_t sign = raw >> 31;
+ uint64_t exponent = (1 << 11) - 1;
+ uint64_t payload = unsigned_bitextract_64(21, 0, raw);
+ payload <<= (52 - 23); // The unused low-order bits should be 0.
+ payload |= (1L << 51); // Force a quiet NaN.
+
+ return rawbits_to_double((sign << 63) | (exponent << 52) | payload);
+ }
+
+ case FP_ZERO:
+ case FP_NORMAL:
+ case FP_SUBNORMAL:
+ case FP_INFINITE: {
+ // All other inputs are preserved in a standard cast, because every value
+ // representable using an IEEE-754 float is also representable using an
+ // IEEE-754 double.
+ return static_cast<double>(value);
+ }
+ }
+
+ UNREACHABLE();
+ return static_cast<double>(value);
+}
+
+
+float Simulator::FPToFloat(double value, FPRounding round_mode) {
+ // Only the FPTieEven rounding mode is implemented.
+ ASSERT(round_mode == FPTieEven);
+ USE(round_mode);
+
+ switch (fpclassify(value)) {
+ case FP_NAN: {
+ // Convert NaNs as the processor would, assuming that FPCR.DN (default
+ // NaN) is not set:
+ // - The sign is propagated.
+ // - The payload (mantissa) is transferred as much as possible, except
+ // that the top bit is forced to '1', making the result a quiet NaN.
+ uint64_t raw = double_to_rawbits(value);
+
+ uint32_t sign = raw >> 63;
+ uint32_t exponent = (1 << 8) - 1;
+ uint32_t payload = unsigned_bitextract_64(50, 52 - 23, raw);
+ payload |= (1 << 22); // Force a quiet NaN.
+
+ return rawbits_to_float((sign << 31) | (exponent << 23) | payload);
+ }
+
+ case FP_ZERO:
+ case FP_INFINITE: {
+ // In a C++ cast, any value representable in the target type will be
+ // unchanged. This is always the case for +/-0.0 and infinities.
+ return static_cast<float>(value);
+ }
+
+ case FP_NORMAL:
+ case FP_SUBNORMAL: {
+ // Convert double-to-float as the processor would, assuming that FPCR.FZ
+ // (flush-to-zero) is not set.
+ uint64_t raw = double_to_rawbits(value);
+ // Extract the IEEE-754 double components.
+ uint32_t sign = raw >> 63;
+ // Extract the exponent and remove the IEEE-754 encoding bias.
+ int32_t exponent = unsigned_bitextract_64(62, 52, raw) - 1023;
+ // Extract the mantissa and add the implicit '1' bit.
+ uint64_t mantissa = unsigned_bitextract_64(51, 0, raw);
+ if (fpclassify(value) == FP_NORMAL) {
+ mantissa |= (1UL << 52);
+ }
+ return FPRoundToFloat(sign, exponent, mantissa, round_mode);
+ }
+ }
+
+ UNREACHABLE();
+ return value;
+}
+
+
+void Simulator::VisitFPDataProcessing2Source(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned fd = instr->Rd();
+ unsigned fn = instr->Rn();
+ unsigned fm = instr->Rm();
+
+ switch (instr->Mask(FPDataProcessing2SourceMask)) {
+ case FADD_s: set_sreg(fd, sreg(fn) + sreg(fm)); break;
+ case FADD_d: set_dreg(fd, dreg(fn) + dreg(fm)); break;
+ case FSUB_s: set_sreg(fd, sreg(fn) - sreg(fm)); break;
+ case FSUB_d: set_dreg(fd, dreg(fn) - dreg(fm)); break;
+ case FMUL_s: set_sreg(fd, sreg(fn) * sreg(fm)); break;
+ case FMUL_d: set_dreg(fd, dreg(fn) * dreg(fm)); break;
+ case FDIV_s: set_sreg(fd, sreg(fn) / sreg(fm)); break;
+ case FDIV_d: set_dreg(fd, dreg(fn) / dreg(fm)); break;
+ case FMAX_s: set_sreg(fd, FPMax(sreg(fn), sreg(fm))); break;
+ case FMAX_d: set_dreg(fd, FPMax(dreg(fn), dreg(fm))); break;
+ case FMIN_s: set_sreg(fd, FPMin(sreg(fn), sreg(fm))); break;
+ case FMIN_d: set_dreg(fd, FPMin(dreg(fn), dreg(fm))); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::VisitFPDataProcessing3Source(Instruction* instr) {
+ AssertSupportedFPCR();
+
+ unsigned fd = instr->Rd();
+ unsigned fn = instr->Rn();
+ unsigned fm = instr->Rm();
+ unsigned fa = instr->Ra();
+
+ // Note: The FMSUB implementation here is not precisely the same as the
+ // instruction definition. In full implementation rounding of results would
+ // occur once at the end, here rounding will occur after the first multiply
+ // and then after the subsequent addition. A full implementation here would
+ // be possible but would require an effort isn't immediately justified given
+ // the small differences we expect to see in most cases.
+
+ switch (instr->Mask(FPDataProcessing3SourceMask)) {
+ case FMSUB_s: set_sreg(fd, sreg(fa) + (-sreg(fn))*sreg(fm)); break;
+ case FMSUB_d: set_dreg(fd, dreg(fa) + (-dreg(fn))*dreg(fm)); break;
+ default: UNIMPLEMENTED();
+ }
+}
+
+
+double Simulator::FPMax(double a, double b) {
+ if (isnan(a)) {
+ return a;
+ } else if (isnan(b)) {
+ return b;
+ }
+
+ if ((a == 0.0) && (b == 0.0) &&
+ (copysign(1.0, a) != copysign(1.0, b))) {
+ // a and b are zero, and the sign differs: return +0.0.
+ return 0.0;
+ } else {
+ return (a > b) ? a : b;
+ }
+}
+
+
+double Simulator::FPMin(double a, double b) {
+ if (isnan(a)) {
+ return a;
+ } else if (isnan(b)) {
+ return b;
+ }
+
+ if ((a == 0.0) && (b == 0.0) &&
+ (copysign(1.0, a) != copysign(1.0, b))) {
+ // a and b are zero, and the sign differs: return -0.0.
+ return -0.0;
+ } else {
+ return (a < b) ? a : b;
+ }
+}
+
+
+void Simulator::VisitSystem(Instruction* instr) {
+ // Some system instructions hijack their Op and Cp fields to represent a
+ // range of immediates instead of indicating a different instruction. This
+ // makes the decoding tricky.
+ if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
+ switch (instr->Mask(SystemSysRegMask)) {
+ case MRS: {
+ switch (instr->ImmSystemRegister()) {
+ case NZCV: set_xreg(instr->Rt(), nzcv().RawValue()); break;
+ case FPCR: set_xreg(instr->Rt(), fpcr().RawValue()); break;
+ default: UNIMPLEMENTED();
+ }
+ break;
+ }
+ case MSR: {
+ switch (instr->ImmSystemRegister()) {
+ case NZCV: nzcv().SetRawValue(xreg(instr->Rt())); break;
+ case FPCR: fpcr().SetRawValue(xreg(instr->Rt())); break;
+ default: UNIMPLEMENTED();
+ }
+ break;
+ }
+ }
+ } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
+ ASSERT(instr->Mask(SystemHintMask) == HINT);
+ switch (instr->ImmHint()) {
+ case NOP: break;
+ default: UNIMPLEMENTED();
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::VisitException(Instruction* instr) {
+ switch (instr->Mask(ExceptionMask)) {
+ case BRK: HostBreakpoint(); break;
+ case HLT:
+ // The Printf pseudo instruction is so useful, we include it in the
+ // default simulator.
+ if (instr->ImmException() == kPrintfOpcode) {
+ DoPrintf(instr);
+ } else {
+ HostBreakpoint();
+ }
+ break;
+ default:
+ UNIMPLEMENTED();
+ }
+}
+
+
+void Simulator::DoPrintf(Instruction* instr) {
+ ASSERT((instr->Mask(ExceptionMask) == HLT) &&
+ (instr->ImmException() == kPrintfOpcode));
+
+ // Read the argument encoded inline in the instruction stream.
+ uint32_t type;
+ ASSERT(sizeof(*instr) == 1);
+ memcpy(&type, instr + kPrintfTypeOffset, sizeof(type));
+
+ const char * format = reinterpret_cast<const char *>(x0());
+ ASSERT(format != NULL);
+
+ // Pass all of the relevant PCS registers onto printf. It doesn't matter
+ // if we pass too many as the extra ones won't be read.
+ int result = 0;
+ if (type == CPURegister::kRegister) {
+ result = printf(format, x1(), x2(), x3(), x4(), x5(), x6(), x7());
+ } else if (type == CPURegister::kFPRegister) {
+ result = printf(format, d0(), d1(), d2(), d3(), d4(), d5(), d6(), d7());
+ } else {
+ ASSERT(type == CPURegister::kNoRegister);
+ result = printf("%s", format);
+ }
+ set_x0(result);
+
+ // TODO: Clobber all caller-saved registers here, to ensure no assumptions
+ // are made about preserved state.
+
+ // The printf parameters are inlined in the code, so skip them.
+ set_pc(instr->InstructionAtOffset(kPrintfLength));
+
+ // Set LR as if we'd just called a native printf function.
+ set_lr(reinterpret_cast<uint64_t>(pc()));
+}
+
+} // namespace vixl
new file mode 100644
@@ -0,0 +1,576 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_SIMULATOR_A64_H_
+#define VIXL_A64_SIMULATOR_A64_H_
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/instructions-a64.h"
+#include "a64/assembler-a64.h"
+#include "a64/disasm-a64.h"
+#include "a64/instrument-a64.h"
+
+namespace vixl {
+
+enum ReverseByteMode {
+ Reverse16 = 0,
+ Reverse32 = 1,
+ Reverse64 = 2
+};
+
+// Printf. See debugger-a64.h for more informations on pseudo instructions.
+// - type: CPURegister::RegisterType stored as a uint32_t.
+//
+// Simulate a call to printf.
+//
+// Floating-point and integer arguments are passed in separate sets of
+// registers in AAPCS64 (even for varargs functions), so it is not possible to
+// determine the type of location of each argument without some information
+// about the values that were passed in. This information could be retrieved
+// from the printf format string, but the format string is not trivial to
+// parse so we encode the relevant information with the HLT instruction under
+// the type argument. Therefore the interface is:
+// x0: The format string
+// x1-x7: Optional arguments, if type == CPURegister::kRegister
+// d0-d7: Optional arguments, if type == CPURegister::kFPRegister
+const Instr kPrintfOpcode = 0xdeb1;
+const unsigned kPrintfTypeOffset = 1 * kInstructionSize;
+const unsigned kPrintfLength = 2 * kInstructionSize;
+
+
+// The proper way to initialize a simulated system register (such as NZCV) is as
+// follows:
+// SimSystemRegister nzcv = SimSystemRegister::DefaultValueFor(NZCV);
+class SimSystemRegister {
+ public:
+ // The default constructor represents a register which has no writable bits.
+ // It is not possible to set its value to anything other than 0.
+ SimSystemRegister() : value_(0), write_ignore_mask_(0xffffffff) { }
+
+ inline uint32_t RawValue() const {
+ return value_;
+ }
+
+ inline void SetRawValue(uint32_t new_value) {
+ value_ = (value_ & write_ignore_mask_) | (new_value & ~write_ignore_mask_);
+ }
+
+ inline uint32_t Bits(int msb, int lsb) const {
+ return unsigned_bitextract_32(msb, lsb, value_);
+ }
+
+ inline int32_t SignedBits(int msb, int lsb) const {
+ return signed_bitextract_32(msb, lsb, value_);
+ }
+
+ void SetBits(int msb, int lsb, uint32_t bits);
+
+ // Default system register values.
+ static SimSystemRegister DefaultValueFor(SystemRegister id);
+
+#define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
+ inline uint32_t Name() const { return Func(HighBit, LowBit); } \
+ inline void Set##Name(uint32_t bits) { SetBits(HighBit, LowBit, bits); }
+#define DEFINE_WRITE_IGNORE_MASK(Name, Mask) \
+ static const uint32_t Name##WriteIgnoreMask = ~static_cast<uint32_t>(Mask);
+
+ SYSTEM_REGISTER_FIELDS_LIST(DEFINE_GETTER, DEFINE_WRITE_IGNORE_MASK)
+
+#undef DEFINE_ZERO_BITS
+#undef DEFINE_GETTER
+
+ protected:
+ // Most system registers only implement a few of the bits in the word. Other
+ // bits are "read-as-zero, write-ignored". The write_ignore_mask argument
+ // describes the bits which are not modifiable.
+ SimSystemRegister(uint32_t value, uint32_t write_ignore_mask)
+ : value_(value), write_ignore_mask_(write_ignore_mask) { }
+
+ uint32_t value_;
+ uint32_t write_ignore_mask_;
+};
+
+
+class Simulator : public DecoderVisitor {
+ public:
+ explicit Simulator(Decoder* decoder, FILE* stream = stdout);
+ ~Simulator();
+
+ void ResetState();
+
+ // TODO: We assume little endianness, and the way in which the members of this
+ // union overlay. Add tests to ensure this, or fix accessors to no longer
+ // require this assumption.
+ union SimRegister {
+ int64_t x;
+ int32_t w;
+ };
+
+ union SimFPRegister {
+ double d;
+ float s;
+ };
+
+ // Run the simulator.
+ virtual void Run();
+ void RunFrom(Instruction* first);
+
+ // Simulation helpers.
+ inline Instruction* pc() { return pc_; }
+ inline void set_pc(Instruction* new_pc) {
+ pc_ = new_pc;
+ pc_modified_ = true;
+ }
+
+ inline void increment_pc() {
+ if (!pc_modified_) {
+ pc_ = pc_->NextInstruction();
+ }
+
+ pc_modified_ = false;
+ }
+
+ inline void ExecuteInstruction() {
+ // The program counter should always be aligned.
+ ASSERT(IsWordAligned(pc_));
+ decoder_->Decode(pc_);
+ increment_pc();
+ }
+
+ // Declare all Visitor functions.
+ #define DECLARE(A) void Visit##A(Instruction* instr);
+ VISITOR_LIST(DECLARE)
+ #undef DECLARE
+
+ // Register accessors.
+ inline int32_t wreg(unsigned code,
+ Reg31Mode r31mode = Reg31IsZeroRegister) const {
+ ASSERT(code < kNumberOfRegisters);
+ if ((code == 31) && (r31mode == Reg31IsZeroRegister)) {
+ return 0;
+ }
+ return registers_[code].w;
+ }
+
+ inline int64_t xreg(unsigned code,
+ Reg31Mode r31mode = Reg31IsZeroRegister) const {
+ ASSERT(code < kNumberOfRegisters);
+ if ((code == 31) && (r31mode == Reg31IsZeroRegister)) {
+ return 0;
+ }
+ return registers_[code].x;
+ }
+
+ inline int64_t reg(unsigned size,
+ unsigned code,
+ Reg31Mode r31mode = Reg31IsZeroRegister) const {
+ switch (size) {
+ case kWRegSize: return wreg(code, r31mode) & kWRegMask;
+ case kXRegSize: return xreg(code, r31mode);
+ default:
+ UNREACHABLE();
+ return 0;
+ }
+ }
+
+ inline void set_wreg(unsigned code, int32_t value,
+ Reg31Mode r31mode = Reg31IsZeroRegister) {
+ ASSERT(code < kNumberOfRegisters);
+ if ((code == kZeroRegCode) && (r31mode == Reg31IsZeroRegister)) {
+ return;
+ }
+ registers_[code].x = 0; // First clear the register top bits.
+ registers_[code].w = value;
+ }
+
+ inline void set_xreg(unsigned code, int64_t value,
+ Reg31Mode r31mode = Reg31IsZeroRegister) {
+ ASSERT(code < kNumberOfRegisters);
+ if ((code == kZeroRegCode) && (r31mode == Reg31IsZeroRegister)) {
+ return;
+ }
+ registers_[code].x = value;
+ }
+
+ inline void set_reg(unsigned size, unsigned code, int64_t value,
+ Reg31Mode r31mode = Reg31IsZeroRegister) {
+ switch (size) {
+ case kWRegSize:
+ return set_wreg(code, static_cast<int32_t>(value & 0xffffffff),
+ r31mode);
+ case kXRegSize:
+ return set_xreg(code, value, r31mode);
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+
+ #define REG_ACCESSORS(N) \
+ inline int32_t w##N() { return wreg(N); } \
+ inline int64_t x##N() { return xreg(N); } \
+ inline void set_w##N(int32_t val) { set_wreg(N, val); } \
+ inline void set_x##N(int64_t val) { set_xreg(N, val); }
+ REGISTER_CODE_LIST(REG_ACCESSORS)
+ #undef REG_ACCESSORS
+
+ // Aliases.
+ #define REG_ALIAS_ACCESSORS(N, wname, xname) \
+ inline int32_t wname() { return wreg(N); } \
+ inline int64_t xname() { return xreg(N); } \
+ inline void set_##wname(int32_t val) { set_wreg(N, val); } \
+ inline void set_##xname(int64_t val) { set_xreg(N, val); }
+ REG_ALIAS_ACCESSORS(30, wlr, lr);
+ #undef REG_ALIAS_ACCESSORS
+
+ // The stack is a special case in aarch64.
+ inline int32_t wsp() { return wreg(31, Reg31IsStackPointer); }
+ inline int64_t sp() { return xreg(31, Reg31IsStackPointer); }
+ inline void set_wsp(int32_t val) {
+ set_wreg(31, val, Reg31IsStackPointer);
+ }
+ inline void set_sp(int64_t val) {
+ set_xreg(31, val, Reg31IsStackPointer);
+ }
+
+ // FPRegister accessors.
+ inline float sreg(unsigned code) const {
+ ASSERT(code < kNumberOfFPRegisters);
+ return fpregisters_[code].s;
+ }
+
+ inline uint32_t sreg_bits(unsigned code) const {
+ return float_to_rawbits(sreg(code));
+ }
+
+ inline double dreg(unsigned code) const {
+ ASSERT(code < kNumberOfFPRegisters);
+ return fpregisters_[code].d;
+ }
+
+ inline uint64_t dreg_bits(unsigned code) const {
+ return double_to_rawbits(dreg(code));
+ }
+
+ inline double fpreg(unsigned size, unsigned code) const {
+ switch (size) {
+ case kSRegSize: return sreg(code);
+ case kDRegSize: return dreg(code);
+ default: {
+ UNREACHABLE();
+ return 0.0;
+ }
+ }
+ }
+
+ inline void set_sreg(unsigned code, float val) {
+ ASSERT(code < kNumberOfFPRegisters);
+ // Ensure that the upper word is set to 0.
+ set_dreg_bits(code, 0);
+
+ fpregisters_[code].s = val;
+ }
+
+ inline void set_sreg_bits(unsigned code, uint32_t rawbits) {
+ ASSERT(code < kNumberOfFPRegisters);
+ // Ensure that the upper word is set to 0.
+ set_dreg_bits(code, 0);
+
+ set_sreg(code, rawbits_to_float(rawbits));
+ }
+
+ inline void set_dreg(unsigned code, double val) {
+ ASSERT(code < kNumberOfFPRegisters);
+ fpregisters_[code].d = val;
+ }
+
+ inline void set_dreg_bits(unsigned code, uint64_t rawbits) {
+ ASSERT(code < kNumberOfFPRegisters);
+ set_dreg(code, rawbits_to_double(rawbits));
+ }
+
+ inline void set_fpreg(unsigned size, unsigned code, double value) {
+ switch (size) {
+ case kSRegSize:
+ return set_sreg(code, value);
+ case kDRegSize:
+ return set_dreg(code, value);
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+
+ #define FPREG_ACCESSORS(N) \
+ inline float s##N() { return sreg(N); } \
+ inline double d##N() { return dreg(N); } \
+ inline void set_s##N(float val) { set_sreg(N, val); } \
+ inline void set_d##N(double val) { set_dreg(N, val); }
+ REGISTER_CODE_LIST(FPREG_ACCESSORS)
+ #undef FPREG_ACCESSORS
+
+ bool N() { return nzcv_.N() != 0; }
+ bool Z() { return nzcv_.Z() != 0; }
+ bool C() { return nzcv_.C() != 0; }
+ bool V() { return nzcv_.V() != 0; }
+ SimSystemRegister& nzcv() { return nzcv_; }
+
+ // TODO(jbramley): Find a way to make the fpcr_ members return the proper
+ // types, so this accessor is not necessary.
+ FPRounding RMode() { return static_cast<FPRounding>(fpcr_.RMode()); }
+ SimSystemRegister& fpcr() { return fpcr_; }
+
+ // Debug helpers
+ void PrintSystemRegisters(bool print_all = false);
+ void PrintRegisters(bool print_all_regs = false);
+ void PrintFPRegisters(bool print_all_regs = false);
+ void PrintProcessorState();
+
+ static const char* WRegNameForCode(unsigned code,
+ Reg31Mode mode = Reg31IsZeroRegister);
+ static const char* XRegNameForCode(unsigned code,
+ Reg31Mode mode = Reg31IsZeroRegister);
+ static const char* SRegNameForCode(unsigned code);
+ static const char* DRegNameForCode(unsigned code);
+ static const char* VRegNameForCode(unsigned code);
+
+ inline bool coloured_trace() { return coloured_trace_; }
+ inline void set_coloured_trace(bool value) { coloured_trace_ = value; }
+
+ inline bool disasm_trace() { return disasm_trace_; }
+ inline void set_disasm_trace(bool value) {
+ if (value != disasm_trace_) {
+ if (value) {
+ decoder_->InsertVisitorBefore(print_disasm_, this);
+ } else {
+ decoder_->RemoveVisitor(print_disasm_);
+ }
+ disasm_trace_ = value;
+ }
+ }
+ inline void set_instruction_stats(bool value) {
+ if (value != instruction_stats_) {
+ if (value) {
+ decoder_->AppendVisitor(instrumentation_);
+ } else {
+ decoder_->RemoveVisitor(instrumentation_);
+ }
+ instruction_stats_ = value;
+ }
+ }
+
+ protected:
+ // Simulation helpers ------------------------------------
+ bool ConditionPassed(Condition cond) {
+ switch (cond) {
+ case eq:
+ return Z();
+ case ne:
+ return !Z();
+ case hs:
+ return C();
+ case lo:
+ return !C();
+ case mi:
+ return N();
+ case pl:
+ return !N();
+ case vs:
+ return V();
+ case vc:
+ return !V();
+ case hi:
+ return C() && !Z();
+ case ls:
+ return !(C() && !Z());
+ case ge:
+ return N() == V();
+ case lt:
+ return N() != V();
+ case gt:
+ return !Z() && (N() == V());
+ case le:
+ return !(!Z() && (N() == V()));
+ case nv: // Fall through.
+ case al:
+ return true;
+ default:
+ UNREACHABLE();
+ return false;
+ }
+ }
+
+ bool ConditionFailed(Condition cond) {
+ return !ConditionPassed(cond);
+ }
+
+ void AddSubHelper(Instruction* instr, int64_t op2);
+ int64_t AddWithCarry(unsigned reg_size,
+ bool set_flags,
+ int64_t src1,
+ int64_t src2,
+ int64_t carry_in = 0);
+ void LogicalHelper(Instruction* instr, int64_t op2);
+ void ConditionalCompareHelper(Instruction* instr, int64_t op2);
+ void LoadStoreHelper(Instruction* instr,
+ int64_t offset,
+ AddrMode addrmode);
+ void LoadStorePairHelper(Instruction* instr, AddrMode addrmode);
+ uint8_t* AddressModeHelper(unsigned addr_reg,
+ int64_t offset,
+ AddrMode addrmode);
+
+ uint64_t MemoryRead(const uint8_t* address, unsigned num_bytes);
+ uint8_t MemoryRead8(uint8_t* address);
+ uint16_t MemoryRead16(uint8_t* address);
+ uint32_t MemoryRead32(uint8_t* address);
+ float MemoryReadFP32(uint8_t* address);
+ uint64_t MemoryRead64(uint8_t* address);
+ double MemoryReadFP64(uint8_t* address);
+
+ void MemoryWrite(uint8_t* address, uint64_t value, unsigned num_bytes);
+ void MemoryWrite32(uint8_t* address, uint32_t value);
+ void MemoryWriteFP32(uint8_t* address, float value);
+ void MemoryWrite64(uint8_t* address, uint64_t value);
+ void MemoryWriteFP64(uint8_t* address, double value);
+
+ int64_t ShiftOperand(unsigned reg_size,
+ int64_t value,
+ Shift shift_type,
+ unsigned amount);
+ int64_t Rotate(unsigned reg_width,
+ int64_t value,
+ Shift shift_type,
+ unsigned amount);
+ int64_t ExtendValue(unsigned reg_width,
+ int64_t value,
+ Extend extend_type,
+ unsigned left_shift = 0);
+
+ uint64_t ReverseBits(uint64_t value, unsigned num_bits);
+ uint64_t ReverseBytes(uint64_t value, ReverseByteMode mode);
+
+ void FPCompare(double val0, double val1);
+ double FPRoundInt(double value, FPRounding round_mode);
+ double FPToDouble(float value);
+ float FPToFloat(double value, FPRounding round_mode);
+ double FixedToDouble(int64_t src, int fbits, FPRounding round_mode);
+ double UFixedToDouble(uint64_t src, int fbits, FPRounding round_mode);
+ float FixedToFloat(int64_t src, int fbits, FPRounding round_mode);
+ float UFixedToFloat(uint64_t src, int fbits, FPRounding round_mode);
+ int32_t FPToInt32(double value, FPRounding rmode);
+ int64_t FPToInt64(double value, FPRounding rmode);
+ uint32_t FPToUInt32(double value, FPRounding rmode);
+ uint64_t FPToUInt64(double value, FPRounding rmode);
+ double FPMax(double a, double b);
+ double FPMin(double a, double b);
+
+ // Pseudo Printf instruction
+ void DoPrintf(Instruction* instr);
+
+ // Processor state ---------------------------------------
+
+ // Output stream.
+ FILE* stream_;
+ PrintDisassembler* print_disasm_;
+
+ // Instruction statistics instrumentation.
+ Instrument* instrumentation_;
+
+ // General purpose registers. Register 31 is the stack pointer.
+ SimRegister registers_[kNumberOfRegisters];
+
+ // Floating point registers
+ SimFPRegister fpregisters_[kNumberOfFPRegisters];
+
+ // Program Status Register.
+ // bits[31, 27]: Condition flags N, Z, C, and V.
+ // (Negative, Zero, Carry, Overflow)
+ SimSystemRegister nzcv_;
+
+ // Floating-Point Control Register
+ SimSystemRegister fpcr_;
+
+ // Only a subset of FPCR features are supported by the simulator. This helper
+ // checks that the FPCR settings are supported.
+ //
+ // This is checked when floating-point instructions are executed, not when
+ // FPCR is set. This allows generated code to modify FPCR for external
+ // functions, or to save and restore it when entering and leaving generated
+ // code.
+ void AssertSupportedFPCR() {
+ ASSERT(fpcr().DN() == 0); // No default-NaN support.
+ ASSERT(fpcr().FZ() == 0); // No flush-to-zero support.
+ ASSERT(fpcr().RMode() == FPTieEven); // Ties-to-even rounding only.
+
+ // The simulator does not support half-precision operations so fpcr().AHP()
+ // is irrelevant, and is not checked here.
+ }
+
+ static inline int CalcNFlag(uint64_t result, unsigned reg_size) {
+ return (result >> (reg_size - 1)) & 1;
+ }
+
+ static inline int CalcZFlag(uint64_t result) {
+ return result == 0;
+ }
+
+ static const uint32_t kConditionFlagsMask = 0xf0000000;
+
+ // Stack
+ byte* stack_;
+ static const int stack_protection_size_ = 256;
+ // 2 KB stack.
+ static const int stack_size_ = 2 * 1024 + 2 * stack_protection_size_;
+ byte* stack_limit_;
+
+ Decoder* decoder_;
+ // Indicates if the pc has been modified by the instruction and should not be
+ // automatically incremented.
+ bool pc_modified_;
+ Instruction* pc_;
+
+ static const char* xreg_names[];
+ static const char* wreg_names[];
+ static const char* sreg_names[];
+ static const char* dreg_names[];
+ static const char* vreg_names[];
+
+ static const Instruction* kEndOfSimAddress;
+
+ private:
+ bool coloured_trace_;
+
+ // Indicates whether the disassembly trace is active.
+ bool disasm_trace_;
+
+ // Indicates whether the instruction instrumentation is active.
+ bool instruction_stats_;
+};
+} // namespace vixl
+
+#endif // VIXL_A64_SIMULATOR_A64_H_
new file mode 100644
@@ -0,0 +1,66 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_GLOBALS_H
+#define VIXL_GLOBALS_H
+
+// Get the standard printf format macros for C99 stdint types.
+#define __STDC_FORMAT_MACROS
+#include <inttypes.h>
+
+#include <assert.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <stddef.h>
+#include "platform.h"
+
+
+typedef uint8_t byte;
+
+const int KBytes = 1024;
+const int MBytes = 1024 * KBytes;
+const int GBytes = 1024 * MBytes;
+
+ #define ABORT() printf("in %s, line %i", __FILE__, __LINE__); abort()
+#ifdef DEBUG
+ #define ASSERT(condition) assert(condition)
+ #define CHECK(condition) ASSERT(condition)
+ #define UNIMPLEMENTED() printf("UNIMPLEMENTED\t"); ABORT()
+ #define UNREACHABLE() printf("UNREACHABLE\t"); ABORT()
+#else
+ #define ASSERT(condition) ((void) 0)
+ #define CHECK(condition) assert(condition)
+ #define UNIMPLEMENTED() ((void) 0)
+ #define UNREACHABLE() ((void) 0)
+#endif
+
+template <typename T> inline void USE(T) {}
+
+#define ALIGNMENT_EXCEPTION() printf("ALIGNMENT EXCEPTION\t"); ABORT()
+
+#endif // VIXL_GLOBALS_H
new file mode 100644
@@ -0,0 +1,43 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef PLATFORM_H
+#define PLATFORM_H
+
+// Define platform specific functionalities.
+
+namespace vixl {
+#ifdef USE_SIMULATOR
+// Currently we assume running the simulator implies running on x86 hardware.
+inline void HostBreakpoint() { asm("int3"); }
+#else
+inline void HostBreakpoint() {
+ // TODO: Implement HostBreakpoint on a64.
+}
+#endif
+} // namespace vixl
+
+#endif
new file mode 100644
@@ -0,0 +1,120 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "utils.h"
+#include <stdio.h>
+
+namespace vixl {
+
+uint32_t float_to_rawbits(float value) {
+ uint32_t bits = 0;
+ memcpy(&bits, &value, 4);
+ return bits;
+}
+
+
+uint64_t double_to_rawbits(double value) {
+ uint64_t bits = 0;
+ memcpy(&bits, &value, 8);
+ return bits;
+}
+
+
+float rawbits_to_float(uint32_t bits) {
+ float value = 0.0;
+ memcpy(&value, &bits, 4);
+ return value;
+}
+
+
+double rawbits_to_double(uint64_t bits) {
+ double value = 0.0;
+ memcpy(&value, &bits, 8);
+ return value;
+}
+
+
+int CountLeadingZeros(uint64_t value, int width) {
+ ASSERT((width == 32) || (width == 64));
+ int count = 0;
+ uint64_t bit_test = 1UL << (width - 1);
+ while ((count < width) && ((bit_test & value) == 0)) {
+ count++;
+ bit_test >>= 1;
+ }
+ return count;
+}
+
+
+int CountLeadingSignBits(int64_t value, int width) {
+ ASSERT((width == 32) || (width == 64));
+ if (value >= 0) {
+ return CountLeadingZeros(value, width) - 1;
+ } else {
+ return CountLeadingZeros(~value, width) - 1;
+ }
+}
+
+
+int CountTrailingZeros(uint64_t value, int width) {
+ ASSERT((width == 32) || (width == 64));
+ int count = 0;
+ while ((count < width) && (((value >> count) & 1) == 0)) {
+ count++;
+ }
+ return count;
+}
+
+
+int CountSetBits(uint64_t value, int width) {
+ // TODO: Other widths could be added here, as the implementation already
+ // supports them.
+ ASSERT((width == 32) || (width == 64));
+
+ // Mask out unused bits to ensure that they are not counted.
+ value &= (0xffffffffffffffffUL >> (64-width));
+
+ // Add up the set bits.
+ // The algorithm works by adding pairs of bit fields together iteratively,
+ // where the size of each bit field doubles each time.
+ // An example for an 8-bit value:
+ // Bits: h g f e d c b a
+ // \ | \ | \ | \ |
+ // value = h+g f+e d+c b+a
+ // \ | \ |
+ // value = h+g+f+e d+c+b+a
+ // \ |
+ // value = h+g+f+e+d+c+b+a
+ value = ((value >> 1) & 0x5555555555555555) + (value & 0x5555555555555555);
+ value = ((value >> 2) & 0x3333333333333333) + (value & 0x3333333333333333);
+ value = ((value >> 4) & 0x0f0f0f0f0f0f0f0f) + (value & 0x0f0f0f0f0f0f0f0f);
+ value = ((value >> 8) & 0x00ff00ff00ff00ff) + (value & 0x00ff00ff00ff00ff);
+ value = ((value >> 16) & 0x0000ffff0000ffff) + (value & 0x0000ffff0000ffff);
+ value = ((value >> 32) & 0x00000000ffffffff) + (value & 0x00000000ffffffff);
+
+ return value;
+}
+} // namespace vixl
new file mode 100644
@@ -0,0 +1,126 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_UTILS_H
+#define VIXL_UTILS_H
+
+
+#include <string.h>
+#include "globals.h"
+
+namespace vixl {
+
+// Check number width.
+inline bool is_intn(unsigned n, int64_t x) {
+ ASSERT((0 < n) && (n < 64));
+ int64_t limit = 1L << (n - 1);
+ return (-limit <= x) && (x < limit);
+}
+
+inline bool is_uintn(unsigned n, int64_t x) {
+ ASSERT((0 < n) && (n < 64));
+ return !(x >> n);
+}
+
+inline unsigned truncate_to_intn(unsigned n, int64_t x) {
+ ASSERT((0 < n) && (n < 64));
+ return (x & ((1L << n) - 1));
+}
+
+#define INT_1_TO_63_LIST(V) \
+V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \
+V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \
+V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \
+V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) \
+V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \
+V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \
+V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \
+V(57) V(58) V(59) V(60) V(61) V(62) V(63)
+
+#define DECLARE_IS_INT_N(N) \
+inline bool is_int##N(int64_t x) { return is_intn(N, x); }
+#define DECLARE_IS_UINT_N(N) \
+inline bool is_uint##N(int64_t x) { return is_uintn(N, x); }
+#define DECLARE_TRUNCATE_TO_INT_N(N) \
+inline int truncate_to_int##N(int x) { return truncate_to_intn(N, x); }
+INT_1_TO_63_LIST(DECLARE_IS_INT_N)
+INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
+INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
+#undef DECLARE_IS_INT_N
+#undef DECLARE_IS_UINT_N
+#undef DECLARE_TRUNCATE_TO_INT_N
+
+// Bit field extraction.
+inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
+ return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
+}
+
+inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
+ return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
+}
+
+inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
+ return (x << (31 - msb)) >> (lsb + 31 - msb);
+}
+
+inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) {
+ return (x << (63 - msb)) >> (lsb + 63 - msb);
+}
+
+// floating point representation
+uint32_t float_to_rawbits(float value);
+uint64_t double_to_rawbits(double value);
+float rawbits_to_float(uint32_t bits);
+double rawbits_to_double(uint64_t bits);
+
+// Bits counting.
+int CountLeadingZeros(uint64_t value, int width);
+int CountLeadingSignBits(int64_t value, int width);
+int CountTrailingZeros(uint64_t value, int width);
+int CountSetBits(uint64_t value, int width);
+
+// Pointer alignment
+// TODO: rename/refactor to make it specific to instructions.
+template<typename T>
+bool IsWordAligned(T pointer) {
+ ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof)
+ return (reinterpret_cast<intptr_t>(pointer) & 3) == 0;
+}
+
+// Increment a pointer until it has the specified alignment.
+template<class T>
+T AlignUp(T pointer, size_t alignment) {
+ ASSERT(sizeof(pointer) == sizeof(uintptr_t));
+ uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
+ size_t align_step = (alignment - pointer_raw) % alignment;
+ ASSERT((pointer_raw + align_step) % alignment == 0);
+ return reinterpret_cast<T>(pointer_raw + align_step);
+}
+
+
+} // namespace vixl
+
+#endif // VIXL_UTILS_H