@@ -22,30 +22,27 @@
* @err: error number
*/
static void crypto_finalize_request(struct crypto_engine *engine,
- struct crypto_async_request *req, int err)
+ struct crypto_async_request *req, int err)
{
unsigned long flags;
- bool finalize_cur_req = false;
int ret;
struct crypto_engine_ctx *enginectx;
spin_lock_irqsave(&engine->queue_lock, flags);
- if (engine->cur_req == req)
- finalize_cur_req = true;
+ /*
+ * Increment the number of requests completed.
+ * We'll need it to start the engine on pump_requests,
+ * if hardware can enqueue new requests.
+ */
+ engine->cnt_finalize++;
spin_unlock_irqrestore(&engine->queue_lock, flags);
- if (finalize_cur_req) {
- enginectx = crypto_tfm_ctx(req->tfm);
- if (engine->cur_req_prepared &&
- enginectx->op.unprepare_request) {
- ret = enginectx->op.unprepare_request(engine, req);
- if (ret)
- dev_err(engine->dev, "failed to unprepare request\n");
- }
- spin_lock_irqsave(&engine->queue_lock, flags);
- engine->cur_req = NULL;
- engine->cur_req_prepared = false;
- spin_unlock_irqrestore(&engine->queue_lock, flags);
+ enginectx = crypto_tfm_ctx(req->tfm);
+ if (enginectx->op.prepare_request &&
+ enginectx->op.unprepare_request) {
+ ret = enginectx->op.unprepare_request(engine, req);
+ if (ret)
+ dev_err(engine->dev, "failed to unprepare request\n");
}
req->complete(req, err);
@@ -69,12 +66,19 @@ static void crypto_pump_requests(struct crypto_engine *engine,
unsigned long flags;
bool was_busy = false;
int ret;
+ int can_enq_more = 0;
struct crypto_engine_ctx *enginectx;
spin_lock_irqsave(&engine->queue_lock, flags);
- /* Make sure we are not already running a request */
- if (engine->cur_req)
+ /*
+ * If hardware cannot enqueue new requests,
+ * stop the engine, until requests are processed and
+ * hardware can execute new requests.
+ * We'll start the engine on request completion
+ * (crypto_finalize_request).
+ */
+ if (engine->cnt_finalize != engine->cnt_do_req)
goto out;
/* If another context is idling then defer */
@@ -108,13 +112,13 @@ static void crypto_pump_requests(struct crypto_engine *engine,
goto out;
}
+start_request:
/* Get the fist request from the engine queue to handle */
backlog = crypto_get_backlog(&engine->queue);
async_req = crypto_dequeue_request(&engine->queue);
if (!async_req)
goto out;
- engine->cur_req = async_req;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
@@ -130,7 +134,7 @@ static void crypto_pump_requests(struct crypto_engine *engine,
ret = engine->prepare_crypt_hardware(engine);
if (ret) {
dev_err(engine->dev, "failed to prepare crypt hardware\n");
- goto req_err;
+ goto req_err_2;
}
}
@@ -141,25 +145,53 @@ static void crypto_pump_requests(struct crypto_engine *engine,
if (ret) {
dev_err(engine->dev, "failed to prepare request: %d\n",
ret);
- goto req_err;
+ goto req_err_2;
}
- engine->cur_req_prepared = true;
}
if (!enginectx->op.do_one_request) {
dev_err(engine->dev, "failed to do request\n");
ret = -EINVAL;
- goto req_err;
+ goto req_err_1;
}
+
ret = enginectx->op.do_one_request(engine, async_req);
- if (ret) {
- dev_err(engine->dev, "Failed to do one request from queue: %d\n", ret);
- goto req_err;
+ can_enq_more = ret;
+ if (can_enq_more < 0) {
+ dev_err(engine->dev, "Failed to do one request from queue: %d\n",
+ ret);
+ goto req_err_1;
+ }
+
+ goto retry;
+
+req_err_1:
+ if (enginectx->op.unprepare_request) {
+ ret = enginectx->op.unprepare_request(engine, async_req);
+ if (ret)
+ dev_err(engine->dev, "failed to unprepare request\n");
}
- return;
-req_err:
- crypto_finalize_request(engine, async_req, ret);
- return;
+req_err_2:
+ async_req->complete(async_req, ret);
+
+retry:
+ spin_lock_irqsave(&engine->queue_lock, flags);
+
+ /*
+ * If hardware can still enqueue requests,
+ * increment the number of requests accepted by hardware.
+ * We'll need it to start the engine on pump_requests.
+ */
+ if (can_enq_more >= 0)
+ engine->cnt_do_req++;
+
+ /*
+ * We'll send new requests to engine, if there is space.
+ * If the 2 counters are equal, that means that all requests
+ * were executed, so we can send new requests.
+ */
+ if (engine->cnt_finalize == engine->cnt_do_req || can_enq_more > 0)
+ goto start_request;
out:
spin_unlock_irqrestore(&engine->queue_lock, flags);
@@ -386,15 +418,18 @@ int crypto_engine_stop(struct crypto_engine *engine)
EXPORT_SYMBOL_GPL(crypto_engine_stop);
/**
- * crypto_engine_alloc_init - allocate crypto hardware engine structure and
- * initialize it.
+ * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
+ * and initialize it by setting the maximum number of entries in the software
+ * crypto-engine queue.
* @dev: the device attached with one hardware engine
* @rt: whether this queue is set to run as a realtime task
+ * @qlen: maximum size of the crypto-engine queue
*
* This must be called from context that can sleep.
* Return: the crypto engine structure on success, else NULL.
*/
-struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
+struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
+ bool rt, int qlen)
{
struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
struct crypto_engine *engine;
@@ -411,12 +446,13 @@ struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
engine->running = false;
engine->busy = false;
engine->idling = false;
- engine->cur_req_prepared = false;
+ engine->cnt_do_req = 0;
+ engine->cnt_finalize = 0;
engine->priv_data = dev;
snprintf(engine->name, sizeof(engine->name),
"%s-engine", dev_name(dev));
- crypto_init_queue(&engine->queue, CRYPTO_ENGINE_MAX_QLEN);
+ crypto_init_queue(&engine->queue, qlen);
spin_lock_init(&engine->queue_lock);
engine->kworker = kthread_create_worker(0, "%s", engine->name);
@@ -433,6 +469,22 @@ struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
return engine;
}
+EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
+
+/**
+ * crypto_engine_alloc_init - allocate crypto hardware engine structure and
+ * initialize it.
+ * @dev: the device attached with one hardware engine
+ * @rt: whether this queue is set to run as a realtime task
+ *
+ * This must be called from context that can sleep.
+ * Return: the crypto engine structure on success, else NULL.
+ */
+struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
+{
+ return crypto_engine_alloc_init_and_set(dev, rt,
+ CRYPTO_ENGINE_MAX_QLEN);
+}
EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
/**
@@ -24,7 +24,8 @@
* @idling: the engine is entering idle state
* @busy: request pump is busy
* @running: the engine is on working
- * @cur_req_prepared: current request is prepared
+ * @cnt_finalize: number of completed/finalized requests
+ * @cnt_do_req: number of requests accepted by hardware
* @list: link with the global crypto engine list
* @queue_lock: spinlock to syncronise access to request queue
* @queue: the crypto queue of the engine
@@ -38,14 +39,15 @@
* @kworker: kthread worker struct for request pump
* @pump_requests: work struct for scheduling work to the request pump
* @priv_data: the engine private data
- * @cur_req: the current request which is on processing
*/
struct crypto_engine {
char name[ENGINE_NAME_LEN];
bool idling;
bool busy;
bool running;
- bool cur_req_prepared;
+
+ u32 cnt_finalize;
+ u32 cnt_do_req;
struct list_head list;
spinlock_t queue_lock;
@@ -61,7 +63,6 @@ struct crypto_engine {
struct kthread_work pump_requests;
void *priv_data;
- struct crypto_async_request *cur_req;
};
/*
@@ -102,6 +103,8 @@ void crypto_finalize_skcipher_request(struct crypto_engine *engine,
int crypto_engine_start(struct crypto_engine *engine);
int crypto_engine_stop(struct crypto_engine *engine);
struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt);
+struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
+ bool rt, int qlen);
int crypto_engine_exit(struct crypto_engine *engine);
#endif /* _CRYPTO_ENGINE_H */