@@ -18,23 +18,22 @@
* On big-endian systems, the padding is in the wrong place.
*
* Pad space is left for:
- * - 64-bit time_t to solve y2038 problem
* - 2 miscellaneous 32-bit values
*/
struct msqid64_ds {
struct ipc64_perm msg_perm;
+#if __BITS_PER_LONG == 64
__kernel_time_t msg_stime; /* last msgsnd time */
-#if __BITS_PER_LONG != 64
- unsigned long __unused1;
-#endif
__kernel_time_t msg_rtime; /* last msgrcv time */
-#if __BITS_PER_LONG != 64
- unsigned long __unused2;
-#endif
__kernel_time_t msg_ctime; /* last change time */
-#if __BITS_PER_LONG != 64
- unsigned long __unused3;
+#else
+ unsigned long msg_stime; /* last msgsnd time */
+ unsigned long msg_stime_high;
+ unsigned long msg_rtime; /* last msgrcv time */
+ unsigned long msg_rtime_high;
+ unsigned long msg_ctime; /* last change time */
+ unsigned long msg_ctime_high;
#endif
__kernel_ulong_t msg_cbytes; /* current number of bytes on queue */
__kernel_ulong_t msg_qnum; /* number of messages in queue */
@@ -13,23 +13,29 @@
* everyone just ended up making identical copies without specific
* optimizations, so we may just as well all use the same one.
*
- * 64 bit architectures typically define a 64 bit __kernel_time_t,
+ * 64 bit architectures use a 64-bit __kernel_time_t here, while
+ * 32 bit architectures have a pair of unsigned long values.
* so they do not need the first two padding words.
- * On big-endian systems, the padding is in the wrong place.
*
- * Pad space is left for:
- * - 64-bit time_t to solve y2038 problem
- * - 2 miscellaneous 32-bit values
+ * On big-endian systems, the padding is in the wrong place for
+ * historic reasons, so user space has to reconstruct a time_t
+ * value using
+ *
+ * user_semid_ds.sem_otime = kernel_semid64_ds.sem_otime +
+ * ((long long)kernel_semid64_ds.sem_otime_high << 32)
+ *
+ * Pad space is left for 2 miscellaneous 32-bit values
*/
struct semid64_ds {
struct ipc64_perm sem_perm; /* permissions .. see ipc.h */
+#if __BITS_PER_LONG == 64
__kernel_time_t sem_otime; /* last semop time */
-#if __BITS_PER_LONG != 64
- unsigned long __unused1;
-#endif
__kernel_time_t sem_ctime; /* last change time */
-#if __BITS_PER_LONG != 64
- unsigned long __unused2;
+#else
+ unsigned long sem_otime; /* last semop time */
+ unsigned long sem_otime_high;
+ unsigned long sem_ctime; /* last change time */
+ unsigned long sem_ctime_high;
#endif
unsigned long sem_nsems; /* no. of semaphores in array */
unsigned long __unused3;
@@ -19,24 +19,23 @@
*
*
* Pad space is left for:
- * - 64-bit time_t to solve y2038 problem
* - 2 miscellaneous 32-bit values
*/
struct shmid64_ds {
struct ipc64_perm shm_perm; /* operation perms */
size_t shm_segsz; /* size of segment (bytes) */
+#if __BITS_PER_LONG == 64
__kernel_time_t shm_atime; /* last attach time */
-#if __BITS_PER_LONG != 64
- unsigned long __unused1;
-#endif
__kernel_time_t shm_dtime; /* last detach time */
-#if __BITS_PER_LONG != 64
- unsigned long __unused2;
-#endif
__kernel_time_t shm_ctime; /* last change time */
-#if __BITS_PER_LONG != 64
- unsigned long __unused3;
+#else
+ unsigned long shm_atime; /* last attach time */
+ unsigned long shm_atime_high;
+ unsigned long shm_dtime; /* last detach time */
+ unsigned long shm_dtime_high;
+ unsigned long shm_ctime; /* last change time */
+ unsigned long shm_ctime_high;
#endif
__kernel_pid_t shm_cpid; /* pid of creator */
__kernel_pid_t shm_lpid; /* pid of last operator */
Most architectures now use the asm-generic copy of the sysvipc data structures (msqid64_ds, semid64_ds, shmid64_ds), which use 32-bit __kernel_time_t on 32-bit architectures but have padding behind them to allow extending the type to 64-bit. Unfortunately, that fails on all big-endian architectures, which have the padding on the wrong side. As so many of them get it wrong, we decided to not bother even trying to fix it up when we introduced the asm-generic copy. Instead we always use the padding word now to provide the upper 32 bits of the seconds value, regardless of the endianess. A libc implementation on a typical big-endian system can deal with this by providing its own copy of the structure definition to user space, and swapping the two 32-bit words before returning from the semctl/shmctl/msgctl system calls. ARM64 and s/390 are architectures that use these generic headers and also provide support for compat mode on 64-bit kernels, so we adapt their copies here as well. Signed-off-by: Arnd Bergmann <arnd@arndb.de> --- include/uapi/asm-generic/msgbuf.h | 17 ++++++++--------- include/uapi/asm-generic/sembuf.h | 26 ++++++++++++++++---------- include/uapi/asm-generic/shmbuf.h | 17 ++++++++--------- 3 files changed, 32 insertions(+), 28 deletions(-) -- 2.9.0