Message ID | 20220307213356.2797205-23-brijesh.singh@amd.com |
---|---|
State | New |
Headers | show |
Series | Add AMD Secure Nested Paging (SEV-SNP) Guest Support | expand |
On Mon, Mar 07, 2022, Brijesh Singh wrote: > From: Tom Lendacky <thomas.lendacky@amd.com> > > To provide a more secure way to start APs under SEV-SNP, use the SEV-SNP > AP Creation NAE event. This allows for guest control over the AP register > state rather than trusting the hypervisor with the SEV-ES Jump Table > address. > > During native_smp_prepare_cpus(), invoke an SEV-SNP function that, if > SEV-SNP is active, will set/override apic->wakeup_secondary_cpu. This > will allow the SEV-SNP AP Creation NAE event method to be used to boot > the APs. As a result of installing the override when SEV-SNP is active, > this method of starting the APs becomes the required method. The override > function will fail to start the AP if the hypervisor does not have > support for AP creation. ... > @@ -823,6 +843,230 @@ void snp_set_memory_private(unsigned long vaddr, unsigned int npages) > pvalidate_pages(vaddr, npages, true); > } > > +static int snp_set_vmsa(void *va, bool vmsa) > +{ > + u64 attrs; > + > + /* > + * Running at VMPL0 allows the kernel to change the VMSA bit for a page > + * using the RMPADJUST instruction. However, for the instruction to > + * succeed it must target the permissions of a lesser privileged > + * VMPL level, so use VMPL1 (refer to the RMPADJUST instruction in the > + * AMD64 APM Volume 3). > + */ > + attrs = 1; > + if (vmsa) > + attrs |= RMPADJUST_VMSA_PAGE_BIT; > + > + return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs); > +} > + > +#define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK) > +#define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK) > +#define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK) > + > +#define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2) > +#define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3) > + > +static void *snp_alloc_vmsa_page(void) > +{ > + struct page *p; > + > + /* > + * Allocate VMSA page to work around the SNP erratum where the CPU will > + * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB) > + * collides with the RMP entry of VMSA page. The recommended workaround > + * is to not use a large page. > + */ > + > + /* Allocate an 8k page which is also 8k-aligned */ > + p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1); > + if (!p) > + return NULL; > + > + split_page(p, 1); > + > + /* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */ > + __free_page(p); > + > + return page_address(p + 1); > +} > + > +static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa) > +{ > + int err; > + > + err = snp_set_vmsa(vmsa, false); Uh, so what happens if a malicious guest does RMPADJUST to convert a VMSA page back to a "normal" page while the host is trying to VMRUN that VMSA? Does VMRUN fault? Can Linux refuse to support this madness and instead require the ACPI MP wakeup protocol being proposed/implemented for TDX? That would allow KVM to have at least a chance of refusing to support AP "creation", which IMO is a CVE or three waiting to happen. From a KVM perspective, I don't ever want to be running a guest-defined VMSA. https://lore.kernel.org/all/YWnbfCet84Vup6q9@google.com > + if (err) > + pr_err("clear VMSA page failed (%u), leaking page\n", err); > + else > + free_page((unsigned long)vmsa);
Hi Sean, On 4/4/22 19:24, Sean Christopherson wrote: >> +static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa) >> +{ >> + int err; >> + >> + err = snp_set_vmsa(vmsa, false); > > Uh, so what happens if a malicious guest does RMPADJUST to convert a VMSA page > back to a "normal" page while the host is trying to VMRUN that VMSA? Does VMRUN > fault? When SEV-SNP is enabled, the VMRUN instruction performs an additional security checks on various memory pages. In the case of VMSA page, hardware enforce that page is marked as "VMSA" in the RMP table. If not, VMRUN will fail with VMEXIT_INVALID. After the VMRUN is successful, the VMSA page is marked IN_USE by the hardware, any attempt to modify the RMP entries will result in FAIL_INUSE error. The IN_USE marking is automatically cleared by the hardware after the #VMEXIT. Please see the APM vol2 section 15.36.12 for additional information. > > Can Linux refuse to support this madness and instead require the ACPI MP wakeup > protocol being proposed/implemented for TDX? That would allow KVM to have at My two cents In the current architecture, the HV track VMSAs by their SPA and guest controls when they are runnable. It provides flexibility to the guest, which can add and remove the VMSA. This flexibility may come in handy to support the kexec and reboot use cases. The current approach does not depend on ACPI; it will also come in handy to support microvm (minimalist machine type without PCI nor ACPI support). > least a chance of refusing to support AP "creation", which IMO is a CVE or three > waiting to happen. From a KVM perspective, I don't ever want to be running a > guest-defined VMSA. > > https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Flore.kernel.org%2Fall%2FYWnbfCet84Vup6q9%40google.com&data=04%7C01%7Cbrijesh.singh%40amd.com%7Ce6a0199ed3344529241208da169ab52b%7C3dd8961fe4884e608e11a82d994e183d%7C0%7C0%7C637847150997306218%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=w1eo3vza4Txv6tcgB6aO1rCoYOygQvGwKZ1kajgCbpY%3D&reserved=0 > >> + if (err) >> + pr_err("clear VMSA page failed (%u), leaking page\n", err); >> + else >> + free_page((unsigned long)vmsa); >
On Tue, Apr 05, 2022, Brijesh Singh wrote: > Hi Sean, > > On 4/4/22 19:24, Sean Christopherson wrote: > > > > +static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa) > > > +{ > > > + int err; > > > + > > > + err = snp_set_vmsa(vmsa, false); > > > > Uh, so what happens if a malicious guest does RMPADJUST to convert a VMSA page > > back to a "normal" page while the host is trying to VMRUN that VMSA? Does VMRUN > > fault? > > When SEV-SNP is enabled, the VMRUN instruction performs an additional > security checks on various memory pages. In the case of VMSA page, hardware > enforce that page is marked as "VMSA" in the RMP table. If not, VMRUN will > fail with VMEXIT_INVALID. > > After the VMRUN is successful, the VMSA page is marked IN_USE by the > hardware, any attempt to modify the RMP entries will result in FAIL_INUSE > error. The IN_USE marking is automatically cleared by the hardware after the > #VMEXIT. > > Please see the APM vol2 section 15.36.12 for additional information. Thanks! > > Can Linux refuse to support this madness and instead require the ACPI MP wakeup > > protocol being proposed/implemented for TDX? That would allow KVM to have at > > My two cents > > In the current architecture, the HV track VMSAs by their SPA and guest > controls when they are runnable. It provides flexibility to the guest, which > can add and remove the VMSA. This flexibility may come in handy to support > the kexec and reboot use cases. I understand it provides the guest flexibility, but IMO it completely inverts the separation of concerns between host and guest. The host should have control of when a vCPU is added/removed and with what state, and the guest should be able to verify/acknowledge any changes. This scheme gives the guest the bulk of the control, and doesn't even let the host verify much at all since the VMSA is opaque. That the guest can yank the rug out from the host at any time just adds to the pain. VMEXIT_INVALID isn't the end of the world, but it breaks the assumption that such errors are host bugs. To guard against such behavior, the host would have to unmap the VMSA page in order to prevent unwanted RMPADJUST, and that gets ugly fast if a VMSA can be any arbitrary guest page. Another example is the 2mb alignment erratum. Technically, the guest can't workaround the erratum with 100% certainty because there's no guarantee that the host uses the same alignment for gfns and pfns. I don't actually expect a host to use unaligned mappings, just pointing out how backwards this is. I fully realize there's basically zero chance of getting any of this changed in hardware/firmware, but I'm hoping we can concoct a software/GHCB solution to the worst issues. I don't see an way easy to address the guest getting to shove state directly into the VMSA, but the location of the VMSA gfn/pfn is a very solvable problem. E.g. the host gets full control over each vCPU's VMSA, and the host-provided VMSA is discoverable in the guest. That allows the guest to change vCPU state, e.g. for AP bringup, kexec, etc..., but gives the host the ability to protect itself without having to support arbitrary VMSA pages. E.g. the host can dynamically map/unmap the VMSA from the guest: map on fault, unmap on AP "creation", refuse to run the vCPU if its VMSA isn't in the unmap state. The VMSA pfn is fully host controlled, so there's no need for the guest to be aware of the 2mb alignment erratum. Requiring such GHCB extensions in the guest would make Linux incompatible with hypervisors that aren't updated, but IMO that's not a ridiculous ask given that it would be in the best interested of any hypervisor that isn't running a fully trusted, paravirt VMPL0. > The current approach does not depend on > ACPI; it will also come in handy to support microvm (minimalist machine type > without PCI nor ACPI support). Eh, a microvm really shouldn't need AP bringup in the first place, just run all APs from time zero and route them to where they need to be.
diff --git a/arch/x86/include/asm/sev-common.h b/arch/x86/include/asm/sev-common.h index 1aa72b5c2490..e9b6815b3b3d 100644 --- a/arch/x86/include/asm/sev-common.h +++ b/arch/x86/include/asm/sev-common.h @@ -104,6 +104,7 @@ enum psc_op { (((u64)(v) & GENMASK_ULL(63, 12)) >> 12) #define GHCB_HV_FT_SNP BIT_ULL(0) +#define GHCB_HV_FT_SNP_AP_CREATION BIT_ULL(1) /* SNP Page State Change NAE event */ #define VMGEXIT_PSC_MAX_ENTRY 253 diff --git a/arch/x86/include/asm/sev.h b/arch/x86/include/asm/sev.h index feeb93e6ec97..a3203b2caaca 100644 --- a/arch/x86/include/asm/sev.h +++ b/arch/x86/include/asm/sev.h @@ -66,6 +66,8 @@ extern bool handle_vc_boot_ghcb(struct pt_regs *regs); /* RMP page size */ #define RMP_PG_SIZE_4K 0 +#define RMPADJUST_VMSA_PAGE_BIT BIT(16) + #ifdef CONFIG_AMD_MEM_ENCRYPT extern struct static_key_false sev_es_enable_key; extern void __sev_es_ist_enter(struct pt_regs *regs); @@ -130,6 +132,7 @@ void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr void __init snp_prep_memory(unsigned long paddr, unsigned int sz, enum psc_op op); void snp_set_memory_shared(unsigned long vaddr, unsigned int npages); void snp_set_memory_private(unsigned long vaddr, unsigned int npages); +void snp_set_wakeup_secondary_cpu(void); #else static inline void sev_es_ist_enter(struct pt_regs *regs) { } static inline void sev_es_ist_exit(void) { } @@ -146,6 +149,7 @@ early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr, unsigned i static inline void __init snp_prep_memory(unsigned long paddr, unsigned int sz, enum psc_op op) { } static inline void snp_set_memory_shared(unsigned long vaddr, unsigned int npages) { } static inline void snp_set_memory_private(unsigned long vaddr, unsigned int npages) { } +static inline void snp_set_wakeup_secondary_cpu(void) { } #endif #endif diff --git a/arch/x86/include/uapi/asm/svm.h b/arch/x86/include/uapi/asm/svm.h index 0dcdb6e0c913..8b4c57baec52 100644 --- a/arch/x86/include/uapi/asm/svm.h +++ b/arch/x86/include/uapi/asm/svm.h @@ -109,6 +109,10 @@ #define SVM_VMGEXIT_SET_AP_JUMP_TABLE 0 #define SVM_VMGEXIT_GET_AP_JUMP_TABLE 1 #define SVM_VMGEXIT_PSC 0x80000010 +#define SVM_VMGEXIT_AP_CREATION 0x80000013 +#define SVM_VMGEXIT_AP_CREATE_ON_INIT 0 +#define SVM_VMGEXIT_AP_CREATE 1 +#define SVM_VMGEXIT_AP_DESTROY 2 #define SVM_VMGEXIT_HV_FEATURES 0x8000fffd #define SVM_VMGEXIT_UNSUPPORTED_EVENT 0x8000ffff @@ -221,6 +225,7 @@ { SVM_VMGEXIT_AP_HLT_LOOP, "vmgexit_ap_hlt_loop" }, \ { SVM_VMGEXIT_AP_JUMP_TABLE, "vmgexit_ap_jump_table" }, \ { SVM_VMGEXIT_PSC, "vmgexit_page_state_change" }, \ + { SVM_VMGEXIT_AP_CREATION, "vmgexit_ap_creation" }, \ { SVM_VMGEXIT_HV_FEATURES, "vmgexit_hypervisor_feature" }, \ { SVM_EXIT_ERR, "invalid_guest_state" } diff --git a/arch/x86/kernel/sev.c b/arch/x86/kernel/sev.c index 4315be1602d1..bc9bb7e0c04d 100644 --- a/arch/x86/kernel/sev.c +++ b/arch/x86/kernel/sev.c @@ -18,6 +18,7 @@ #include <linux/memblock.h> #include <linux/kernel.h> #include <linux/mm.h> +#include <linux/cpumask.h> #include <asm/cpu_entry_area.h> #include <asm/stacktrace.h> @@ -31,9 +32,26 @@ #include <asm/svm.h> #include <asm/smp.h> #include <asm/cpu.h> +#include <asm/apic.h> #define DR7_RESET_VALUE 0x400 +/* AP INIT values as documented in the APM2 section "Processor Initialization State" */ +#define AP_INIT_CS_LIMIT 0xffff +#define AP_INIT_DS_LIMIT 0xffff +#define AP_INIT_LDTR_LIMIT 0xffff +#define AP_INIT_GDTR_LIMIT 0xffff +#define AP_INIT_IDTR_LIMIT 0xffff +#define AP_INIT_TR_LIMIT 0xffff +#define AP_INIT_RFLAGS_DEFAULT 0x2 +#define AP_INIT_DR6_DEFAULT 0xffff0ff0 +#define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL +#define AP_INIT_XCR0_DEFAULT 0x1 +#define AP_INIT_X87_FTW_DEFAULT 0x5555 +#define AP_INIT_X87_FCW_DEFAULT 0x0040 +#define AP_INIT_CR0_DEFAULT 0x60000010 +#define AP_INIT_MXCSR_DEFAULT 0x1f80 + /* For early boot hypervisor communication in SEV-ES enabled guests */ static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE); @@ -90,6 +108,8 @@ struct ghcb_state { static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data); DEFINE_STATIC_KEY_FALSE(sev_es_enable_key); +static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa); + static __always_inline bool on_vc_stack(struct pt_regs *regs) { unsigned long sp = regs->sp; @@ -823,6 +843,230 @@ void snp_set_memory_private(unsigned long vaddr, unsigned int npages) pvalidate_pages(vaddr, npages, true); } +static int snp_set_vmsa(void *va, bool vmsa) +{ + u64 attrs; + + /* + * Running at VMPL0 allows the kernel to change the VMSA bit for a page + * using the RMPADJUST instruction. However, for the instruction to + * succeed it must target the permissions of a lesser privileged + * VMPL level, so use VMPL1 (refer to the RMPADJUST instruction in the + * AMD64 APM Volume 3). + */ + attrs = 1; + if (vmsa) + attrs |= RMPADJUST_VMSA_PAGE_BIT; + + return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs); +} + +#define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK) +#define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK) +#define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK) + +#define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2) +#define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3) + +static void *snp_alloc_vmsa_page(void) +{ + struct page *p; + + /* + * Allocate VMSA page to work around the SNP erratum where the CPU will + * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB) + * collides with the RMP entry of VMSA page. The recommended workaround + * is to not use a large page. + */ + + /* Allocate an 8k page which is also 8k-aligned */ + p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1); + if (!p) + return NULL; + + split_page(p, 1); + + /* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */ + __free_page(p); + + return page_address(p + 1); +} + +static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa) +{ + int err; + + err = snp_set_vmsa(vmsa, false); + if (err) + pr_err("clear VMSA page failed (%u), leaking page\n", err); + else + free_page((unsigned long)vmsa); +} + +static int wakeup_cpu_via_vmgexit(int apic_id, unsigned long start_ip) +{ + struct sev_es_save_area *cur_vmsa, *vmsa; + struct ghcb_state state; + unsigned long flags; + struct ghcb *ghcb; + u8 sipi_vector; + int cpu, ret; + u64 cr4; + + /* + * SNP AP creation requires that the hypervisor must support SNP and + * the AP creation feature. The SNP feature check was already checked + * prior to getting here, so just check for the AP_CREATION feature + * flag. + */ + if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION)) + return -EOPNOTSUPP; + + /* + * Verify the desired start IP against the known trampoline start IP + * to catch any future new trampolines that may be introduced that + * would require a new protected guest entry point. + */ + if (WARN_ONCE(start_ip != real_mode_header->trampoline_start, + "Unsupported SNP start_ip: %lx\n", start_ip)) + return -EINVAL; + + /* Override start_ip with known protected guest start IP */ + start_ip = real_mode_header->sev_es_trampoline_start; + + /* Find the logical CPU for the APIC ID */ + for_each_present_cpu(cpu) { + if (arch_match_cpu_phys_id(cpu, apic_id)) + break; + } + if (cpu >= nr_cpu_ids) + return -EINVAL; + + cur_vmsa = per_cpu(sev_vmsa, cpu); + + /* + * A new VMSA is created each time because there is no guarantee that + * the current VMSA is the kernels or that the vCPU is not running. If + * an attempt was done to use the current VMSA with a running vCPU, a + * #VMEXIT of that vCPU would wipe out all of the settings being done + * here. + */ + vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page(); + if (!vmsa) + return -ENOMEM; + + /* CR4 should maintain the MCE value */ + cr4 = native_read_cr4() & X86_CR4_MCE; + + /* Set the CS value based on the start_ip converted to a SIPI vector */ + sipi_vector = (start_ip >> 12); + vmsa->cs.base = sipi_vector << 12; + vmsa->cs.limit = AP_INIT_CS_LIMIT; + vmsa->cs.attrib = INIT_CS_ATTRIBS; + vmsa->cs.selector = sipi_vector << 8; + + /* Set the RIP value based on start_ip */ + vmsa->rip = start_ip & 0xfff; + + /* Set AP INIT defaults as documented in the APM */ + vmsa->ds.limit = AP_INIT_DS_LIMIT; + vmsa->ds.attrib = INIT_DS_ATTRIBS; + vmsa->es = vmsa->ds; + vmsa->fs = vmsa->ds; + vmsa->gs = vmsa->ds; + vmsa->ss = vmsa->ds; + + vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT; + vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT; + vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS; + vmsa->idtr.limit = AP_INIT_IDTR_LIMIT; + vmsa->tr.limit = AP_INIT_TR_LIMIT; + vmsa->tr.attrib = INIT_TR_ATTRIBS; + + vmsa->cr4 = cr4; + vmsa->cr0 = AP_INIT_CR0_DEFAULT; + vmsa->dr7 = DR7_RESET_VALUE; + vmsa->dr6 = AP_INIT_DR6_DEFAULT; + vmsa->rflags = AP_INIT_RFLAGS_DEFAULT; + vmsa->g_pat = AP_INIT_GPAT_DEFAULT; + vmsa->xcr0 = AP_INIT_XCR0_DEFAULT; + vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT; + vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT; + vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT; + + /* SVME must be set. */ + vmsa->efer = EFER_SVME; + + /* + * Set the SNP-specific fields for this VMSA: + * VMPL level + * SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits) + */ + vmsa->vmpl = 0; + vmsa->sev_features = sev_status >> 2; + + /* Switch the page over to a VMSA page now that it is initialized */ + ret = snp_set_vmsa(vmsa, true); + if (ret) { + pr_err("set VMSA page failed (%u)\n", ret); + free_page((unsigned long)vmsa); + + return -EINVAL; + } + + /* Issue VMGEXIT AP Creation NAE event */ + local_irq_save(flags); + + ghcb = __sev_get_ghcb(&state); + + vc_ghcb_invalidate(ghcb); + ghcb_set_rax(ghcb, vmsa->sev_features); + ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION); + ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE); + ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa)); + + sev_es_wr_ghcb_msr(__pa(ghcb)); + VMGEXIT(); + + if (!ghcb_sw_exit_info_1_is_valid(ghcb) || + lower_32_bits(ghcb->save.sw_exit_info_1)) { + pr_err("SNP AP Creation error\n"); + ret = -EINVAL; + } + + __sev_put_ghcb(&state); + + local_irq_restore(flags); + + /* Perform cleanup if there was an error */ + if (ret) { + snp_cleanup_vmsa(vmsa); + vmsa = NULL; + } + + /* Free up any previous VMSA page */ + if (cur_vmsa) + snp_cleanup_vmsa(cur_vmsa); + + /* Record the current VMSA page */ + per_cpu(sev_vmsa, cpu) = vmsa; + + return ret; +} + +void snp_set_wakeup_secondary_cpu(void) +{ + if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + return; + + /* + * Always set this override if SNP is enabled. This makes it the + * required method to start APs under SNP. If the hypervisor does + * not support AP creation, then no APs will be started. + */ + apic->wakeup_secondary_cpu = wakeup_cpu_via_vmgexit; +} + int sev_es_setup_ap_jump_table(struct real_mode_header *rmh) { u16 startup_cs, startup_ip; diff --git a/arch/x86/kernel/smpboot.c b/arch/x86/kernel/smpboot.c index 617012f4619f..ad23d53b39ac 100644 --- a/arch/x86/kernel/smpboot.c +++ b/arch/x86/kernel/smpboot.c @@ -82,6 +82,7 @@ #include <asm/spec-ctrl.h> #include <asm/hw_irq.h> #include <asm/stackprotector.h> +#include <asm/sev.h> #ifdef CONFIG_ACPI_CPPC_LIB #include <acpi/cppc_acpi.h> @@ -1436,6 +1437,8 @@ void __init native_smp_prepare_cpus(unsigned int max_cpus) smp_quirk_init_udelay(); speculative_store_bypass_ht_init(); + + snp_set_wakeup_secondary_cpu(); } void arch_thaw_secondary_cpus_begin(void)