diff mbox series

[5/5] crypto: arm/blake2b - add NEON-optimized BLAKE2b implementation

Message ID 20201215234708.105527-6-ebiggers@kernel.org
State New
Headers show
Series crypto: add NEON-optimized BLAKE2b | expand

Commit Message

Eric Biggers Dec. 15, 2020, 11:47 p.m. UTC
From: Eric Biggers <ebiggers@google.com>

Add a NEON-optimized implementation of BLAKE2b.

On Cortex-A7 (which these days is the most common ARM processor that
doesn't have the ARMv8 Crypto Extensions), this is over twice as fast as
SHA-256, and slightly faster than SHA-1.  It is also almost three times
as fast as the generic implementation of BLAKE2b:

	Algorithm            Cycles per byte (on 4096-byte messages)
	===================  =======================================
	blake2b-256-neon     14.1
	sha1-neon            16.4
	sha1-asm             20.8
	blake2s-256-generic  26.1
	sha256-neon	     28.9
	sha256-asm	     32.1
	blake2b-256-generic  39.9

This implementation isn't directly based on any other implementation,
but it borrows some ideas from previous NEON code I've written as well
as from chacha-neon-core.S.  At least on Cortex-A7, it is faster than
the other NEON implementations of BLAKE2b I'm aware of (the
implementation in the BLAKE2 official repository using intrinsics, and
Andrew Moon's implementation which can be found in SUPERCOP).

NEON-optimized BLAKE2b is useful because there is interest in using
BLAKE2b-256 for dm-verity on low-end Android devices (specifically,
devices that lack the ARMv8 Crypto Extensions) to replace SHA-1.  On
these devices, the performance cost of upgrading to SHA-256 may be
unacceptable, whereas BLAKE2b-256 would actually improve performance.

Although BLAKE2b is intended for 64-bit platforms (unlike BLAKE2s which
is intended for 32-bit platforms), on 32-bit ARM processors with NEON,
BLAKE2b is actually faster than BLAKE2s.  This is because NEON supports
64-bit operations, and because BLAKE2s's block size is too small for
NEON to be helpful for it.  The best I've been able to do with BLAKE2s
on Cortex-A7 is 19.0 cpb with an optimized scalar implementation.

(I didn't try BLAKE2sp and BLAKE3, which in theory would be faster, but
they're more complex as they require running multiple hashes at once.
Note that BLAKE2b already uses all the NEON bandwidth on the Cortex-A7,
so I expect that any speedup from BLAKE2sp or BLAKE3 would come only
from the smaller number of rounds, not from the extra parallelism.)

Signed-off-by: Eric Biggers <ebiggers@google.com>
---
 arch/arm/crypto/Kconfig             |  10 +
 arch/arm/crypto/Makefile            |   2 +
 arch/arm/crypto/blake2b-neon-core.S | 357 ++++++++++++++++++++++++++++
 arch/arm/crypto/blake2b-neon-glue.c | 105 ++++++++
 4 files changed, 474 insertions(+)
 create mode 100644 arch/arm/crypto/blake2b-neon-core.S
 create mode 100644 arch/arm/crypto/blake2b-neon-glue.c

Comments

Eric Biggers Dec. 16, 2020, 8:57 p.m. UTC | #1
On Tue, Dec 15, 2020 at 03:47:08PM -0800, Eric Biggers wrote:
> +// Execute one round of BLAKE2b by updating the state matrix v[0..15] in the

> +// NEON registers q0-q7.  The message block is in q8..q15.  The stack pointer

> +// points to a 32-byte aligned buffer containing a copy of q8 and q9, so that

> +// they can be reloaded if q8 and q9 are used as temporary registers.  The macro

> +// arguments s0-s15 give the order in which the message words are used in this

> +// round.  'final' is "true" if this is the final round, i.e. round 12 of 12.

> +.macro	_blake2b_round	s0, s1, s2, s3, s4, s5, s6, s7, \

> +			s8, s9, s10, s11, s12, s13, s14, s15, final="false"

[...]
> +	// Reloading q8-q9 can be skipped on the final round.

> +.if \final != "true"

> +	vld1.8		{q8-q9}, [sp, :256]

> +.endif

> +.endm

[...]
> +	_blake2b_round 14, 10,  4,  8,  9, 15, 13,  6, \

> +			1, 12,  0,  2, 11,  7, 5,   3,  "true"


Apparently using the strings "true" and "false" here sometimes causes a build
error where they get treated as symbols
(https://lists.01.org/hyperkitty/list/kbuild-all@lists.01.org/thread/2JPD4H3VFBSKWPUCPEPRAXBVMSR2UCQI/),
though somehow it worked fine for me.  I'll change this to use 1 and 0 instead.

- Eric
diff mbox series

Patch

diff --git a/arch/arm/crypto/Kconfig b/arch/arm/crypto/Kconfig
index c9bf2df85cb90..f6a14c186b4ec 100644
--- a/arch/arm/crypto/Kconfig
+++ b/arch/arm/crypto/Kconfig
@@ -62,6 +62,16 @@  config CRYPTO_SHA512_ARM
 	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 	  using optimized ARM assembler and NEON, when available.
 
+config CRYPTO_BLAKE2B_NEON
+	tristate "BLAKE2b digest algorithm (ARM NEON)"
+	depends on KERNEL_MODE_NEON
+	select CRYPTO_BLAKE2B
+	help
+	  BLAKE2b digest algorithm optimized with ARM NEON instructions.
+	  On ARM processors that have NEON support but not the ARMv8
+	  Crypto Extensions, typically this BLAKE2b implementation is
+	  much faster than SHA-2 and slightly faster than SHA-1.
+
 config CRYPTO_AES_ARM
 	tristate "Scalar AES cipher for ARM"
 	select CRYPTO_ALGAPI
diff --git a/arch/arm/crypto/Makefile b/arch/arm/crypto/Makefile
index b745c17d356fe..ab835ceeb4f2e 100644
--- a/arch/arm/crypto/Makefile
+++ b/arch/arm/crypto/Makefile
@@ -9,6 +9,7 @@  obj-$(CONFIG_CRYPTO_SHA1_ARM) += sha1-arm.o
 obj-$(CONFIG_CRYPTO_SHA1_ARM_NEON) += sha1-arm-neon.o
 obj-$(CONFIG_CRYPTO_SHA256_ARM) += sha256-arm.o
 obj-$(CONFIG_CRYPTO_SHA512_ARM) += sha512-arm.o
+obj-$(CONFIG_CRYPTO_BLAKE2B_NEON) += blake2b-neon.o
 obj-$(CONFIG_CRYPTO_CHACHA20_NEON) += chacha-neon.o
 obj-$(CONFIG_CRYPTO_POLY1305_ARM) += poly1305-arm.o
 obj-$(CONFIG_CRYPTO_NHPOLY1305_NEON) += nhpoly1305-neon.o
@@ -29,6 +30,7 @@  sha256-arm-neon-$(CONFIG_KERNEL_MODE_NEON) := sha256_neon_glue.o
 sha256-arm-y	:= sha256-core.o sha256_glue.o $(sha256-arm-neon-y)
 sha512-arm-neon-$(CONFIG_KERNEL_MODE_NEON) := sha512-neon-glue.o
 sha512-arm-y	:= sha512-core.o sha512-glue.o $(sha512-arm-neon-y)
+blake2b-neon-y  := blake2b-neon-core.o blake2b-neon-glue.o
 sha1-arm-ce-y	:= sha1-ce-core.o sha1-ce-glue.o
 sha2-arm-ce-y	:= sha2-ce-core.o sha2-ce-glue.o
 aes-arm-ce-y	:= aes-ce-core.o aes-ce-glue.o
diff --git a/arch/arm/crypto/blake2b-neon-core.S b/arch/arm/crypto/blake2b-neon-core.S
new file mode 100644
index 0000000000000..734d9d3a161f7
--- /dev/null
+++ b/arch/arm/crypto/blake2b-neon-core.S
@@ -0,0 +1,357 @@ 
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * BLAKE2b digest algorithm, NEON accelerated
+ *
+ * Copyright 2020 Google LLC
+ *
+ * Author: Eric Biggers <ebiggers@google.com>
+ */
+
+#include <linux/linkage.h>
+
+	.text
+	.fpu		neon
+
+	// The arguments to blake2b_compress_blocks_neon()
+	STATE		.req	r0
+	IN		.req	r1
+	NBLOCKS		.req	r2
+	INC		.req	r3
+
+	// Pointers to the rotation tables
+	ROR24_TABLE	.req	r4
+	ROR16_TABLE	.req	r5
+
+	// The original stack pointer
+	ORIG_SP		.req	r6
+
+	// NEON registers which contain the message words of the current block.
+	// M_0-M_3 are occasionally used for other purposes too.
+	M_0		.req	d16
+	M_1		.req	d17
+	M_2		.req	d18
+	M_3		.req	d19
+	M_4		.req	d20
+	M_5		.req	d21
+	M_6		.req	d22
+	M_7		.req	d23
+	M_8		.req	d24
+	M_9		.req	d25
+	M_10		.req	d26
+	M_11		.req	d27
+	M_12		.req	d28
+	M_13		.req	d29
+	M_14		.req	d30
+	M_15		.req	d31
+
+	.align		4
+	// Tables for computing ror64(x, 24) and ror64(x, 16) using the vtbl.8
+	// instruction.  This is the most efficient way to implement these
+	// rotation amounts with NEON.  (On Cortex-A53 it's the same speed as
+	// vshr.u64 + vsli.u64, while on Cortex-A7 it's faster.)
+.Lror24_table:
+	.byte		3, 4, 5, 6, 7, 0, 1, 2
+.Lror16_table:
+	.byte		2, 3, 4, 5, 6, 7, 0, 1
+	// The BLAKE2b initialization vector
+.Lblake2b_IV:
+	.quad		0x6a09e667f3bcc908, 0xbb67ae8584caa73b
+	.quad		0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1
+	.quad		0x510e527fade682d1, 0x9b05688c2b3e6c1f
+	.quad		0x1f83d9abfb41bd6b, 0x5be0cd19137e2179
+
+// Execute one round of BLAKE2b by updating the state matrix v[0..15] in the
+// NEON registers q0-q7.  The message block is in q8..q15.  The stack pointer
+// points to a 32-byte aligned buffer containing a copy of q8 and q9, so that
+// they can be reloaded if q8 and q9 are used as temporary registers.  The macro
+// arguments s0-s15 give the order in which the message words are used in this
+// round.  'final' is "true" if this is the final round, i.e. round 12 of 12.
+.macro	_blake2b_round	s0, s1, s2, s3, s4, s5, s6, s7, \
+			s8, s9, s10, s11, s12, s13, s14, s15, final="false"
+
+	// Mix the columns:
+	// (v[0], v[4], v[8], v[12]), (v[1], v[5], v[9], v[13]),
+	// (v[2], v[6], v[10], v[14]), and (v[3], v[7], v[11], v[15]).
+
+	// a += b + m[blake2b_sigma[r][2*i + 0]];
+	vadd.u64	q0, q0, q2
+	vadd.u64	q1, q1, q3
+	vadd.u64	d0, d0, M_\s0
+	vadd.u64	d1, d1, M_\s2
+	vadd.u64	d2, d2, M_\s4
+	vadd.u64	d3, d3, M_\s6
+
+	// d = ror64(d ^ a, 32);
+	veor		q6, q6, q0
+	veor		q7, q7, q1
+	vrev64.32	q6, q6
+	vrev64.32	q7, q7
+
+	// c += d;
+	vadd.u64	q4, q4, q6
+	vadd.u64	q5, q5, q7
+
+	// b = ror64(b ^ c, 24);
+	vld1.8		{M_0}, [ROR24_TABLE, :64]
+	veor		q2, q2, q4
+	veor		q3, q3, q5
+	vtbl.8		d4, {d4}, M_0
+	vtbl.8		d5, {d5}, M_0
+	vtbl.8		d6, {d6}, M_0
+	vtbl.8		d7, {d7}, M_0
+
+	// a += b + m[blake2b_sigma[r][2*i + 1]];
+	//
+	// M_0 got clobbered above, so we have to reload it if any of the four
+	// message words this step needs happens to be M_0.  Otherwise we don't
+	// need to reload it here, as it will just get clobbered again below.
+.if \s1 == 0 || \s3 == 0 || \s5 == 0 || \s7 == 0
+	vld1.8		{M_0}, [sp, :64]
+.endif
+	vadd.u64	q0, q0, q2
+	vadd.u64	q1, q1, q3
+	vadd.u64	d0, d0, M_\s1
+	vadd.u64	d1, d1, M_\s3
+	vadd.u64	d2, d2, M_\s5
+	vadd.u64	d3, d3, M_\s7
+
+	// d = ror64(d ^ a, 16);
+	vld1.8		{M_0}, [ROR16_TABLE, :64]
+	veor		q6, q6, q0
+	veor		q7, q7, q1
+	vtbl.8		d12, {d12}, M_0
+	vtbl.8		d13, {d13}, M_0
+	vtbl.8		d14, {d14}, M_0
+	vtbl.8		d15, {d15}, M_0
+
+	// c += d;
+	vadd.u64	q4, q4, q6
+	vadd.u64	q5, q5, q7
+
+	// b = ror64(b ^ c, 63);
+	//
+	// This rotation amount isn't a multiple of 8, so it has to be
+	// implemented using a pair of shifts, which requires temporary
+	// registers.  Use q8-q9 (M_0-M_3) for this, and reload them afterwards.
+	veor		q8, q2, q4
+	veor		q9, q3, q5
+	vshr.u64	q2, q8, #63
+	vshr.u64	q3, q9, #63
+	vsli.u64	q2, q8, #1
+	vsli.u64	q3, q9, #1
+	vld1.8		{q8-q9}, [sp, :256]
+
+	// Mix the diagonals:
+	// (v[0], v[5], v[10], v[15]), (v[1], v[6], v[11], v[12]),
+	// (v[2], v[7], v[8], v[13]), and (v[3], v[4], v[9], v[14]).
+	//
+	// There are two possible ways to do this: use 'vext' instructions to
+	// shift the rows of the matrix so that the diagonals become columns,
+	// and undo it afterwards; or just use 64-bit operations on 'd'
+	// registers instead of 128-bit operations on 'q' registers.  We use the
+	// latter approach, as it performs much better on Cortex-A7.
+
+	// a += b + m[blake2b_sigma[r][2*i + 0]];
+	vadd.u64	d0, d0, d5
+	vadd.u64	d1, d1, d6
+	vadd.u64	d2, d2, d7
+	vadd.u64	d3, d3, d4
+	vadd.u64	d0, d0, M_\s8
+	vadd.u64	d1, d1, M_\s10
+	vadd.u64	d2, d2, M_\s12
+	vadd.u64	d3, d3, M_\s14
+
+	// d = ror64(d ^ a, 32);
+	veor		d15, d15, d0
+	veor		d12, d12, d1
+	veor		d13, d13, d2
+	veor		d14, d14, d3
+	vrev64.32	d15, d15
+	vrev64.32	d12, d12
+	vrev64.32	d13, d13
+	vrev64.32	d14, d14
+
+	// c += d;
+	vadd.u64	d10, d10, d15
+	vadd.u64	d11, d11, d12
+	vadd.u64	d8, d8, d13
+	vadd.u64	d9, d9, d14
+
+	// b = ror64(b ^ c, 24);
+	vld1.8		{M_0}, [ROR24_TABLE, :64]
+	veor		d5, d5, d10
+	veor		d6, d6, d11
+	veor		d7, d7, d8
+	veor		d4, d4, d9
+	vtbl.8		d5, {d5}, M_0
+	vtbl.8		d6, {d6}, M_0
+	vtbl.8		d7, {d7}, M_0
+	vtbl.8		d4, {d4}, M_0
+
+	// a += b + m[blake2b_sigma[r][2*i + 1]];
+.if \s9 == 0 || \s11 == 0 || \s13 == 0 || \s15 == 0
+	vld1.8		{M_0}, [sp, :64]
+.endif
+	vadd.u64	d0, d0, d5
+	vadd.u64	d1, d1, d6
+	vadd.u64	d2, d2, d7
+	vadd.u64	d3, d3, d4
+	vadd.u64	d0, d0, M_\s9
+	vadd.u64	d1, d1, M_\s11
+	vadd.u64	d2, d2, M_\s13
+	vadd.u64	d3, d3, M_\s15
+
+	// d = ror64(d ^ a, 16);
+	vld1.8		{M_0}, [ROR16_TABLE, :64]
+	veor		d15, d15, d0
+	veor		d12, d12, d1
+	veor		d13, d13, d2
+	veor		d14, d14, d3
+	vtbl.8		d12, {d12}, M_0
+	vtbl.8		d13, {d13}, M_0
+	vtbl.8		d14, {d14}, M_0
+	vtbl.8		d15, {d15}, M_0
+
+	// c += d;
+	vadd.u64	d10, d10, d15
+	vadd.u64	d11, d11, d12
+	vadd.u64	d8, d8, d13
+	vadd.u64	d9, d9, d14
+
+	// b = ror64(b ^ c, 63);
+	veor		d16, d4, d9
+	veor		d17, d5, d10
+	veor		d18, d6, d11
+	veor		d19, d7, d8
+	vshr.u64	q2, q8, #63
+	vshr.u64	q3, q9, #63
+	vsli.u64	q2, q8, #1
+	vsli.u64	q3, q9, #1
+	// Reloading q8-q9 can be skipped on the final round.
+.if \final != "true"
+	vld1.8		{q8-q9}, [sp, :256]
+.endif
+.endm
+
+//
+// void blake2b_compress_blocks_neon(struct blake2b_state *S,
+//				     const u8 *in, size_t nblocks,
+//				     unsigned int inc);
+//
+// Only the first three fields of struct blake2b_state are used:
+//	u64 h[8];	(inout)
+//	u64 t[2];	(in)
+//	u64 f[2];	(in)
+//
+	.align		5
+ENTRY(blake2b_compress_blocks_neon)
+	push		{r4-r10}
+
+	// Allocate a 32-byte stack buffer that is 32-byte aligned.
+	mov		ORIG_SP, sp
+	sub		ip, sp, #32
+	bic		ip, ip, #31
+	mov		sp, ip
+
+	adr		ROR24_TABLE, .Lror24_table
+	adr		ROR16_TABLE, .Lror16_table
+
+	mov		ip, STATE
+	vld1.64		{q0-q1}, [ip]!		// Load h[0..3]
+	vld1.64		{q2-q3}, [ip]!		// Load h[4..7]
+.Lnext_block:
+	  adr		r10, .Lblake2b_IV
+	vld1.64		{q14-q15}, [ip]		// Load t[0..1] and f[0..1]
+	vld1.64		{q4-q5}, [r10]!		// Load IV[0..3]
+	  vmov		r7, r8, d28		// Copy t[0] to (r7, r8)
+	vld1.64		{q6-q7}, [r10]		// Load IV[4..7]
+	  adds		r7, r7, INC		// Increment counter
+	bcs		.Lslow_inc_ctr
+	vmov.i32	d28[0], r7
+	vst1.64		{d28}, [ip]		// Update t[0]
+.Linc_ctr_done:
+
+	// Load the next message block and finish initializing the state matrix
+	// 'v'.  Fortunately, there are exactly enough NEON registers to fit the
+	// entire state matrix in q0-q7 and the entire message block in q8-15.
+	//
+	// However, _blake2b_round also needs some extra registers for rotates,
+	// so we have to spill some registers.  It's better to spill the message
+	// registers than the state registers, as the message doesn't change.
+	// Therefore we store a copy of the first 32 bytes of the message block
+	// (q8-q9) in an aligned buffer on the stack so that they can be
+	// reloaded when needed.  (We could just reload directly from the
+	// message buffer, but it's faster to use aligned loads.)
+	vld1.8		{q8-q9}, [IN]!
+	  veor		q6, q6, q14	// v[12..13] = IV[4..5] ^ t[0..1]
+	vld1.8		{q10-q11}, [IN]!
+	  veor		q7, q7, q15	// v[14..15] = IV[6..7] ^ f[0..1]
+	vld1.8		{q12-q13}, [IN]!
+	vst1.8		{q8-q9}, [sp, :256]
+	  mov		ip, STATE
+	vld1.8		{q14-q15}, [IN]!
+
+	// Execute the rounds.  Each round is provided the order in which it
+	// needs to use the message words.
+	_blake2b_round	0,  1,  2,  3,  4,  5,  6,  7, \
+			8,  9, 10, 11, 12, 13, 14, 15
+	_blake2b_round 14, 10,  4,  8,  9, 15, 13,  6, \
+			1, 12,  0,  2, 11,  7,  5,  3
+	_blake2b_round 11,  8, 12,  0,  5,  2, 15, 13, \
+		       10, 14,  3,  6,  7,  1,  9,  4
+	_blake2b_round	7,  9,  3,  1, 13, 12, 11, 14, \
+			2,  6,  5, 10,  4,  0, 15,  8
+	_blake2b_round	9,  0,  5,  7,  2,  4, 10, 15, \
+			14,  1, 11, 12,  6,  8,  3, 13
+	_blake2b_round	2, 12,  6, 10,  0, 11,  8,  3, \
+			4, 13,  7,  5, 15, 14,  1,  9
+	_blake2b_round 12,  5,  1, 15, 14, 13,  4, 10, \
+			0,  7,  6,  3,  9,  2,  8, 11
+	_blake2b_round 13, 11,  7, 14, 12,  1,  3,  9, \
+			5,  0, 15,  4,  8,  6,  2, 10
+	_blake2b_round	6, 15, 14,  9, 11,  3,  0,  8, \
+			12,  2, 13,  7,  1,  4, 10,  5
+	_blake2b_round 10,  2,  8,  4,  7,  6,  1,  5, \
+		       15, 11,  9, 14,  3, 12, 13,  0
+	_blake2b_round	0,  1,  2,  3,  4,  5,  6,  7, \
+			8,  9, 10, 11, 12, 13, 14, 15
+	_blake2b_round 14, 10,  4,  8,  9, 15, 13,  6, \
+			1, 12,  0,  2, 11,  7, 5,   3,  "true"
+
+	// Fold the final state matrix into the hash chaining value:
+	//
+	//	for (i = 0; i < 8; i++)
+	//		h[i] ^= v[i] ^ v[i + 8];
+	//
+	  vld1.64	{q8-q9}, [ip]!		// Load old h[0..3]
+	veor		q0, q0, q4		// v[0..1] ^= v[8..9]
+	veor		q1, q1, q5		// v[2..3] ^= v[10..11]
+	  vld1.64	{q10-q11}, [ip]		// Load old h[4..7]
+	veor		q2, q2, q6		// v[4..5] ^= v[12..13]
+	veor		q3, q3, q7		// v[6..7] ^= v[14..15]
+	veor		q0, q0, q8		// v[0..1] ^= h[0..1]
+	veor		q1, q1, q9		// v[2..3] ^= h[2..3]
+	  mov		ip, STATE
+	  subs		NBLOCKS, NBLOCKS, #1	// nblocks--
+	  vst1.64	{q0-q1}, [ip]!		// Store new h[0..3]
+	veor		q2, q2, q10		// v[4..5] ^= h[4..5]
+	veor		q3, q3, q11		// v[6..7] ^= h[6..7]
+	  vst1.64	{q2-q3}, [ip]!		// Store new h[4..7]
+	bne		.Lnext_block		// nblocks != 0?
+
+	mov		sp, ORIG_SP
+	pop		{r4-r10}
+	mov		pc, lr
+
+.Lslow_inc_ctr:
+	// Handle the case where the counter overflowed its low 32 bits, by
+	// carrying the overflow bit into the full 128-bit counter.
+	vmov		r9, r10, d29
+	adcs		r8, r8, #0
+	adcs		r9, r9, #0
+	adc		r10, r10, #0
+	vmov		d28, r7, r8
+	vmov		d29, r9, r10
+	vst1.64		{q14}, [ip]		// Update t[0] and t[1]
+	b		.Linc_ctr_done
+ENDPROC(blake2b_compress_blocks_neon)
diff --git a/arch/arm/crypto/blake2b-neon-glue.c b/arch/arm/crypto/blake2b-neon-glue.c
new file mode 100644
index 0000000000000..27620d7a8bcb7
--- /dev/null
+++ b/arch/arm/crypto/blake2b-neon-glue.c
@@ -0,0 +1,105 @@ 
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * BLAKE2b digest algorithm, NEON accelerated
+ *
+ * Copyright 2020 Google LLC
+ */
+
+#include <asm/neon.h>
+#include <asm/simd.h>
+#include <crypto/internal/hash.h>
+#include <crypto/internal/simd.h>
+#include <crypto/blake2b.h>
+#include <linux/module.h>
+
+asmlinkage void blake2b_compress_blocks_neon(struct blake2b_state *S,
+					     const u8 *in, size_t nblocks,
+					     unsigned int inc);
+
+static int blake2b_neon_update(struct shash_desc *desc,
+			       const u8 *in, unsigned int inlen)
+{
+	struct blake2b_state *S = shash_desc_ctx(desc);
+
+	if (S->buflen + inlen < BLAKE2B_BLOCK_SIZE || !crypto_simd_usable())
+		return crypto_blake2b_update(desc, in, inlen);
+
+	do {
+		unsigned int n = min_t(unsigned int, inlen, SZ_4K);
+
+		kernel_neon_begin();
+		__crypto_blake2b_update(desc, in, n,
+					blake2b_compress_blocks_neon);
+		kernel_neon_end();
+		in += n;
+		inlen -= n;
+	} while (inlen);
+	return 0;
+}
+
+static int blake2b_neon_final(struct shash_desc *desc, u8 *out)
+{
+	int err;
+
+	if (!crypto_simd_usable())
+		return crypto_blake2b_final(desc, out);
+
+	kernel_neon_begin();
+	err = __crypto_blake2b_final(desc, out, blake2b_compress_blocks_neon);
+	kernel_neon_end();
+	return err;
+}
+
+#define BLAKE2B_ALG(name, driver_name, digest_size)			\
+	{								\
+		.base.cra_name		= name,				\
+		.base.cra_driver_name	= driver_name,			\
+		.base.cra_priority	= 200,				\
+		.base.cra_flags		= CRYPTO_ALG_OPTIONAL_KEY,	\
+		.base.cra_blocksize	= BLAKE2B_BLOCK_SIZE,		\
+		.base.cra_ctxsize	= sizeof(struct blake2b_tfm_ctx), \
+		.base.cra_module	= THIS_MODULE,			\
+		.digestsize		= digest_size,			\
+		.setkey			= crypto_blake2b_setkey,	\
+		.init			= crypto_blake2b_init,		\
+		.update			= blake2b_neon_update,		\
+		.final			= blake2b_neon_final,		\
+		.descsize		= sizeof(struct blake2b_state),	\
+	}
+
+static struct shash_alg blake2b_neon_algs[] = {
+	BLAKE2B_ALG("blake2b-160", "blake2b-160-neon", BLAKE2B_160_HASH_SIZE),
+	BLAKE2B_ALG("blake2b-256", "blake2b-256-neon", BLAKE2B_256_HASH_SIZE),
+	BLAKE2B_ALG("blake2b-384", "blake2b-384-neon", BLAKE2B_384_HASH_SIZE),
+	BLAKE2B_ALG("blake2b-512", "blake2b-512-neon", BLAKE2B_512_HASH_SIZE),
+};
+
+static int __init blake2b_neon_mod_init(void)
+{
+	if (!(elf_hwcap & HWCAP_NEON))
+		return -ENODEV;
+
+	return crypto_register_shashes(blake2b_neon_algs,
+				       ARRAY_SIZE(blake2b_neon_algs));
+}
+
+static void __exit blake2b_neon_mod_exit(void)
+{
+	return crypto_unregister_shashes(blake2b_neon_algs,
+					 ARRAY_SIZE(blake2b_neon_algs));
+}
+
+module_init(blake2b_neon_mod_init);
+module_exit(blake2b_neon_mod_exit);
+
+MODULE_DESCRIPTION("BLAKE2b digest algorithm, NEON accelerated");
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
+MODULE_ALIAS_CRYPTO("blake2b-160");
+MODULE_ALIAS_CRYPTO("blake2b-160-neon");
+MODULE_ALIAS_CRYPTO("blake2b-256");
+MODULE_ALIAS_CRYPTO("blake2b-256-neon");
+MODULE_ALIAS_CRYPTO("blake2b-384");
+MODULE_ALIAS_CRYPTO("blake2b-384-neon");
+MODULE_ALIAS_CRYPTO("blake2b-512");
+MODULE_ALIAS_CRYPTO("blake2b-512-neon");