Message ID | 20201114084613.13503-3-grzegorz.jaszczyk@linaro.org |
---|---|
State | Superseded |
Headers | show |
Series | [1/6] dt-bindings: remoteproc: Add binding doc for PRU cores in the PRU-ICSS | expand |
Hi Greg, I have a few minor comments below.. On 11/14/20 2:46 AM, Grzegorz Jaszczyk wrote: > From: Suman Anna <s-anna@ti.com> > > The Programmable Real-Time Unit Subsystem (PRUSS) consists of > dual 32-bit RISC cores (Programmable Real-Time Units, or PRUs) > for program execution. This patch adds a remoteproc platform > driver for managing the individual PRU RISC cores life cycle. > > The PRUs do not have a unified address space (have an Instruction > RAM and a primary Data RAM at both 0x0). The PRU remoteproc driver > therefore uses a custom remoteproc core ELF loader ops. The added > .da_to_va ops is only used to provide translations for the PRU > Data RAMs. This remoteproc driver does not have support for error > recovery and system suspend/resume features. Different compatibles > are used to allow providing scalability for instance-specific device > data if needed. The driver uses a default firmware-name retrieved > from device-tree for each PRU core, and the firmwares are expected > to be present in the standard Linux firmware search paths. They can > also be adjusted by userspace if required through the sysfs interface > provided by the remoteproc core. > > The PRU remoteproc driver uses a client-driven boot methodology: it > does _not_ support auto-boot so that the PRU load and boot is dictated > by the corresponding client drivers for achieving various usecases. > This allows flexibility for the client drivers or applications to set > a firmware name (if needed) based on their desired functionality and > boot the PRU. The sysfs bind and unbind attributes have also been > suppressed so that the PRU devices cannot be unbound and thereby > shutdown a PRU from underneath a PRU client driver. > > The driver currently supports the AM335x, AM437x, AM57xx and 66AK2G > SoCs, and support for other TI SoCs will be added in subsequent > patches. > > Co-developed-by: Andrew F. Davis <afd@ti.com> > Signed-off-by: Andrew F. Davis <afd@ti.com> > Signed-off-by: Suman Anna <s-anna@ti.com> > Co-developed-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> > Signed-off-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> > --- > drivers/remoteproc/Kconfig | 12 + > drivers/remoteproc/Makefile | 1 + > drivers/remoteproc/pru_rproc.c | 428 +++++++++++++++++++++++++++++++++ > 3 files changed, 441 insertions(+) > create mode 100644 drivers/remoteproc/pru_rproc.c > > diff --git a/drivers/remoteproc/Kconfig b/drivers/remoteproc/Kconfig > index d99548fb5dde..3e3865a7cd78 100644 > --- a/drivers/remoteproc/Kconfig > +++ b/drivers/remoteproc/Kconfig > @@ -125,6 +125,18 @@ config KEYSTONE_REMOTEPROC > It's safe to say N here if you're not interested in the Keystone > DSPs or just want to use a bare minimum kernel. > > +config PRU_REMOTEPROC > + tristate "TI PRU remoteproc support" > + depends on TI_PRUSS > + default TI_PRUSS > + help > + Support for TI PRU remote processors present within a PRU-ICSS > + subsystem via the remote processor framework. > + > + Say Y or M here to support the Programmable Realtime Unit (PRU) > + processors on various TI SoCs. It's safe to say N here if you're > + not interested in the PRU or if you are unsure. > + > config QCOM_PIL_INFO > tristate > > diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile > index da2ace4ec86c..bb26c9e4ef9c 100644 > --- a/drivers/remoteproc/Makefile > +++ b/drivers/remoteproc/Makefile > @@ -18,6 +18,7 @@ obj-$(CONFIG_OMAP_REMOTEPROC) += omap_remoteproc.o > obj-$(CONFIG_WKUP_M3_RPROC) += wkup_m3_rproc.o > obj-$(CONFIG_DA8XX_REMOTEPROC) += da8xx_remoteproc.o > obj-$(CONFIG_KEYSTONE_REMOTEPROC) += keystone_remoteproc.o > +obj-$(CONFIG_PRU_REMOTEPROC) += pru_rproc.o > obj-$(CONFIG_QCOM_PIL_INFO) += qcom_pil_info.o > obj-$(CONFIG_QCOM_RPROC_COMMON) += qcom_common.o > obj-$(CONFIG_QCOM_Q6V5_COMMON) += qcom_q6v5.o > diff --git a/drivers/remoteproc/pru_rproc.c b/drivers/remoteproc/pru_rproc.c > new file mode 100644 > index 000000000000..c94c8e965c21 > --- /dev/null > +++ b/drivers/remoteproc/pru_rproc.c > @@ -0,0 +1,428 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * PRU-ICSS remoteproc driver for various TI SoCs > + * > + * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/ > + * > + * Author(s): > + * Suman Anna <s-anna@ti.com> > + * Andrew F. Davis <afd@ti.com> > + * Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments > + */ > + > +#include <linux/bitops.h> > +#include <linux/module.h> > +#include <linux/of_device.h> > +#include <linux/pruss_driver.h> > +#include <linux/remoteproc.h> > + > +#include "remoteproc_internal.h" > +#include "remoteproc_elf_helpers.h" > + > +/* PRU_ICSS_PRU_CTRL registers */ > +#define PRU_CTRL_CTRL 0x0000 > +#define PRU_CTRL_STS 0x0004 > + > +/* CTRL register bit-fields */ > +#define CTRL_CTRL_SOFT_RST_N BIT(0) > +#define CTRL_CTRL_EN BIT(1) > +#define CTRL_CTRL_SLEEPING BIT(2) > +#define CTRL_CTRL_CTR_EN BIT(3) > +#define CTRL_CTRL_SINGLE_STEP BIT(8) > +#define CTRL_CTRL_RUNSTATE BIT(15) > + > +/* PRU Core IRAM address masks */ > +#define PRU0_IRAM_ADDR_MASK 0x34000 > +#define PRU1_IRAM_ADDR_MASK 0x38000 > + > +/* PRU device addresses for various type of PRU RAMs */ > +#define PRU_IRAM_DA 0 /* Instruction RAM */ > +#define PRU_PDRAM_DA 0 /* Primary Data RAM */ > +#define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */ > +#define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */ > + > +/** > + * enum pru_iomem - PRU core memory/register range identifiers > + * > + * @PRU_IOMEM_IRAM: PRU Instruction RAM range > + * @PRU_IOMEM_CTRL: PRU Control register range > + * @PRU_IOMEM_DEBUG: PRU Debug register range > + * @PRU_IOMEM_MAX: just keep this one at the end > + */ > +enum pru_iomem { > + PRU_IOMEM_IRAM = 0, > + PRU_IOMEM_CTRL, > + PRU_IOMEM_DEBUG, > + PRU_IOMEM_MAX, > +}; > + > +/** > + * struct pru_rproc - PRU remoteproc structure > + * @id: id of the PRU core within the PRUSS > + * @dev: PRU core device pointer > + * @pruss: back-reference to parent PRUSS structure > + * @rproc: remoteproc pointer for this PRU core > + * @mem_regions: data for each of the PRU memory regions > + * @fw_name: name of firmware image used during loading > + */ > +struct pru_rproc { > + int id; > + struct device *dev; > + struct pruss *pruss; > + struct rproc *rproc; > + struct pruss_mem_region mem_regions[PRU_IOMEM_MAX]; > + const char *fw_name; > +}; > + > +static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg) > +{ > + return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg); > +} > + > +static inline > +void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val) > +{ > + writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg); > +} > + > +static int pru_rproc_start(struct rproc *rproc) > +{ > + struct device *dev = &rproc->dev; > + struct pru_rproc *pru = rproc->priv; > + u32 val; > + > + dev_dbg(dev, "starting PRU%d: entry-point = 0x%llx\n", > + pru->id, (rproc->bootaddr >> 2)); > + > + val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16); > + pru_control_write_reg(pru, PRU_CTRL_CTRL, val); > + > + return 0; > +} > + > +static int pru_rproc_stop(struct rproc *rproc) > +{ > + struct device *dev = &rproc->dev; > + struct pru_rproc *pru = rproc->priv; > + u32 val; > + > + dev_dbg(dev, "stopping PRU%d\n", pru->id); > + > + val = pru_control_read_reg(pru, PRU_CTRL_CTRL); > + val &= ~CTRL_CTRL_EN; > + pru_control_write_reg(pru, PRU_CTRL_CTRL, val); > + > + return 0; > +} > + > +/* > + * Convert PRU device address (data spaces only) to kernel virtual address. > + * > + * Each PRU has access to all data memories within the PRUSS, accessible at > + * different ranges. So, look through both its primary and secondary Data > + * RAMs as well as any shared Data RAM to convert a PRU device address to > + * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data > + * RAM1 is primary Data RAM for PRU1. > + */ > +static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, int len) The .da_to_va() ops argument has changed to using size_t in recent kernels, so let's convert the type from int to size_t for the len argument. > +{ > + struct pruss_mem_region dram0, dram1, shrd_ram; > + struct pruss *pruss = pru->pruss; > + u32 offset; > + void *va = NULL; > + > + if (len <= 0) > + return NULL; And we adjust this accordingly. > + > + dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0]; > + dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1]; > + /* PRU1 has its local RAM addresses reversed */ > + if (pru->id == 1) > + swap(dram0, dram1); > + shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2]; > + > + if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) { > + offset = da - PRU_PDRAM_DA; > + va = (__force void *)(dram0.va + offset); > + } else if (da >= PRU_SDRAM_DA && > + da + len <= PRU_SDRAM_DA + dram1.size) { > + offset = da - PRU_SDRAM_DA; > + va = (__force void *)(dram1.va + offset); > + } else if (da >= PRU_SHRDRAM_DA && > + da + len <= PRU_SHRDRAM_DA + shrd_ram.size) { > + offset = da - PRU_SHRDRAM_DA; > + va = (__force void *)(shrd_ram.va + offset); > + } > + > + return va; > +} > + > +/* > + * Convert PRU device address (instruction space) to kernel virtual address. > + * > + * A PRU does not have an unified address space. Each PRU has its very own > + * private Instruction RAM, and its device address is identical to that of > + * its primary Data RAM device address. > + */ > +static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, int len) > +{ > + u32 offset; > + void *va = NULL; > + > + if (len <= 0) > + return NULL; Same comments as above. > + > + if (da >= PRU_IRAM_DA && > + da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) { > + offset = da - PRU_IRAM_DA; > + va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va + > + offset); > + } > + > + return va; > +} > + > +/* > + * Provide address translations for only PRU Data RAMs through the remoteproc > + * core for any PRU client drivers. The PRU Instruction RAM access is restricted > + * only to the PRU loader code. > + */ > +static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) > +{ > + struct pru_rproc *pru = rproc->priv; > + > + return pru_d_da_to_va(pru, da, len); > +} > + > +/* PRU-specific address translator used by PRU loader. */ > +static void *pru_da_to_va(struct rproc *rproc, u64 da, int len, bool is_iram) > +{ > + struct pru_rproc *pru = rproc->priv; > + void *va; > + > + if (is_iram) > + va = pru_i_da_to_va(pru, da, len); > + else > + va = pru_d_da_to_va(pru, da, len); > + > + return va; > +} > + > +static struct rproc_ops pru_rproc_ops = { > + .start = pru_rproc_start, > + .stop = pru_rproc_stop, > + .da_to_va = pru_rproc_da_to_va, > +}; > + > +static int > +pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) > +{ > + struct device *dev = &rproc->dev; > + struct elf32_hdr *ehdr; > + struct elf32_phdr *phdr; > + int i, ret = 0; > + const u8 *elf_data = fw->data; > + > + ehdr = (struct elf32_hdr *)elf_data; > + phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff); > + > + /* go through the available ELF segments */ > + for (i = 0; i < ehdr->e_phnum; i++, phdr++) { > + u32 da = phdr->p_paddr; > + u32 memsz = phdr->p_memsz; > + u32 filesz = phdr->p_filesz; > + u32 offset = phdr->p_offset; > + bool is_iram; > + void *ptr; > + > + if (phdr->p_type != PT_LOAD) > + continue; > + > + dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n", > + phdr->p_type, da, memsz, filesz); > + > + if (filesz > memsz) { > + dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n", > + filesz, memsz); > + ret = -EINVAL; > + break; > + } > + > + if (offset + filesz > fw->size) { > + dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n", > + offset + filesz, fw->size); > + ret = -EINVAL; > + break; > + } > + > + /* grab the kernel address for this device address */ > + is_iram = phdr->p_flags & PF_X; > + ptr = pru_da_to_va(rproc, da, memsz, is_iram); > + if (!ptr) { > + dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz); > + ret = -EINVAL; > + break; > + } > + > + /* skip the memzero logic performed by remoteproc ELF loader */ > + if (!phdr->p_filesz) > + continue; > + > + memcpy(ptr, elf_data + phdr->p_offset, filesz); > + } > + > + return ret; > +} > + > +static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) > +{ > + int ret; > + > + /* load optional rsc table */ > + ret = rproc_elf_load_rsc_table(rproc, fw); > + if (ret == -EINVAL) > + dev_dbg(&rproc->dev, "no resource table found for this fw\n"); > + > + return ret; This should return 0 if there is no resource table, otherwise this fails. You have this corrected in Patch 3, but please move that logic here. > +} > + > +/* > + * Compute PRU id based on the IRAM addresses. The PRU IRAMs are > + * always at a particular offset within the PRUSS address space. > + */ > +static int pru_rproc_set_id(struct pru_rproc *pru) > +{ > + int ret = 0; > + > + switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & 0x3ffff) { We can probably update this to use a macro for 0x3fffff. regards Suman > + case PRU0_IRAM_ADDR_MASK: > + pru->id = 0; > + break; > + case PRU1_IRAM_ADDR_MASK: > + pru->id = 1; > + break; > + default: > + ret = -EINVAL; > + } > + > + return ret; > +} > + > +static int pru_rproc_probe(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct device_node *np = dev->of_node; > + struct platform_device *ppdev = to_platform_device(dev->parent); > + struct pru_rproc *pru; > + const char *fw_name; > + struct rproc *rproc = NULL; > + struct resource *res; > + int i, ret; > + const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" }; > + > + ret = of_property_read_string(np, "firmware-name", &fw_name); > + if (ret) { > + dev_err(dev, "unable to retrieve firmware-name %d\n", ret); > + return ret; > + } > + > + rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name, > + sizeof(*pru)); > + if (!rproc) { > + dev_err(dev, "rproc_alloc failed\n"); > + return -ENOMEM; > + } > + /* use a custom load function to deal with PRU-specific quirks */ > + rproc->ops->load = pru_rproc_load_elf_segments; > + > + /* use a custom parse function to deal with PRU-specific resources */ > + rproc->ops->parse_fw = pru_rproc_parse_fw; > + > + /* error recovery is not supported for PRUs */ > + rproc->recovery_disabled = true; > + > + /* > + * rproc_add will auto-boot the processor normally, but this is not > + * desired with PRU client driven boot-flow methodology. A PRU > + * application/client driver will boot the corresponding PRU > + * remote-processor as part of its state machine either through the > + * remoteproc sysfs interface or through the equivalent kernel API. > + */ > + rproc->auto_boot = false; > + > + pru = rproc->priv; > + pru->dev = dev; > + pru->pruss = platform_get_drvdata(ppdev); > + pru->rproc = rproc; > + pru->fw_name = fw_name; > + > + for (i = 0; i < ARRAY_SIZE(mem_names); i++) { > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > + mem_names[i]); > + pru->mem_regions[i].va = devm_ioremap_resource(dev, res); > + if (IS_ERR(pru->mem_regions[i].va)) { > + dev_err(dev, "failed to parse and map memory resource %d %s\n", > + i, mem_names[i]); > + ret = PTR_ERR(pru->mem_regions[i].va); > + return ret; > + } > + pru->mem_regions[i].pa = res->start; > + pru->mem_regions[i].size = resource_size(res); > + > + dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n", > + mem_names[i], &pru->mem_regions[i].pa, > + pru->mem_regions[i].size, pru->mem_regions[i].va); > + } > + > + ret = pru_rproc_set_id(pru); > + if (ret < 0) > + return ret; > + > + platform_set_drvdata(pdev, rproc); > + > + ret = devm_rproc_add(dev, pru->rproc); > + if (ret) { > + dev_err(dev, "rproc_add failed: %d\n", ret); > + return ret; > + } > + > + dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np); > + > + return 0; > +} > + > +static int pru_rproc_remove(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct rproc *rproc = platform_get_drvdata(pdev); > + > + dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name); > + > + return 0; > +} > + > +static const struct of_device_id pru_rproc_match[] = { > + { .compatible = "ti,am3356-pru", }, > + { .compatible = "ti,am4376-pru", }, > + { .compatible = "ti,am5728-pru", }, > + { .compatible = "ti,k2g-pru", }, > + {}, > +}; > +MODULE_DEVICE_TABLE(of, pru_rproc_match); > + > +static struct platform_driver pru_rproc_driver = { > + .driver = { > + .name = "pru-rproc", > + .of_match_table = pru_rproc_match, > + .suppress_bind_attrs = true, > + }, > + .probe = pru_rproc_probe, > + .remove = pru_rproc_remove, > +}; > +module_platform_driver(pru_rproc_driver); > + > +MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); > +MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>"); > +MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>"); > +MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver"); > +MODULE_LICENSE("GPL v2"); >
Hi Suman, On Tue, 17 Nov 2020 at 20:41, Suman Anna <s-anna@ti.com> wrote: > > Hi Greg, > > I have a few minor comments below.. > > On 11/14/20 2:46 AM, Grzegorz Jaszczyk wrote: > > From: Suman Anna <s-anna@ti.com> > > > > The Programmable Real-Time Unit Subsystem (PRUSS) consists of > > dual 32-bit RISC cores (Programmable Real-Time Units, or PRUs) > > for program execution. This patch adds a remoteproc platform > > driver for managing the individual PRU RISC cores life cycle. > > > > The PRUs do not have a unified address space (have an Instruction > > RAM and a primary Data RAM at both 0x0). The PRU remoteproc driver > > therefore uses a custom remoteproc core ELF loader ops. The added > > .da_to_va ops is only used to provide translations for the PRU > > Data RAMs. This remoteproc driver does not have support for error > > recovery and system suspend/resume features. Different compatibles > > are used to allow providing scalability for instance-specific device > > data if needed. The driver uses a default firmware-name retrieved > > from device-tree for each PRU core, and the firmwares are expected > > to be present in the standard Linux firmware search paths. They can > > also be adjusted by userspace if required through the sysfs interface > > provided by the remoteproc core. > > > > The PRU remoteproc driver uses a client-driven boot methodology: it > > does _not_ support auto-boot so that the PRU load and boot is dictated > > by the corresponding client drivers for achieving various usecases. > > This allows flexibility for the client drivers or applications to set > > a firmware name (if needed) based on their desired functionality and > > boot the PRU. The sysfs bind and unbind attributes have also been > > suppressed so that the PRU devices cannot be unbound and thereby > > shutdown a PRU from underneath a PRU client driver. > > > > The driver currently supports the AM335x, AM437x, AM57xx and 66AK2G > > SoCs, and support for other TI SoCs will be added in subsequent > > patches. > > > > Co-developed-by: Andrew F. Davis <afd@ti.com> > > Signed-off-by: Andrew F. Davis <afd@ti.com> > > Signed-off-by: Suman Anna <s-anna@ti.com> > > Co-developed-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> > > Signed-off-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> > > --- > > drivers/remoteproc/Kconfig | 12 + > > drivers/remoteproc/Makefile | 1 + > > drivers/remoteproc/pru_rproc.c | 428 +++++++++++++++++++++++++++++++++ > > 3 files changed, 441 insertions(+) > > create mode 100644 drivers/remoteproc/pru_rproc.c > > > > diff --git a/drivers/remoteproc/Kconfig b/drivers/remoteproc/Kconfig > > index d99548fb5dde..3e3865a7cd78 100644 > > --- a/drivers/remoteproc/Kconfig > > +++ b/drivers/remoteproc/Kconfig > > @@ -125,6 +125,18 @@ config KEYSTONE_REMOTEPROC > > It's safe to say N here if you're not interested in the Keystone > > DSPs or just want to use a bare minimum kernel. > > > > +config PRU_REMOTEPROC > > + tristate "TI PRU remoteproc support" > > + depends on TI_PRUSS > > + default TI_PRUSS > > + help > > + Support for TI PRU remote processors present within a PRU-ICSS > > + subsystem via the remote processor framework. > > + > > + Say Y or M here to support the Programmable Realtime Unit (PRU) > > + processors on various TI SoCs. It's safe to say N here if you're > > + not interested in the PRU or if you are unsure. > > + > > config QCOM_PIL_INFO > > tristate > > > > diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile > > index da2ace4ec86c..bb26c9e4ef9c 100644 > > --- a/drivers/remoteproc/Makefile > > +++ b/drivers/remoteproc/Makefile > > @@ -18,6 +18,7 @@ obj-$(CONFIG_OMAP_REMOTEPROC) += omap_remoteproc.o > > obj-$(CONFIG_WKUP_M3_RPROC) += wkup_m3_rproc.o > > obj-$(CONFIG_DA8XX_REMOTEPROC) += da8xx_remoteproc.o > > obj-$(CONFIG_KEYSTONE_REMOTEPROC) += keystone_remoteproc.o > > +obj-$(CONFIG_PRU_REMOTEPROC) += pru_rproc.o > > obj-$(CONFIG_QCOM_PIL_INFO) += qcom_pil_info.o > > obj-$(CONFIG_QCOM_RPROC_COMMON) += qcom_common.o > > obj-$(CONFIG_QCOM_Q6V5_COMMON) += qcom_q6v5.o > > diff --git a/drivers/remoteproc/pru_rproc.c b/drivers/remoteproc/pru_rproc.c > > new file mode 100644 > > index 000000000000..c94c8e965c21 > > --- /dev/null > > +++ b/drivers/remoteproc/pru_rproc.c > > @@ -0,0 +1,428 @@ > > +// SPDX-License-Identifier: GPL-2.0-only > > +/* > > + * PRU-ICSS remoteproc driver for various TI SoCs > > + * > > + * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/ > > + * > > + * Author(s): > > + * Suman Anna <s-anna@ti.com> > > + * Andrew F. Davis <afd@ti.com> > > + * Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments > > + */ > > + > > +#include <linux/bitops.h> > > +#include <linux/module.h> > > +#include <linux/of_device.h> > > +#include <linux/pruss_driver.h> > > +#include <linux/remoteproc.h> > > + > > +#include "remoteproc_internal.h" > > +#include "remoteproc_elf_helpers.h" > > + > > +/* PRU_ICSS_PRU_CTRL registers */ > > +#define PRU_CTRL_CTRL 0x0000 > > +#define PRU_CTRL_STS 0x0004 > > + > > +/* CTRL register bit-fields */ > > +#define CTRL_CTRL_SOFT_RST_N BIT(0) > > +#define CTRL_CTRL_EN BIT(1) > > +#define CTRL_CTRL_SLEEPING BIT(2) > > +#define CTRL_CTRL_CTR_EN BIT(3) > > +#define CTRL_CTRL_SINGLE_STEP BIT(8) > > +#define CTRL_CTRL_RUNSTATE BIT(15) > > + > > +/* PRU Core IRAM address masks */ > > +#define PRU0_IRAM_ADDR_MASK 0x34000 > > +#define PRU1_IRAM_ADDR_MASK 0x38000 > > + > > +/* PRU device addresses for various type of PRU RAMs */ > > +#define PRU_IRAM_DA 0 /* Instruction RAM */ > > +#define PRU_PDRAM_DA 0 /* Primary Data RAM */ > > +#define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */ > > +#define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */ > > + > > +/** > > + * enum pru_iomem - PRU core memory/register range identifiers > > + * > > + * @PRU_IOMEM_IRAM: PRU Instruction RAM range > > + * @PRU_IOMEM_CTRL: PRU Control register range > > + * @PRU_IOMEM_DEBUG: PRU Debug register range > > + * @PRU_IOMEM_MAX: just keep this one at the end > > + */ > > +enum pru_iomem { > > + PRU_IOMEM_IRAM = 0, > > + PRU_IOMEM_CTRL, > > + PRU_IOMEM_DEBUG, > > + PRU_IOMEM_MAX, > > +}; > > + > > +/** > > + * struct pru_rproc - PRU remoteproc structure > > + * @id: id of the PRU core within the PRUSS > > + * @dev: PRU core device pointer > > + * @pruss: back-reference to parent PRUSS structure > > + * @rproc: remoteproc pointer for this PRU core > > + * @mem_regions: data for each of the PRU memory regions > > + * @fw_name: name of firmware image used during loading > > + */ > > +struct pru_rproc { > > + int id; > > + struct device *dev; > > + struct pruss *pruss; > > + struct rproc *rproc; > > + struct pruss_mem_region mem_regions[PRU_IOMEM_MAX]; > > + const char *fw_name; > > +}; > > + > > +static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg) > > +{ > > + return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg); > > +} > > + > > +static inline > > +void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val) > > +{ > > + writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg); > > +} > > + > > +static int pru_rproc_start(struct rproc *rproc) > > +{ > > + struct device *dev = &rproc->dev; > > + struct pru_rproc *pru = rproc->priv; > > + u32 val; > > + > > + dev_dbg(dev, "starting PRU%d: entry-point = 0x%llx\n", > > + pru->id, (rproc->bootaddr >> 2)); > > + > > + val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16); > > + pru_control_write_reg(pru, PRU_CTRL_CTRL, val); > > + > > + return 0; > > +} > > + > > +static int pru_rproc_stop(struct rproc *rproc) > > +{ > > + struct device *dev = &rproc->dev; > > + struct pru_rproc *pru = rproc->priv; > > + u32 val; > > + > > + dev_dbg(dev, "stopping PRU%d\n", pru->id); > > + > > + val = pru_control_read_reg(pru, PRU_CTRL_CTRL); > > + val &= ~CTRL_CTRL_EN; > > + pru_control_write_reg(pru, PRU_CTRL_CTRL, val); > > + > > + return 0; > > +} > > + > > +/* > > + * Convert PRU device address (data spaces only) to kernel virtual address. > > + * > > + * Each PRU has access to all data memories within the PRUSS, accessible at > > + * different ranges. So, look through both its primary and secondary Data > > + * RAMs as well as any shared Data RAM to convert a PRU device address to > > + * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data > > + * RAM1 is primary Data RAM for PRU1. > > + */ > > +static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, int len) > > The .da_to_va() ops argument has changed to using size_t in recent kernels, so > let's convert the type from int to size_t for the len argument. Good point. To be consistent I will do the same with the 'len' argument for pru_da_to_va and pru_i_da_to_va. > > > +{ > > + struct pruss_mem_region dram0, dram1, shrd_ram; > > + struct pruss *pruss = pru->pruss; > > + u32 offset; > > + void *va = NULL; > > + > > + if (len <= 0) > > + return NULL; > > And we adjust this accordingly. Sure. > > > + > > + dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0]; > > + dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1]; > > + /* PRU1 has its local RAM addresses reversed */ > > + if (pru->id == 1) > > + swap(dram0, dram1); > > + shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2]; > > + > > + if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) { > > + offset = da - PRU_PDRAM_DA; > > + va = (__force void *)(dram0.va + offset); > > + } else if (da >= PRU_SDRAM_DA && > > + da + len <= PRU_SDRAM_DA + dram1.size) { > > + offset = da - PRU_SDRAM_DA; > > + va = (__force void *)(dram1.va + offset); > > + } else if (da >= PRU_SHRDRAM_DA && > > + da + len <= PRU_SHRDRAM_DA + shrd_ram.size) { > > + offset = da - PRU_SHRDRAM_DA; > > + va = (__force void *)(shrd_ram.va + offset); > > + } > > + > > + return va; > > +} > > + > > +/* > > + * Convert PRU device address (instruction space) to kernel virtual address. > > + * > > + * A PRU does not have an unified address space. Each PRU has its very own > > + * private Instruction RAM, and its device address is identical to that of > > + * its primary Data RAM device address. > > + */ > > +static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, int len) > > +{ > > + u32 offset; > > + void *va = NULL; > > + > > + if (len <= 0) > > + return NULL; > > Same comments as above. Yes. > > > + > > + if (da >= PRU_IRAM_DA && > > + da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) { > > + offset = da - PRU_IRAM_DA; > > + va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va + > > + offset); > > + } > > + > > + return va; > > +} > > + > > +/* > > + * Provide address translations for only PRU Data RAMs through the remoteproc > > + * core for any PRU client drivers. The PRU Instruction RAM access is restricted > > + * only to the PRU loader code. > > + */ > > +static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) > > +{ > > + struct pru_rproc *pru = rproc->priv; > > + > > + return pru_d_da_to_va(pru, da, len); > > +} > > + > > +/* PRU-specific address translator used by PRU loader. */ > > +static void *pru_da_to_va(struct rproc *rproc, u64 da, int len, bool is_iram) > > +{ > > + struct pru_rproc *pru = rproc->priv; > > + void *va; > > + > > + if (is_iram) > > + va = pru_i_da_to_va(pru, da, len); > > + else > > + va = pru_d_da_to_va(pru, da, len); > > + > > + return va; > > +} > > + > > +static struct rproc_ops pru_rproc_ops = { > > + .start = pru_rproc_start, > > + .stop = pru_rproc_stop, > > + .da_to_va = pru_rproc_da_to_va, > > +}; > > + > > +static int > > +pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) > > +{ > > + struct device *dev = &rproc->dev; > > + struct elf32_hdr *ehdr; > > + struct elf32_phdr *phdr; > > + int i, ret = 0; > > + const u8 *elf_data = fw->data; > > + > > + ehdr = (struct elf32_hdr *)elf_data; > > + phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff); > > + > > + /* go through the available ELF segments */ > > + for (i = 0; i < ehdr->e_phnum; i++, phdr++) { > > + u32 da = phdr->p_paddr; > > + u32 memsz = phdr->p_memsz; > > + u32 filesz = phdr->p_filesz; > > + u32 offset = phdr->p_offset; > > + bool is_iram; > > + void *ptr; > > + > > + if (phdr->p_type != PT_LOAD) > > + continue; > > + > > + dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n", > > + phdr->p_type, da, memsz, filesz); > > + > > + if (filesz > memsz) { > > + dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n", > > + filesz, memsz); > > + ret = -EINVAL; > > + break; > > + } > > + > > + if (offset + filesz > fw->size) { > > + dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n", > > + offset + filesz, fw->size); > > + ret = -EINVAL; > > + break; > > + } > > + > > + /* grab the kernel address for this device address */ > > + is_iram = phdr->p_flags & PF_X; > > + ptr = pru_da_to_va(rproc, da, memsz, is_iram); > > + if (!ptr) { > > + dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz); > > + ret = -EINVAL; > > + break; > > + } > > + > > + /* skip the memzero logic performed by remoteproc ELF loader */ > > + if (!phdr->p_filesz) > > + continue; > > + > > + memcpy(ptr, elf_data + phdr->p_offset, filesz); > > + } > > + > > + return ret; > > +} > > + > > +static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) > > +{ > > + int ret; > > + > > + /* load optional rsc table */ > > + ret = rproc_elf_load_rsc_table(rproc, fw); > > + if (ret == -EINVAL) > > + dev_dbg(&rproc->dev, "no resource table found for this fw\n"); > > + > > + return ret; > > This should return 0 if there is no resource table, otherwise this fails. You > have this corrected in Patch 3, but please move that logic here. Sure - sorry for that. I will move the correct logic from patch #3 to this one. > > > +} > > + > > +/* > > + * Compute PRU id based on the IRAM addresses. The PRU IRAMs are > > + * always at a particular offset within the PRUSS address space. > > + */ > > +static int pru_rproc_set_id(struct pru_rproc *pru) > > +{ > > + int ret = 0; > > + > > + switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & 0x3ffff) { > > We can probably update this to use a macro for 0x3fffff. Good idea, I will introduce PRU_IRAM_ADDR_MASK. Thank you, Grzegorz > > > + case PRU0_IRAM_ADDR_MASK: > > + pru->id = 0; > > + break; > > + case PRU1_IRAM_ADDR_MASK: > > + pru->id = 1; > > + break; > > + default: > > + ret = -EINVAL; > > + } > > + > > + return ret; > > +} > > + > > +static int pru_rproc_probe(struct platform_device *pdev) > > +{ > > + struct device *dev = &pdev->dev; > > + struct device_node *np = dev->of_node; > > + struct platform_device *ppdev = to_platform_device(dev->parent); > > + struct pru_rproc *pru; > > + const char *fw_name; > > + struct rproc *rproc = NULL; > > + struct resource *res; > > + int i, ret; > > + const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" }; > > + > > + ret = of_property_read_string(np, "firmware-name", &fw_name); > > + if (ret) { > > + dev_err(dev, "unable to retrieve firmware-name %d\n", ret); > > + return ret; > > + } > > + > > + rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name, > > + sizeof(*pru)); > > + if (!rproc) { > > + dev_err(dev, "rproc_alloc failed\n"); > > + return -ENOMEM; > > + } > > + /* use a custom load function to deal with PRU-specific quirks */ > > + rproc->ops->load = pru_rproc_load_elf_segments; > > + > > + /* use a custom parse function to deal with PRU-specific resources */ > > + rproc->ops->parse_fw = pru_rproc_parse_fw; > > + > > + /* error recovery is not supported for PRUs */ > > + rproc->recovery_disabled = true; > > + > > + /* > > + * rproc_add will auto-boot the processor normally, but this is not > > + * desired with PRU client driven boot-flow methodology. A PRU > > + * application/client driver will boot the corresponding PRU > > + * remote-processor as part of its state machine either through the > > + * remoteproc sysfs interface or through the equivalent kernel API. > > + */ > > + rproc->auto_boot = false; > > + > > + pru = rproc->priv; > > + pru->dev = dev; > > + pru->pruss = platform_get_drvdata(ppdev); > > + pru->rproc = rproc; > > + pru->fw_name = fw_name; > > + > > + for (i = 0; i < ARRAY_SIZE(mem_names); i++) { > > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > > + mem_names[i]); > > + pru->mem_regions[i].va = devm_ioremap_resource(dev, res); > > + if (IS_ERR(pru->mem_regions[i].va)) { > > + dev_err(dev, "failed to parse and map memory resource %d %s\n", > > + i, mem_names[i]); > > + ret = PTR_ERR(pru->mem_regions[i].va); > > + return ret; > > + } > > + pru->mem_regions[i].pa = res->start; > > + pru->mem_regions[i].size = resource_size(res); > > + > > + dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n", > > + mem_names[i], &pru->mem_regions[i].pa, > > + pru->mem_regions[i].size, pru->mem_regions[i].va); > > + } > > + > > + ret = pru_rproc_set_id(pru); > > + if (ret < 0) > > + return ret; > > + > > + platform_set_drvdata(pdev, rproc); > > + > > + ret = devm_rproc_add(dev, pru->rproc); > > + if (ret) { > > + dev_err(dev, "rproc_add failed: %d\n", ret); > > + return ret; > > + } > > + > > + dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np); > > + > > + return 0; > > +} > > + > > +static int pru_rproc_remove(struct platform_device *pdev) > > +{ > > + struct device *dev = &pdev->dev; > > + struct rproc *rproc = platform_get_drvdata(pdev); > > + > > + dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name); > > + > > + return 0; > > +} > > + > > +static const struct of_device_id pru_rproc_match[] = { > > + { .compatible = "ti,am3356-pru", }, > > + { .compatible = "ti,am4376-pru", }, > > + { .compatible = "ti,am5728-pru", }, > > + { .compatible = "ti,k2g-pru", }, > > + {}, > > +}; > > +MODULE_DEVICE_TABLE(of, pru_rproc_match); > > + > > +static struct platform_driver pru_rproc_driver = { > > + .driver = { > > + .name = "pru-rproc", > > + .of_match_table = pru_rproc_match, > > + .suppress_bind_attrs = true, > > + }, > > + .probe = pru_rproc_probe, > > + .remove = pru_rproc_remove, > > +}; > > +module_platform_driver(pru_rproc_driver); > > + > > +MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); > > +MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>"); > > +MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>"); > > +MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver"); > > +MODULE_LICENSE("GPL v2"); > > >
diff --git a/drivers/remoteproc/Kconfig b/drivers/remoteproc/Kconfig index d99548fb5dde..3e3865a7cd78 100644 --- a/drivers/remoteproc/Kconfig +++ b/drivers/remoteproc/Kconfig @@ -125,6 +125,18 @@ config KEYSTONE_REMOTEPROC It's safe to say N here if you're not interested in the Keystone DSPs or just want to use a bare minimum kernel. +config PRU_REMOTEPROC + tristate "TI PRU remoteproc support" + depends on TI_PRUSS + default TI_PRUSS + help + Support for TI PRU remote processors present within a PRU-ICSS + subsystem via the remote processor framework. + + Say Y or M here to support the Programmable Realtime Unit (PRU) + processors on various TI SoCs. It's safe to say N here if you're + not interested in the PRU or if you are unsure. + config QCOM_PIL_INFO tristate diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile index da2ace4ec86c..bb26c9e4ef9c 100644 --- a/drivers/remoteproc/Makefile +++ b/drivers/remoteproc/Makefile @@ -18,6 +18,7 @@ obj-$(CONFIG_OMAP_REMOTEPROC) += omap_remoteproc.o obj-$(CONFIG_WKUP_M3_RPROC) += wkup_m3_rproc.o obj-$(CONFIG_DA8XX_REMOTEPROC) += da8xx_remoteproc.o obj-$(CONFIG_KEYSTONE_REMOTEPROC) += keystone_remoteproc.o +obj-$(CONFIG_PRU_REMOTEPROC) += pru_rproc.o obj-$(CONFIG_QCOM_PIL_INFO) += qcom_pil_info.o obj-$(CONFIG_QCOM_RPROC_COMMON) += qcom_common.o obj-$(CONFIG_QCOM_Q6V5_COMMON) += qcom_q6v5.o diff --git a/drivers/remoteproc/pru_rproc.c b/drivers/remoteproc/pru_rproc.c new file mode 100644 index 000000000000..c94c8e965c21 --- /dev/null +++ b/drivers/remoteproc/pru_rproc.c @@ -0,0 +1,428 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * PRU-ICSS remoteproc driver for various TI SoCs + * + * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/ + * + * Author(s): + * Suman Anna <s-anna@ti.com> + * Andrew F. Davis <afd@ti.com> + * Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments + */ + +#include <linux/bitops.h> +#include <linux/module.h> +#include <linux/of_device.h> +#include <linux/pruss_driver.h> +#include <linux/remoteproc.h> + +#include "remoteproc_internal.h" +#include "remoteproc_elf_helpers.h" + +/* PRU_ICSS_PRU_CTRL registers */ +#define PRU_CTRL_CTRL 0x0000 +#define PRU_CTRL_STS 0x0004 + +/* CTRL register bit-fields */ +#define CTRL_CTRL_SOFT_RST_N BIT(0) +#define CTRL_CTRL_EN BIT(1) +#define CTRL_CTRL_SLEEPING BIT(2) +#define CTRL_CTRL_CTR_EN BIT(3) +#define CTRL_CTRL_SINGLE_STEP BIT(8) +#define CTRL_CTRL_RUNSTATE BIT(15) + +/* PRU Core IRAM address masks */ +#define PRU0_IRAM_ADDR_MASK 0x34000 +#define PRU1_IRAM_ADDR_MASK 0x38000 + +/* PRU device addresses for various type of PRU RAMs */ +#define PRU_IRAM_DA 0 /* Instruction RAM */ +#define PRU_PDRAM_DA 0 /* Primary Data RAM */ +#define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */ +#define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */ + +/** + * enum pru_iomem - PRU core memory/register range identifiers + * + * @PRU_IOMEM_IRAM: PRU Instruction RAM range + * @PRU_IOMEM_CTRL: PRU Control register range + * @PRU_IOMEM_DEBUG: PRU Debug register range + * @PRU_IOMEM_MAX: just keep this one at the end + */ +enum pru_iomem { + PRU_IOMEM_IRAM = 0, + PRU_IOMEM_CTRL, + PRU_IOMEM_DEBUG, + PRU_IOMEM_MAX, +}; + +/** + * struct pru_rproc - PRU remoteproc structure + * @id: id of the PRU core within the PRUSS + * @dev: PRU core device pointer + * @pruss: back-reference to parent PRUSS structure + * @rproc: remoteproc pointer for this PRU core + * @mem_regions: data for each of the PRU memory regions + * @fw_name: name of firmware image used during loading + */ +struct pru_rproc { + int id; + struct device *dev; + struct pruss *pruss; + struct rproc *rproc; + struct pruss_mem_region mem_regions[PRU_IOMEM_MAX]; + const char *fw_name; +}; + +static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg) +{ + return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg); +} + +static inline +void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val) +{ + writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg); +} + +static int pru_rproc_start(struct rproc *rproc) +{ + struct device *dev = &rproc->dev; + struct pru_rproc *pru = rproc->priv; + u32 val; + + dev_dbg(dev, "starting PRU%d: entry-point = 0x%llx\n", + pru->id, (rproc->bootaddr >> 2)); + + val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16); + pru_control_write_reg(pru, PRU_CTRL_CTRL, val); + + return 0; +} + +static int pru_rproc_stop(struct rproc *rproc) +{ + struct device *dev = &rproc->dev; + struct pru_rproc *pru = rproc->priv; + u32 val; + + dev_dbg(dev, "stopping PRU%d\n", pru->id); + + val = pru_control_read_reg(pru, PRU_CTRL_CTRL); + val &= ~CTRL_CTRL_EN; + pru_control_write_reg(pru, PRU_CTRL_CTRL, val); + + return 0; +} + +/* + * Convert PRU device address (data spaces only) to kernel virtual address. + * + * Each PRU has access to all data memories within the PRUSS, accessible at + * different ranges. So, look through both its primary and secondary Data + * RAMs as well as any shared Data RAM to convert a PRU device address to + * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data + * RAM1 is primary Data RAM for PRU1. + */ +static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, int len) +{ + struct pruss_mem_region dram0, dram1, shrd_ram; + struct pruss *pruss = pru->pruss; + u32 offset; + void *va = NULL; + + if (len <= 0) + return NULL; + + dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0]; + dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1]; + /* PRU1 has its local RAM addresses reversed */ + if (pru->id == 1) + swap(dram0, dram1); + shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2]; + + if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) { + offset = da - PRU_PDRAM_DA; + va = (__force void *)(dram0.va + offset); + } else if (da >= PRU_SDRAM_DA && + da + len <= PRU_SDRAM_DA + dram1.size) { + offset = da - PRU_SDRAM_DA; + va = (__force void *)(dram1.va + offset); + } else if (da >= PRU_SHRDRAM_DA && + da + len <= PRU_SHRDRAM_DA + shrd_ram.size) { + offset = da - PRU_SHRDRAM_DA; + va = (__force void *)(shrd_ram.va + offset); + } + + return va; +} + +/* + * Convert PRU device address (instruction space) to kernel virtual address. + * + * A PRU does not have an unified address space. Each PRU has its very own + * private Instruction RAM, and its device address is identical to that of + * its primary Data RAM device address. + */ +static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, int len) +{ + u32 offset; + void *va = NULL; + + if (len <= 0) + return NULL; + + if (da >= PRU_IRAM_DA && + da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) { + offset = da - PRU_IRAM_DA; + va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va + + offset); + } + + return va; +} + +/* + * Provide address translations for only PRU Data RAMs through the remoteproc + * core for any PRU client drivers. The PRU Instruction RAM access is restricted + * only to the PRU loader code. + */ +static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) +{ + struct pru_rproc *pru = rproc->priv; + + return pru_d_da_to_va(pru, da, len); +} + +/* PRU-specific address translator used by PRU loader. */ +static void *pru_da_to_va(struct rproc *rproc, u64 da, int len, bool is_iram) +{ + struct pru_rproc *pru = rproc->priv; + void *va; + + if (is_iram) + va = pru_i_da_to_va(pru, da, len); + else + va = pru_d_da_to_va(pru, da, len); + + return va; +} + +static struct rproc_ops pru_rproc_ops = { + .start = pru_rproc_start, + .stop = pru_rproc_stop, + .da_to_va = pru_rproc_da_to_va, +}; + +static int +pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) +{ + struct device *dev = &rproc->dev; + struct elf32_hdr *ehdr; + struct elf32_phdr *phdr; + int i, ret = 0; + const u8 *elf_data = fw->data; + + ehdr = (struct elf32_hdr *)elf_data; + phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff); + + /* go through the available ELF segments */ + for (i = 0; i < ehdr->e_phnum; i++, phdr++) { + u32 da = phdr->p_paddr; + u32 memsz = phdr->p_memsz; + u32 filesz = phdr->p_filesz; + u32 offset = phdr->p_offset; + bool is_iram; + void *ptr; + + if (phdr->p_type != PT_LOAD) + continue; + + dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n", + phdr->p_type, da, memsz, filesz); + + if (filesz > memsz) { + dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n", + filesz, memsz); + ret = -EINVAL; + break; + } + + if (offset + filesz > fw->size) { + dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n", + offset + filesz, fw->size); + ret = -EINVAL; + break; + } + + /* grab the kernel address for this device address */ + is_iram = phdr->p_flags & PF_X; + ptr = pru_da_to_va(rproc, da, memsz, is_iram); + if (!ptr) { + dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz); + ret = -EINVAL; + break; + } + + /* skip the memzero logic performed by remoteproc ELF loader */ + if (!phdr->p_filesz) + continue; + + memcpy(ptr, elf_data + phdr->p_offset, filesz); + } + + return ret; +} + +static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) +{ + int ret; + + /* load optional rsc table */ + ret = rproc_elf_load_rsc_table(rproc, fw); + if (ret == -EINVAL) + dev_dbg(&rproc->dev, "no resource table found for this fw\n"); + + return ret; +} + +/* + * Compute PRU id based on the IRAM addresses. The PRU IRAMs are + * always at a particular offset within the PRUSS address space. + */ +static int pru_rproc_set_id(struct pru_rproc *pru) +{ + int ret = 0; + + switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & 0x3ffff) { + case PRU0_IRAM_ADDR_MASK: + pru->id = 0; + break; + case PRU1_IRAM_ADDR_MASK: + pru->id = 1; + break; + default: + ret = -EINVAL; + } + + return ret; +} + +static int pru_rproc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + struct platform_device *ppdev = to_platform_device(dev->parent); + struct pru_rproc *pru; + const char *fw_name; + struct rproc *rproc = NULL; + struct resource *res; + int i, ret; + const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" }; + + ret = of_property_read_string(np, "firmware-name", &fw_name); + if (ret) { + dev_err(dev, "unable to retrieve firmware-name %d\n", ret); + return ret; + } + + rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name, + sizeof(*pru)); + if (!rproc) { + dev_err(dev, "rproc_alloc failed\n"); + return -ENOMEM; + } + /* use a custom load function to deal with PRU-specific quirks */ + rproc->ops->load = pru_rproc_load_elf_segments; + + /* use a custom parse function to deal with PRU-specific resources */ + rproc->ops->parse_fw = pru_rproc_parse_fw; + + /* error recovery is not supported for PRUs */ + rproc->recovery_disabled = true; + + /* + * rproc_add will auto-boot the processor normally, but this is not + * desired with PRU client driven boot-flow methodology. A PRU + * application/client driver will boot the corresponding PRU + * remote-processor as part of its state machine either through the + * remoteproc sysfs interface or through the equivalent kernel API. + */ + rproc->auto_boot = false; + + pru = rproc->priv; + pru->dev = dev; + pru->pruss = platform_get_drvdata(ppdev); + pru->rproc = rproc; + pru->fw_name = fw_name; + + for (i = 0; i < ARRAY_SIZE(mem_names); i++) { + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, + mem_names[i]); + pru->mem_regions[i].va = devm_ioremap_resource(dev, res); + if (IS_ERR(pru->mem_regions[i].va)) { + dev_err(dev, "failed to parse and map memory resource %d %s\n", + i, mem_names[i]); + ret = PTR_ERR(pru->mem_regions[i].va); + return ret; + } + pru->mem_regions[i].pa = res->start; + pru->mem_regions[i].size = resource_size(res); + + dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n", + mem_names[i], &pru->mem_regions[i].pa, + pru->mem_regions[i].size, pru->mem_regions[i].va); + } + + ret = pru_rproc_set_id(pru); + if (ret < 0) + return ret; + + platform_set_drvdata(pdev, rproc); + + ret = devm_rproc_add(dev, pru->rproc); + if (ret) { + dev_err(dev, "rproc_add failed: %d\n", ret); + return ret; + } + + dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np); + + return 0; +} + +static int pru_rproc_remove(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct rproc *rproc = platform_get_drvdata(pdev); + + dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name); + + return 0; +} + +static const struct of_device_id pru_rproc_match[] = { + { .compatible = "ti,am3356-pru", }, + { .compatible = "ti,am4376-pru", }, + { .compatible = "ti,am5728-pru", }, + { .compatible = "ti,k2g-pru", }, + {}, +}; +MODULE_DEVICE_TABLE(of, pru_rproc_match); + +static struct platform_driver pru_rproc_driver = { + .driver = { + .name = "pru-rproc", + .of_match_table = pru_rproc_match, + .suppress_bind_attrs = true, + }, + .probe = pru_rproc_probe, + .remove = pru_rproc_remove, +}; +module_platform_driver(pru_rproc_driver); + +MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); +MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>"); +MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>"); +MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver"); +MODULE_LICENSE("GPL v2");