diff mbox

[RFC,09/10] drivers/perf: Add support for ARMv8.2 Statistical Profiling Extension

Message ID 1483467027-14547-10-git-send-email-will.deacon@arm.com
State Superseded
Headers show

Commit Message

Will Deacon Jan. 3, 2017, 6:10 p.m. UTC
The ARMv8.2 architecture introduces the Statistical Profiling Extension
(SPE). SPE provides a way to configure and collect profiling samples
from the CPU in the form of a trace buffer, which can be mapped directly
into userspace using the perf AUX buffer infrastructure.

This patch adds support for SPE in the form of a new perf driver.

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>

---
 drivers/perf/Kconfig       |    8 +
 drivers/perf/Makefile      |    1 +
 drivers/perf/arm_spe_pmu.c | 1247 ++++++++++++++++++++++++++++++++++++++++++++
 3 files changed, 1256 insertions(+)
 create mode 100644 drivers/perf/arm_spe_pmu.c

-- 
2.1.4

Comments

Peter Zijlstra Jan. 4, 2017, 10:37 a.m. UTC | #1
On Tue, Jan 03, 2017 at 06:10:26PM +0000, Will Deacon wrote:
> The ARMv8.2 architecture introduces the Statistical Profiling Extension

> (SPE). SPE provides a way to configure and collect profiling samples

> from the CPU in the form of a trace buffer, which can be mapped directly

> into userspace using the perf AUX buffer infrastructure.

> 

> This patch adds support for SPE in the form of a new perf driver.

> 


Can you give a little high level overview of what exactly SPE is?
Will Deacon Jan. 4, 2017, 7:14 p.m. UTC | #2
Hi Peter,

On Wed, Jan 04, 2017 at 11:37:13AM +0100, Peter Zijlstra wrote:
> On Tue, Jan 03, 2017 at 06:10:26PM +0000, Will Deacon wrote:

> > The ARMv8.2 architecture introduces the Statistical Profiling Extension

> > (SPE). SPE provides a way to configure and collect profiling samples

> > from the CPU in the form of a trace buffer, which can be mapped directly

> > into userspace using the perf AUX buffer infrastructure.

> > 

> > This patch adds support for SPE in the form of a new perf driver.

> > 

> 

> Can you give a little high level overview of what exactly SPE is?


Sure, I can try, although there is no public documentation yet so it's a
bit fiddly.

SPE can be used to profile a population of operations in the CPU pipeline
after instruction decode. These are either architected instructions (i.e.
a dynamic instruction trace) or CPU-specific uops and the choice is fixed
statically in the hardware and advertised to userspace via caps/. Sampling
is controlled using a sampling interval, similar to a regular PMU counter,
but also with an optional random perturbation to avoid falling into patterns
where you continuously profile the same instruction in a hot loop.

After each operation is decoded, the interval counter is decremented. When
it hits zero, an operation is chosen for profiling and tracked within the
pipeline until it retires. Along the way, information such as TLB lookups,
cache misses, time spent to issue etc is captured in the form of a sample.
The sample is then filtered according to certain criteria (e.g. load
latency) that can be specified in the event config (described under
format/) and, if the sample satisfies the filter, it is written out to
memory as a record, otherwise it is discarded. Only one operation can
be sampled at a time.

The in-memory buffer is linear and virtually addressed, raising an
interrupt when it fills up. The PMU driver handles these interrupts to
give the appearance of a ring buffer, as expected by the AUX code.

The in-memory trace-like format is self-describing (though not parseable
in reverse) and written as a series of records, with each record
corresponding to a sample and consisting of a sequence of packets. These
packets are defined by the architecture, although some have CPU-specific
fields for recording information specific to the microarchitecture.

As a simple example, a record generated for a branch instruction may
consist of the following packets:

  0 (Address) : Virtual PC of the branch instruction
  1 (Type)    : Conditional direct branch
  2 (Counter) : Number of cycles taken from Dispatch to Issue
  3 (Address) : Virtual branch target + condition flags
  4 (Counter) : Number of cycles taken from Dispatch to Complete
  5 (Events)  : Mispredicted as not-taken
  6 (END)     : End of record

You can also toggle things like timestamp packets in each record.

Since SPE is an optional extension to the architecture, I'm sure there
will be big.LITTLE systems where only one of the clusters has SPE support,
so the driver is slightly complicated by handling that.

Will
Kim Phillips Jan. 10, 2017, 10:04 p.m. UTC | #3
On Tue, 3 Jan 2017 18:10:26 +0000
Will Deacon <will.deacon@arm.com> wrote:

> +#define DRVNAME				"arm_spe_pmu"


Based on Intel naming "intel_pt" and "intel_bts', I had expected
"arm-spe" as the universal basename for SPE.  I don't really care about
whether '_pmu' is included, but it's yet another naming inconsistency we
have with coresight's "cs_etm" (the other being prefixed with "arm_").

Also, nit, since I don't know why perf userspace tools can't handle
dashes in PMU names (commit 3d1ff755e367 "arm: perf: clean up PMU
names" doesn't say), can we at least start to use dashes in our
filenames?  arm-spe-pmu.c is easier to type than arm_spe_pmu.c.

> +static int arm_spe_pmu_event_init(struct perf_event *event)

> +{

> +	u64 reg;

> +	struct perf_event_attr *attr = &event->attr;

> +	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);

> +

> +	/* This is, of course, deeply driver-specific */

> +	if (attr->type != event->pmu->type)

> +		return -ENOENT;

> +

> +	if (event->cpu >= 0 &&

> +	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))

> +		return -ENOENT;

> +

> +	if (arm_spe_event_to_pmsevfr(event) & PMSEVFR_EL1_RES0)

> +		return -EOPNOTSUPP;

> +

> +	if (event->hw.sample_period < spe_pmu->min_period ||

> +	    event->hw.sample_period & PMSIRR_EL1_IVAL_MASK)

> +		return -EOPNOTSUPP;

> +

> +	if (attr->exclude_idle)

> +		return -EOPNOTSUPP;

> +

> +	/*

> +	 * Feedback-directed frequency throttling doesn't work when we

> +	 * have a buffer of samples. We'd need to manually count the

> +	 * samples in the buffer when it fills up and adjust the event

> +	 * count to reflect that. Instead, force the user to specify a

> +	 * sample period instead.

> +	 */

> +	if (attr->freq)

> +		return -EINVAL;

> +

> +	if (is_kernel_in_hyp_mode()) {

> +		if (attr->exclude_kernel != attr->exclude_hv)

> +			return -EOPNOTSUPP;

> +	} else if (!attr->exclude_hv) {

> +		return -EOPNOTSUPP;

> +	}

> +

> +	reg = arm_spe_event_to_pmsfcr(event);

> +	if ((reg & BIT(PMSFCR_EL1_FE_SHIFT)) &&

> +	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))

> +		return -EOPNOTSUPP;

> +

> +	if ((reg & BIT(PMSFCR_EL1_FT_SHIFT)) &&

> +	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))

> +		return -EOPNOTSUPP;

> +

> +	if ((reg & BIT(PMSFCR_EL1_FL_SHIFT)) &&

> +	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))

> +		return -EOPNOTSUPP;

> +

> +	return 0;

> +}


Without being provided instructions on how to use, I had to add
debug printks here to find out e.g., an event period *must* be specified
with record -c, and then again to find out that only a certain set of
numbers is allowed by the h/w (256, 512, etc.). Is it possible to
report why the driver is returning an error before it does?  Otherwise,
all the user sees is, e.g.:

Error:
The sys_perf_event_open() syscall returned with 19 (No such device) for event (arm_spe_pmu_0).
/bin/dmesg may provide additional information.
No CONFIG_PERF_EVENTS=y kernel support configured?

...and, in this case, with nothing in dmesg.  And, IIRC, the above text
is emitted only if perf is run with -v and/or built with DEBUG set.
Granted, *that* problem is not explicitly relevant to this patch, but
new drivers should nevertheless express their usage details better.

Also, curiously, arm_spe_pmu doesn't appear in 'perf list' (even when
SPE h/w is present).

Other than that, this gets my:

Tested-by: Kim Phillips <kim.phillips@arm.com>


Thanks,

Kim
Will Deacon Jan. 11, 2017, 12:37 p.m. UTC | #4
Hi Kim,

On Tue, Jan 10, 2017 at 04:04:19PM -0600, Kim Phillips wrote:
> On Tue, 3 Jan 2017 18:10:26 +0000

> Will Deacon <will.deacon@arm.com> wrote:

> 

> > +#define DRVNAME				"arm_spe_pmu"

> 

> Based on Intel naming "intel_pt" and "intel_bts', I had expected

> "arm-spe" as the universal basename for SPE.  I don't really care about

> whether '_pmu' is included, but it's yet another naming inconsistency we

> have with coresight's "cs_etm" (the other being prefixed with "arm_").


It's consistent with the other PMUs under drivers/perf.

> Also, nit, since I don't know why perf userspace tools can't handle

> dashes in PMU names (commit 3d1ff755e367 "arm: perf: clean up PMU

> names" doesn't say), can we at least start to use dashes in our

> filenames?  arm-spe-pmu.c is easier to type than arm_spe_pmu.c.


I'd rather go for consistency both with the other PMU drivers under
drivers/perf, but also with the PMU name itself.

> > +static int arm_spe_pmu_event_init(struct perf_event *event)

> > +{

> > +	u64 reg;

> > +	struct perf_event_attr *attr = &event->attr;

> > +	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);

> > +

> > +	/* This is, of course, deeply driver-specific */

> > +	if (attr->type != event->pmu->type)

> > +		return -ENOENT;

> > +

> > +	if (event->cpu >= 0 &&

> > +	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))

> > +		return -ENOENT;

> > +

> > +	if (arm_spe_event_to_pmsevfr(event) & PMSEVFR_EL1_RES0)

> > +		return -EOPNOTSUPP;

> > +

> > +	if (event->hw.sample_period < spe_pmu->min_period ||

> > +	    event->hw.sample_period & PMSIRR_EL1_IVAL_MASK)

> > +		return -EOPNOTSUPP;

> > +

> > +	if (attr->exclude_idle)

> > +		return -EOPNOTSUPP;

> > +

> > +	/*

> > +	 * Feedback-directed frequency throttling doesn't work when we

> > +	 * have a buffer of samples. We'd need to manually count the

> > +	 * samples in the buffer when it fills up and adjust the event

> > +	 * count to reflect that. Instead, force the user to specify a

> > +	 * sample period instead.

> > +	 */

> > +	if (attr->freq)

> > +		return -EINVAL;

> > +

> > +	if (is_kernel_in_hyp_mode()) {

> > +		if (attr->exclude_kernel != attr->exclude_hv)

> > +			return -EOPNOTSUPP;

> > +	} else if (!attr->exclude_hv) {

> > +		return -EOPNOTSUPP;

> > +	}

> > +

> > +	reg = arm_spe_event_to_pmsfcr(event);

> > +	if ((reg & BIT(PMSFCR_EL1_FE_SHIFT)) &&

> > +	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))

> > +		return -EOPNOTSUPP;

> > +

> > +	if ((reg & BIT(PMSFCR_EL1_FT_SHIFT)) &&

> > +	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))

> > +		return -EOPNOTSUPP;

> > +

> > +	if ((reg & BIT(PMSFCR_EL1_FL_SHIFT)) &&

> > +	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))

> > +		return -EOPNOTSUPP;

> > +

> > +	return 0;

> > +}

> 

> Without being provided instructions on how to use, I had to add

> debug printks here to find out e.g., an event period *must* be specified

> with record -c, and then again to find out that only a certain set of

> numbers is allowed by the h/w (256, 512, etc.). Is it possible to

> report why the driver is returning an error before it does?  Otherwise,

> all the user sees is, e.g.:

> 

> Error:

> The sys_perf_event_open() syscall returned with 19 (No such device) for event (arm_spe_pmu_0).

> /bin/dmesg may provide additional information.

> No CONFIG_PERF_EVENTS=y kernel support configured?

> 

> ...and, in this case, with nothing in dmesg.  And, IIRC, the above text

> is emitted only if perf is run with -v and/or built with DEBUG set.

> Granted, *that* problem is not explicitly relevant to this patch, but

> new drivers should nevertheless express their usage details better.


I don't disagree that the error reporting from the driver up to userspace
leaves much to be desired, but there currently isn't a sensible way to
communicate the exact reason for failure back from event_init and I
don't think we're different to other PMU drivers in this respect. Yes,
you can paper around the problem using pr_debug, but that really only
helps the developer writing the perf tool support, and much of the
constraints can also be inferred from the architecture spec.

There were patches to allow providing strings back via perf_err:

  https://lkml.org/lkml/2015/8/24/506

but I don't think it ended up getting merged. Other subsystems wanted to
use the same approach, and there are ABI considerations with all of this
(the thread is worth a read).

> Also, curiously, arm_spe_pmu doesn't appear in 'perf list' (even when

> SPE h/w is present).


Weird, it would be nice to understand why that is. The sysfs plumbing should
all be there, so I'd expect to see something. On my laptop, for example,
intel_pt appears as:

  intel_pt//                                         [Kernel PMU event]

and strace show perf doing the following:

stat("/sys/bus/event_source/devices/intel_pt/format", {st_mode=S_IFDIR|0755, st_size=0, ...}) = 0
open("/sys/bus/event_source/devices/intel_pt/format", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 82
open("/sys/bus/event_source/devices/intel_pt/format/psb_period", O_RDONLY) = 83
open("/sys/bus/event_source/devices/intel_pt/format/noretcomp", O_RDONLY) = 83
open("/sys/bus/event_source/devices/intel_pt/format/tsc", O_RDONLY) = 83
open("/sys/bus/event_source/devices/intel_pt/format/cyc_thresh", O_RDONLY) = 83
open("/sys/bus/event_source/devices/intel_pt/format/mtc_period", O_RDONLY) = 83
open("/sys/bus/event_source/devices/intel_pt/format/cyc", O_RDONLY) = 83
open("/sys/bus/event_source/devices/intel_pt/format/mtc", O_RDONLY) = 83
stat("/sys/bus/event_source/devices/intel_pt/events", 0x7ffe54eebb40) = -1 ENOENT (No such file or directory)
stat("/sys/bus/event_source/devices/intel_pt/type", {st_mode=S_IFREG|0444, st_size=4096, ...}) = 0
open("/sys/bus/event_source/devices/intel_pt/type", O_RDONLY) = 82
stat("/sys/bus/event_source/devices/intel_pt/cpumask", 0x7ffe54eedd60) = -1 ENOENT (No such file or directory)
stat("/sys/bus/event_source/devices/intel_pt/cpus", 0x7ffe54eedd60) = -1 ENOENT (No such file or directory)
stat("/sys/bus/event_source/devices/intel_pt/caps/mtc", {st_mode=S_IFREG|0444, st_size=4096, ...}) = 0
open("/sys/bus/event_source/devices/intel_pt/caps/mtc", O_RDONLY) = 82
stat("/sys/bus/event_source/devices/intel_pt/caps/psb_cyc", {st_mode=S_IFREG|0444, st_size=4096, ...}) = 0
open("/sys/bus/event_source/devices/intel_pt/caps/psb_cyc", O_RDONLY) = 82

What do you see for SPE?

> Other than that, this gets my:

> 

> Tested-by: Kim Phillips <kim.phillips@arm.com>


Thanks!

Will
Kim Phillips Jan. 11, 2017, 9:02 p.m. UTC | #5
On Wed, 11 Jan 2017 12:37:15 +0000
Will Deacon <will.deacon@arm.com> wrote:

> Hi Kim,

> 

> On Tue, Jan 10, 2017 at 04:04:19PM -0600, Kim Phillips wrote:

> > On Tue, 3 Jan 2017 18:10:26 +0000

> > Will Deacon <will.deacon@arm.com> wrote:

> > 

> > > +#define DRVNAME				"arm_spe_pmu"

> > 

> > Based on Intel naming "intel_pt" and "intel_bts', I had expected

> > "arm-spe" as the universal basename for SPE.  I don't really care about

> > whether '_pmu' is included, but it's yet another naming inconsistency we

> > have with coresight's "cs_etm" (the other being prefixed with "arm_").

> 

> It's consistent with the other PMUs under drivers/perf.

> 

> > Also, nit, since I don't know why perf userspace tools can't handle

> > dashes in PMU names (commit 3d1ff755e367 "arm: perf: clean up PMU

> > names" doesn't say), can we at least start to use dashes in our

> > filenames?  arm-spe-pmu.c is easier to type than arm_spe_pmu.c.

> 

> I'd rather go for consistency both with the other PMU drivers under

> drivers/perf, but also with the PMU name itself.


Selecting a PMU naming consistency domain based on its driver's source
path doesn't accurately represent the naming consistency the user
expects.  Not to mention there are only 2 out of 44 PMU device
registration callsites under drivers/perf...

> > > +static int arm_spe_pmu_event_init(struct perf_event *event)

> > > +{

> > > +	u64 reg;

> > > +	struct perf_event_attr *attr = &event->attr;

> > > +	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);

> > > +

> > > +	/* This is, of course, deeply driver-specific */

> > > +	if (attr->type != event->pmu->type)

> > > +		return -ENOENT;

> > > +

> > > +	if (event->cpu >= 0 &&

> > > +	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))

> > > +		return -ENOENT;

> > > +

> > > +	if (arm_spe_event_to_pmsevfr(event) & PMSEVFR_EL1_RES0)

> > > +		return -EOPNOTSUPP;

> > > +

> > > +	if (event->hw.sample_period < spe_pmu->min_period ||

> > > +	    event->hw.sample_period & PMSIRR_EL1_IVAL_MASK)

> > > +		return -EOPNOTSUPP;

> > > +

> > > +	if (attr->exclude_idle)

> > > +		return -EOPNOTSUPP;

> > > +

> > > +	/*

> > > +	 * Feedback-directed frequency throttling doesn't work when we

> > > +	 * have a buffer of samples. We'd need to manually count the

> > > +	 * samples in the buffer when it fills up and adjust the event

> > > +	 * count to reflect that. Instead, force the user to specify a

> > > +	 * sample period instead.

> > > +	 */

> > > +	if (attr->freq)

> > > +		return -EINVAL;

> > > +

> > > +	if (is_kernel_in_hyp_mode()) {

> > > +		if (attr->exclude_kernel != attr->exclude_hv)

> > > +			return -EOPNOTSUPP;

> > > +	} else if (!attr->exclude_hv) {

> > > +		return -EOPNOTSUPP;

> > > +	}

> > > +

> > > +	reg = arm_spe_event_to_pmsfcr(event);

> > > +	if ((reg & BIT(PMSFCR_EL1_FE_SHIFT)) &&

> > > +	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))

> > > +		return -EOPNOTSUPP;

> > > +

> > > +	if ((reg & BIT(PMSFCR_EL1_FT_SHIFT)) &&

> > > +	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))

> > > +		return -EOPNOTSUPP;

> > > +

> > > +	if ((reg & BIT(PMSFCR_EL1_FL_SHIFT)) &&

> > > +	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))

> > > +		return -EOPNOTSUPP;

> > > +

> > > +	return 0;

> > > +}

> > 

> > Without being provided instructions on how to use, I had to add

> > debug printks here to find out e.g., an event period *must* be specified

> > with record -c, and then again to find out that only a certain set of

> > numbers is allowed by the h/w (256, 512, etc.). Is it possible to

> > report why the driver is returning an error before it does?  Otherwise,

> > all the user sees is, e.g.:

> > 

> > Error:

> > The sys_perf_event_open() syscall returned with 19 (No such device) for event (arm_spe_pmu_0).

> > /bin/dmesg may provide additional information.

> > No CONFIG_PERF_EVENTS=y kernel support configured?

> > 

> > ...and, in this case, with nothing in dmesg.  And, IIRC, the above text

> > is emitted only if perf is run with -v and/or built with DEBUG set.

> > Granted, *that* problem is not explicitly relevant to this patch, but

> > new drivers should nevertheless express their usage details better.

> 

> I don't disagree that the error reporting from the driver up to userspace

> leaves much to be desired, but there currently isn't a sensible way to

> communicate the exact reason for failure back from event_init and I

> don't think we're different to other PMU drivers in this respect. Yes,

> you can paper around the problem using pr_debug, but that really only

> helps the developer writing the perf tool support, and much of the

> constraints can also be inferred from the architecture spec.


This applies to all users of the driver, not just the developer writing
the perf tool support.  And users definitely shouldn't need to read the
architecture spec in order to use the feature.

> There were patches to allow providing strings back via perf_err:

> 

>   https://lkml.org/lkml/2015/8/24/506

> 

> but I don't think it ended up getting merged. Other subsystems wanted to

> use the same approach, and there are ABI considerations with all of this

> (the thread is worth a read).


OK I didn't read everything, but meanwhile, we need to be making perf -
esp. as it's so clearly pointed out already - to be easier to use in
the time being.  Like one of the threads' responses, *anything* is
better than blindly returning -EINVAL/-ENOTSUPP, etc. Please insert
pr_* statements before returning errors.

We can easily migrate from pr_* to perf_err (or equivalent) when
perf_err becomes available.  Maintenance-wise, it is much more
efficient to do this at driver submission time, rather than waiting for
perf_err to be merged, since it's likely the code will be in the same
place.

> > Also, curiously, arm_spe_pmu doesn't appear in 'perf list' (even when

> > SPE h/w is present).

> 

> Weird, it would be nice to understand why that is. The sysfs plumbing should

> all be there, so I'd expect to see something. On my laptop, for example,

> intel_pt appears as:

> 

>   intel_pt//                                         [Kernel PMU event]

> 

> and strace show perf doing the following:

> 

> stat("/sys/bus/event_source/devices/intel_pt/format", {st_mode=S_IFDIR|0755, st_size=0, ...}) = 0

> open("/sys/bus/event_source/devices/intel_pt/format", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 82

> open("/sys/bus/event_source/devices/intel_pt/format/psb_period", O_RDONLY) = 83

> open("/sys/bus/event_source/devices/intel_pt/format/noretcomp", O_RDONLY) = 83

> open("/sys/bus/event_source/devices/intel_pt/format/tsc", O_RDONLY) = 83

> open("/sys/bus/event_source/devices/intel_pt/format/cyc_thresh", O_RDONLY) = 83

> open("/sys/bus/event_source/devices/intel_pt/format/mtc_period", O_RDONLY) = 83

> open("/sys/bus/event_source/devices/intel_pt/format/cyc", O_RDONLY) = 83

> open("/sys/bus/event_source/devices/intel_pt/format/mtc", O_RDONLY) = 83

> stat("/sys/bus/event_source/devices/intel_pt/events", 0x7ffe54eebb40) = -1 ENOENT (No such file or directory)

> stat("/sys/bus/event_source/devices/intel_pt/type", {st_mode=S_IFREG|0444, st_size=4096, ...}) = 0

> open("/sys/bus/event_source/devices/intel_pt/type", O_RDONLY) = 82

> stat("/sys/bus/event_source/devices/intel_pt/cpumask", 0x7ffe54eedd60) = -1 ENOENT (No such file or directory)

> stat("/sys/bus/event_source/devices/intel_pt/cpus", 0x7ffe54eedd60) = -1 ENOENT (No such file or directory)

> stat("/sys/bus/event_source/devices/intel_pt/caps/mtc", {st_mode=S_IFREG|0444, st_size=4096, ...}) = 0

> open("/sys/bus/event_source/devices/intel_pt/caps/mtc", O_RDONLY) = 82

> stat("/sys/bus/event_source/devices/intel_pt/caps/psb_cyc", {st_mode=S_IFREG|0444, st_size=4096, ...}) = 0

> open("/sys/bus/event_source/devices/intel_pt/caps/psb_cyc", O_RDONLY) = 82

> 

> What do you see for SPE?


2154  newfstatat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format", {st_mode=S_IFDIR|0755, st_size=0, ...}, 0) = 0
2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 58
2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/branch_filter", O_RDONLY) = 59
2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/ts_enable", O_RDONLY) = 59
2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/pa_enable", O_RDONLY) = 59
2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/event_filter", O_RDONLY) = 59
2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/load_filter", O_RDONLY) = 59
2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/jitter", O_RDONLY) = 59
2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/store_filter", O_RDONLY) = 59
2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/min_latency", O_RDONLY) = 59
2154  newfstatat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/events", 0xffffcd6bb078, 0) = -1 ENOENT (No such file or directory)
2154  newfstatat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/type", {st_mode=S_IFREG|0444, st_size=4096, ...}, 0) = 0
2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/type", O_RDONLY) = 58
2154  newfstatat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/cpumask", {st_mode=S_IFREG|0444, st_size=4096, ...}, 0) = 0
2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/cpumask", O_RDONLY) = 58

they're identical up until /.../cpumask's stat, which exists on the
ARM SPE run (as opposed to the Intel run).

Kim
Marc Zyngier Jan. 12, 2017, 11:31 a.m. UTC | #6
On 10/01/17 22:04, Kim Phillips wrote:
> On Tue, 3 Jan 2017 18:10:26 +0000

> Will Deacon <will.deacon@arm.com> wrote:

> 

>> +#define DRVNAME				"arm_spe_pmu"

> 

> Based on Intel naming "intel_pt" and "intel_bts', I had expected

> "arm-spe" as the universal basename for SPE.  I don't really care about

> whether '_pmu' is included, but it's yet another naming inconsistency we

> have with coresight's "cs_etm" (the other being prefixed with "arm_").

> 

> Also, nit, since I don't know why perf userspace tools can't handle

> dashes in PMU names (commit 3d1ff755e367 "arm: perf: clean up PMU

> names" doesn't say), can we at least start to use dashes in our

> filenames?  arm-spe-pmu.c is easier to type than arm_spe_pmu.c.


Fortunately, not everyone is using a UK/US keyboard... ;-)

Thanks,

	M.
-- 
Jazz is not dead. It just smells funny...
Will Deacon Jan. 13, 2017, 1:33 p.m. UTC | #7
On Wed, Jan 11, 2017 at 03:02:39PM -0600, Kim Phillips wrote:
> On Wed, 11 Jan 2017 12:37:15 +0000

> Will Deacon <will.deacon@arm.com> wrote:

> > On Tue, Jan 10, 2017 at 04:04:19PM -0600, Kim Phillips wrote:

> > > Also, curiously, arm_spe_pmu doesn't appear in 'perf list' (even when

> > > SPE h/w is present).

> > 

> > Weird, it would be nice to understand why that is. The sysfs plumbing should

> > all be there, so I'd expect to see something. On my laptop, for example,

> > intel_pt appears as:

> > 

> >   intel_pt//                                         [Kernel PMU event]

> > 

> > and strace show perf doing the following:

> > 

> > stat("/sys/bus/event_source/devices/intel_pt/format", {st_mode=S_IFDIR|0755, st_size=0, ...}) = 0

> > open("/sys/bus/event_source/devices/intel_pt/format", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 82

> > open("/sys/bus/event_source/devices/intel_pt/format/psb_period", O_RDONLY) = 83

> > open("/sys/bus/event_source/devices/intel_pt/format/noretcomp", O_RDONLY) = 83

> > open("/sys/bus/event_source/devices/intel_pt/format/tsc", O_RDONLY) = 83

> > open("/sys/bus/event_source/devices/intel_pt/format/cyc_thresh", O_RDONLY) = 83

> > open("/sys/bus/event_source/devices/intel_pt/format/mtc_period", O_RDONLY) = 83

> > open("/sys/bus/event_source/devices/intel_pt/format/cyc", O_RDONLY) = 83

> > open("/sys/bus/event_source/devices/intel_pt/format/mtc", O_RDONLY) = 83

> > stat("/sys/bus/event_source/devices/intel_pt/events", 0x7ffe54eebb40) = -1 ENOENT (No such file or directory)

> > stat("/sys/bus/event_source/devices/intel_pt/type", {st_mode=S_IFREG|0444, st_size=4096, ...}) = 0

> > open("/sys/bus/event_source/devices/intel_pt/type", O_RDONLY) = 82

> > stat("/sys/bus/event_source/devices/intel_pt/cpumask", 0x7ffe54eedd60) = -1 ENOENT (No such file or directory)

> > stat("/sys/bus/event_source/devices/intel_pt/cpus", 0x7ffe54eedd60) = -1 ENOENT (No such file or directory)

> > stat("/sys/bus/event_source/devices/intel_pt/caps/mtc", {st_mode=S_IFREG|0444, st_size=4096, ...}) = 0

> > open("/sys/bus/event_source/devices/intel_pt/caps/mtc", O_RDONLY) = 82

> > stat("/sys/bus/event_source/devices/intel_pt/caps/psb_cyc", {st_mode=S_IFREG|0444, st_size=4096, ...}) = 0

> > open("/sys/bus/event_source/devices/intel_pt/caps/psb_cyc", O_RDONLY) = 82

> > 

> > What do you see for SPE?

> 

> 2154  newfstatat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format", {st_mode=S_IFDIR|0755, st_size=0, ...}, 0) = 0

> 2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 58

> 2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/branch_filter", O_RDONLY) = 59

> 2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/ts_enable", O_RDONLY) = 59

> 2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/pa_enable", O_RDONLY) = 59

> 2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/event_filter", O_RDONLY) = 59

> 2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/load_filter", O_RDONLY) = 59

> 2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/jitter", O_RDONLY) = 59

> 2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/store_filter", O_RDONLY) = 59

> 2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/format/min_latency", O_RDONLY) = 59

> 2154  newfstatat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/events", 0xffffcd6bb078, 0) = -1 ENOENT (No such file or directory)

> 2154  newfstatat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/type", {st_mode=S_IFREG|0444, st_size=4096, ...}, 0) = 0

> 2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/type", O_RDONLY) = 58

> 2154  newfstatat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/cpumask", {st_mode=S_IFREG|0444, st_size=4096, ...}, 0) = 0

> 2154  openat(AT_FDCWD, "/sys/bus/event_source/devices/arm_spe_pmu_0/cpumask", O_RDONLY) = 58

> 

> they're identical up until /.../cpumask's stat, which exists on the

> ARM SPE run (as opposed to the Intel run).


From a quick look at the perf tool code, it looks like you need to ensure
that pmu->selectable is set to true for SPE, since it doesn't advertise
any events (the intel pt and coresight code does this already).

Will
diff mbox

Patch

diff --git a/drivers/perf/Kconfig b/drivers/perf/Kconfig
index 4d5c5f9f0dbd..32b9d2756b0e 100644
--- a/drivers/perf/Kconfig
+++ b/drivers/perf/Kconfig
@@ -19,4 +19,12 @@  config XGENE_PMU
         help
           Say y if you want to use APM X-Gene SoC performance monitors.
 
+config ARM_SPE_PMU
+	tristate "Enable support for the ARMv8.2 Statistical Profiling Extension"
+	depends on PERF_EVENTS && ARM64
+	help
+	  Enable perf support for the ARMv8.2 Statistical Profiling
+	  Extension, which provides periodic sampling of operations in
+	  the CPU pipeline and reports this via the perf AUX interface.
+
 endmenu
diff --git a/drivers/perf/Makefile b/drivers/perf/Makefile
index b116e982810b..3a324da7d360 100644
--- a/drivers/perf/Makefile
+++ b/drivers/perf/Makefile
@@ -1,2 +1,3 @@ 
 obj-$(CONFIG_ARM_PMU) += arm_pmu.o
 obj-$(CONFIG_XGENE_PMU) += xgene_pmu.o
+obj-$(CONFIG_ARM_SPE_PMU) += arm_spe_pmu.o
diff --git a/drivers/perf/arm_spe_pmu.c b/drivers/perf/arm_spe_pmu.c
new file mode 100644
index 000000000000..88ac10aa24ac
--- /dev/null
+++ b/drivers/perf/arm_spe_pmu.c
@@ -0,0 +1,1247 @@ 
+/*
+ * Perf support for the Statistical Profiling Extension, introduced as
+ * part of ARMv8.2.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ * Copyright (C) 2016 ARM Limited
+ *
+ * Author: Will Deacon <will.deacon@arm.com>
+ */
+
+#define DRVNAME				"arm_spe_pmu"
+#define pr_fmt(fmt)			DRVNAME ": " fmt
+
+#include <linux/cpuhotplug.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/module.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/perf_event.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#include <asm/sysreg.h>
+
+/* ID registers */
+#define PMSIDR_EL1			sys_reg(3, 0, 9, 9, 7)
+#define PMSIDR_EL1_FE_SHIFT		0
+#define PMSIDR_EL1_FT_SHIFT		1
+#define PMSIDR_EL1_FL_SHIFT		2
+#define PMSIDR_EL1_ARCHINST_SHIFT	3
+#define PMSIDR_EL1_LDS_SHIFT		4
+#define PMSIDR_EL1_ERND_SHIFT		5
+#define PMSIDR_EL1_INTERVAL_SHIFT	8
+#define PMSIDR_EL1_INTERVAL_MASK	0xfUL
+#define PMSIDR_EL1_MAXSIZE_SHIFT	12
+#define PMSIDR_EL1_MAXSIZE_MASK		0xfUL
+#define PMSIDR_EL1_COUNTSIZE_SHIFT	16
+#define PMSIDR_EL1_COUNTSIZE_MASK	0xfUL
+
+#define PMBIDR_EL1			sys_reg(3, 0, 9, 10, 7)
+#define PMBIDR_EL1_ALIGN_SHIFT		0
+#define PMBIDR_EL1_ALIGN_MASK		0xfU
+#define PMBIDR_EL1_P_SHIFT		4
+#define PMBIDR_EL1_F_SHIFT		5
+
+/* Sampling controls */
+#define PMSCR_EL1			sys_reg(3, 0, 9, 9, 0)
+#define PMSCR_EL1_E0SPE_SHIFT		0
+#define PMSCR_EL1_E1SPE_SHIFT		1
+#define PMSCR_EL1_CX_SHIFT		3
+#define PMSCR_EL1_PA_SHIFT		4
+#define PMSCR_EL1_TS_SHIFT		5
+#define PMSCR_EL1_PCT_SHIFT		6
+
+#define PMSICR_EL1			sys_reg(3, 0, 9, 9, 2)
+
+#define PMSIRR_EL1			sys_reg(3, 0, 9, 9, 3)
+#define PMSIRR_EL1_RND_SHIFT		0
+#define PMSIRR_EL1_IVAL_MASK		0xffUL
+
+/* Filtering controls */
+#define PMSFCR_EL1			sys_reg(3, 0, 9, 9, 4)
+#define PMSFCR_EL1_FE_SHIFT		0
+#define PMSFCR_EL1_FT_SHIFT		1
+#define PMSFCR_EL1_FL_SHIFT		2
+#define PMSFCR_EL1_B_SHIFT		16
+#define PMSFCR_EL1_LD_SHIFT		17
+#define PMSFCR_EL1_ST_SHIFT		18
+
+#define PMSEVFR_EL1			sys_reg(3, 0, 9, 9, 5)
+#define PMSEVFR_EL1_RES0		0x0000ffff00ff0f55UL
+
+#define PMSLATFR_EL1			sys_reg(3, 0, 9, 9, 6)
+#define PMSLATFR_EL1_MINLAT_SHIFT	0
+
+/* Buffer controls */
+#define PMBLIMITR_EL1			sys_reg(3, 0, 9, 10, 0)
+#define PMBLIMITR_EL1_E_SHIFT		0
+#define PMBLIMITR_EL1_FM_SHIFT		1
+#define PMBLIMITR_EL1_FM_MASK		0x3UL
+#define PMBLIMITR_EL1_FM_STOP_IRQ	(0 << PMBLIMITR_EL1_FM_SHIFT)
+
+#define PMBPTR_EL1			sys_reg(3, 0, 9, 10, 1)
+
+/* Buffer error reporting */
+#define PMBSR_EL1			sys_reg(3, 0, 9, 10, 3)
+#define PMBSR_EL1_COLL_SHIFT		16
+#define PMBSR_EL1_S_SHIFT		17
+#define PMBSR_EL1_EA_SHIFT		18
+#define PMBSR_EL1_DL_SHIFT		19
+#define PMBSR_EL1_EC_SHIFT		26
+#define PMBSR_EL1_EC_MASK		0x3fUL
+
+#define PMBSR_EL1_EC_BUF		(0x0UL << PMBSR_EL1_EC_SHIFT)
+#define PMBSR_EL1_EC_FAULT_S1		(0x24UL << PMBSR_EL1_EC_SHIFT)
+#define PMBSR_EL1_EC_FAULT_S2		(0x25UL << PMBSR_EL1_EC_SHIFT)
+
+#define PMBSR_EL1_FAULT_FSC_SHIFT	0
+#define PMBSR_EL1_FAULT_FSC_MASK	0x3fUL
+
+#define PMBSR_EL1_BUF_BSC_SHIFT		0
+#define PMBSR_EL1_BUF_BSC_MASK		0x3fUL
+
+#define PMBSR_EL1_BUF_BSC_FULL		(0x1UL << PMBSR_EL1_BUF_BSC_SHIFT)
+
+#define psb_csync()			asm volatile("hint #17")
+
+struct arm_spe_pmu_buf {
+	int					nr_pages;
+	bool					snapshot;
+	void					*base;
+};
+
+struct arm_spe_pmu {
+	struct pmu				pmu;
+	struct platform_device			*pdev;
+	cpumask_t				supported_cpus;
+	struct hlist_node			hotplug_node;
+
+	int					irq; /* PPI */
+
+	u16					min_period;
+	u16					cnt_width;
+
+#define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
+#define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
+#define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
+#define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
+#define SPE_PMU_FEAT_LDS			(1UL << 4)
+#define SPE_PMU_FEAT_ERND			(1UL << 5)
+#define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
+	u64					features;
+
+	u16					max_record_sz;
+	u16					align;
+	struct perf_output_handle __percpu	*handle;
+};
+
+#define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
+
+/* Convert a free-running index from perf into an SPE buffer offset */
+#define PERF_IDX2OFF(idx, buf)	((idx) & (((buf)->nr_pages << PAGE_SHIFT) - 1))
+
+/* Convert a limit register into an SPE buffer offset */
+#define PMBLIMITR2OFF(lim, buf)	(((lim) & PAGE_MASK) - (u64)((buf)->base))
+
+/* Keep track of our dynamic hotplug state */
+static enum cpuhp_state arm_spe_pmu_online;
+
+/* This sysfs gunk was really good fun to write. */
+enum arm_spe_pmu_capabilities {
+	SPE_PMU_CAP_ARCH_INST = 0,
+	SPE_PMU_CAP_ERND,
+	SPE_PMU_CAP_FEAT_MAX,
+	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
+	SPE_PMU_CAP_MIN_IVAL,
+};
+
+static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
+	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
+	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
+};
+
+static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
+{
+	if (cap < SPE_PMU_CAP_FEAT_MAX)
+		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
+
+	switch (cap) {
+	case SPE_PMU_CAP_CNT_SZ:
+		return spe_pmu->cnt_width;
+	case SPE_PMU_CAP_MIN_IVAL:
+		return spe_pmu->min_period;
+	default:
+		WARN(1, "unknown cap %d\n", cap);
+	}
+
+	return 0;
+}
+
+static ssize_t arm_spe_pmu_cap_show(struct device *dev,
+				    struct device_attribute *attr,
+				    char *buf)
+{
+	struct platform_device *pdev = to_platform_device(dev);
+	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
+	struct dev_ext_attribute *ea =
+		container_of(attr, struct dev_ext_attribute, attr);
+	int cap = (long)ea->var;
+
+	return snprintf(buf, PAGE_SIZE, "%u\n",
+		arm_spe_pmu_cap_get(spe_pmu, cap));
+}
+
+#define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
+	&((struct dev_ext_attribute[]) {				\
+		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
+	})[0].attr.attr
+
+#define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
+	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
+
+static struct attribute *arm_spe_pmu_cap_attr[] = {
+	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
+	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
+	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
+	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
+	NULL,
+};
+
+static struct attribute_group arm_spe_pmu_cap_group = {
+	.name	= "caps",
+	.attrs	= arm_spe_pmu_cap_attr,
+};
+
+/* User ABI */
+#define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
+#define ATTR_CFG_FLD_ts_enable_LO		0
+#define ATTR_CFG_FLD_ts_enable_HI		0
+#define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
+#define ATTR_CFG_FLD_pa_enable_LO		1
+#define ATTR_CFG_FLD_pa_enable_HI		1
+#define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
+#define ATTR_CFG_FLD_jitter_LO			16
+#define ATTR_CFG_FLD_jitter_HI			16
+#define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
+#define ATTR_CFG_FLD_branch_filter_LO		32
+#define ATTR_CFG_FLD_branch_filter_HI		32
+#define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
+#define ATTR_CFG_FLD_load_filter_LO		33
+#define ATTR_CFG_FLD_load_filter_HI		33
+#define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
+#define ATTR_CFG_FLD_store_filter_LO		34
+#define ATTR_CFG_FLD_store_filter_HI		34
+
+#define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
+#define ATTR_CFG_FLD_event_filter_LO		0
+#define ATTR_CFG_FLD_event_filter_HI		63
+
+#define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
+#define ATTR_CFG_FLD_min_latency_LO		0
+#define ATTR_CFG_FLD_min_latency_HI		11
+
+/* Why does everything I do descend into this? */
+#define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
+	(lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
+
+#define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
+	__GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
+
+#define GEN_PMU_FORMAT_ATTR(name)					\
+	PMU_FORMAT_ATTR(name,						\
+	_GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,			\
+			     ATTR_CFG_FLD_##name##_LO,			\
+			     ATTR_CFG_FLD_##name##_HI))
+
+#define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)				\
+	((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
+
+#define ATTR_CFG_GET_FLD(attr, name)					\
+	_ATTR_CFG_GET_FLD(attr,						\
+			  ATTR_CFG_FLD_##name##_CFG,			\
+			  ATTR_CFG_FLD_##name##_LO,			\
+			  ATTR_CFG_FLD_##name##_HI)
+
+GEN_PMU_FORMAT_ATTR(ts_enable);
+GEN_PMU_FORMAT_ATTR(pa_enable);
+GEN_PMU_FORMAT_ATTR(jitter);
+GEN_PMU_FORMAT_ATTR(load_filter);
+GEN_PMU_FORMAT_ATTR(store_filter);
+GEN_PMU_FORMAT_ATTR(branch_filter);
+GEN_PMU_FORMAT_ATTR(event_filter);
+GEN_PMU_FORMAT_ATTR(min_latency);
+
+static struct attribute *arm_spe_pmu_formats_attr[] = {
+	&format_attr_ts_enable.attr,
+	&format_attr_pa_enable.attr,
+	&format_attr_jitter.attr,
+	&format_attr_load_filter.attr,
+	&format_attr_store_filter.attr,
+	&format_attr_branch_filter.attr,
+	&format_attr_event_filter.attr,
+	&format_attr_min_latency.attr,
+	NULL,
+};
+
+static struct attribute_group arm_spe_pmu_format_group = {
+	.name	= "format",
+	.attrs	= arm_spe_pmu_formats_attr,
+};
+
+static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
+					    struct device_attribute *attr,
+					    char *buf)
+{
+	struct platform_device *pdev = to_platform_device(dev);
+	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
+
+	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
+}
+static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
+
+static struct attribute *arm_spe_pmu_attrs[] = {
+	&dev_attr_cpumask.attr,
+	NULL,
+};
+
+static struct attribute_group arm_spe_pmu_group = {
+	.attrs	= arm_spe_pmu_attrs,
+};
+
+static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
+	&arm_spe_pmu_group,
+	&arm_spe_pmu_cap_group,
+	&arm_spe_pmu_format_group,
+	NULL,
+};
+
+/* Convert between user ABI and register values */
+static u64 arm_spe_event_to_pmscr(struct perf_event *event)
+{
+	struct perf_event_attr *attr = &event->attr;
+	u64 reg = 0;
+
+	reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << PMSCR_EL1_TS_SHIFT;
+	reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << PMSCR_EL1_PA_SHIFT;
+
+	if (!attr->exclude_user)
+		reg |= BIT(PMSCR_EL1_E0SPE_SHIFT);
+
+	if (!attr->exclude_kernel)
+		reg |= BIT(PMSCR_EL1_E1SPE_SHIFT);
+
+	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR))
+		reg |= BIT(PMSCR_EL1_CX_SHIFT);
+
+	return reg;
+}
+
+static void arm_spe_event_sanitise_period(struct perf_event *event)
+{
+	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
+	u64 period = event->hw.sample_period & ~PMSIRR_EL1_IVAL_MASK;
+
+	if (period < spe_pmu->min_period)
+		period = spe_pmu->min_period;
+
+	event->hw.sample_period = period;
+}
+
+static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
+{
+	struct perf_event_attr *attr = &event->attr;
+	u64 reg = 0;
+
+	arm_spe_event_sanitise_period(event);
+
+	reg |= ATTR_CFG_GET_FLD(attr, jitter) << PMSIRR_EL1_RND_SHIFT;
+	reg |= event->hw.sample_period;
+
+	return reg;
+}
+
+static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
+{
+	struct perf_event_attr *attr = &event->attr;
+	u64 reg = 0;
+
+	reg |= ATTR_CFG_GET_FLD(attr, load_filter) << PMSFCR_EL1_LD_SHIFT;
+	reg |= ATTR_CFG_GET_FLD(attr, store_filter) << PMSFCR_EL1_ST_SHIFT;
+	reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << PMSFCR_EL1_B_SHIFT;
+
+	if (reg)
+		reg |= BIT(PMSFCR_EL1_FT_SHIFT);
+
+	if (ATTR_CFG_GET_FLD(attr, event_filter))
+		reg |= BIT(PMSFCR_EL1_FE_SHIFT);
+
+	if (ATTR_CFG_GET_FLD(attr, min_latency))
+		reg |= BIT(PMSFCR_EL1_FL_SHIFT);
+
+	return reg;
+}
+
+static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
+{
+	struct perf_event_attr *attr = &event->attr;
+	return ATTR_CFG_GET_FLD(attr, event_filter);
+}
+
+static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
+{
+	struct perf_event_attr *attr = &event->attr;
+	return ATTR_CFG_GET_FLD(attr, min_latency) << PMSLATFR_EL1_MINLAT_SHIFT;
+}
+
+static bool arm_spe_pmu_buffer_mgmt_pending(u64 pmbsr)
+{
+	const char *err_str;
+
+	/* Service required? */
+	if (!(pmbsr & BIT(PMBSR_EL1_S_SHIFT)))
+		return false;
+
+	/* We only expect buffer management events */
+	switch (pmbsr & (PMBSR_EL1_EC_MASK << PMBSR_EL1_EC_SHIFT)) {
+	case PMBSR_EL1_EC_BUF:
+		/* Handled below */
+		break;
+	case PMBSR_EL1_EC_FAULT_S1:
+	case PMBSR_EL1_EC_FAULT_S2:
+		err_str = "Unexpected buffer fault";
+		goto out_err;
+	default:
+		err_str = "Unknown error code";
+		goto out_err;
+	}
+
+	/* Buffer management event */
+	switch (pmbsr & (PMBSR_EL1_BUF_BSC_MASK << PMBSR_EL1_BUF_BSC_SHIFT)) {
+	case PMBSR_EL1_BUF_BSC_FULL:
+		return true;
+	default:
+		err_str = "Unknown buffer status code";
+	}
+
+out_err:
+	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%08llx]\n", err_str,
+			   smp_processor_id(), pmbsr);
+	return false;
+}
+
+static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
+{
+	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
+	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
+	u64 head = PERF_IDX2OFF(handle->head, buf);
+	u64 limit = buf->nr_pages * PAGE_SIZE;
+
+	/*
+	 * The trace format isn't parseable in reverse, so clamp
+	 * the limit to half of the buffer size in snapshot mode
+	 * so that the worst case is half a buffer of records, as
+	 * opposed to a single record.
+	 */
+	if (head < limit >> 1)
+		limit >>= 1;
+
+	/*
+	 * If we're within max_record_sz of the limit, we must
+	 * pad, move the head index and recompute the limit.
+	 */
+	if (limit - head < spe_pmu->max_record_sz) {
+		memset(buf->base + head, 0, limit - head);
+		handle->head = PERF_IDX2OFF(limit, buf);
+		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
+	}
+
+	return limit;
+}
+
+static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
+{
+	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
+	u64 head = PERF_IDX2OFF(handle->head, buf);
+	u64 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
+	u64 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
+	u64 limit = buf->nr_pages * PAGE_SIZE;
+
+	/*
+	 * Set the limit pointer to either the watermark or the
+	 * current tail pointer; whichever comes first.
+	 */
+	if (handle->head + handle->size <= handle->wakeup) {
+		/* The tail is next, so check for wrapping */
+		if (tail >= head) {
+			/*
+			 * No wrapping, but need to align downwards to
+			 * avoid corrupting unconsumed data.
+			 */
+			limit = round_down(tail, PAGE_SIZE);
+
+		}
+	} else if (wakeup >= head) {
+		/*
+		 * The wakeup is next and doesn't wrap. Align upwards to
+		 * ensure that we do indeed reach the watermark.
+		 */
+		limit = round_up(wakeup, PAGE_SIZE);
+
+		/*
+		 * If rounding up crosses the tail, then we have to
+		 * round down to avoid corrupting unconsumed data.
+		 * Hopefully the tail will have moved by the time we
+		 * hit the new limit.
+		 */
+		if (wakeup < tail && limit > tail)
+			limit = round_down(wakeup, PAGE_SIZE);
+	}
+
+	/*
+	 * If rounding down crosses the head, then the buffer is full,
+	 * so pad to tail and end the session.
+	 */
+	if (limit <= head) {
+		memset(buf->base + head, 0, handle->size);
+		perf_aux_output_skip(handle, handle->size);
+		perf_aux_output_end(handle, 0, PERF_AUX_FLAG_TRUNCATED);
+		limit = 0;
+	}
+
+	return limit;
+}
+
+static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
+{
+	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
+	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
+	u64 limit = __arm_spe_pmu_next_off(handle);
+	u64 head = PERF_IDX2OFF(handle->head, buf);
+
+	/*
+	 * If the head has come too close to the end of the buffer,
+	 * then pad to the end and recompute the limit.
+	 */
+	if (limit && (limit - head < spe_pmu->max_record_sz)) {
+		memset(buf->base + head, 0, limit - head);
+		perf_aux_output_skip(handle, limit - head);
+		limit = __arm_spe_pmu_next_off(handle);
+	}
+
+	return limit;
+}
+
+static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
+					  struct perf_event *event)
+{
+	u64 base, limit;
+	struct arm_spe_pmu_buf *buf;
+
+	/* Start a new aux session */
+	buf = perf_aux_output_begin(handle, event);
+	if (!buf) {
+		event->hw.state |= PERF_HES_STOPPED;
+		/*
+		 * We still need to clear the limit pointer, since the
+		 * profiler might only be disabled by virtue of a fault.
+		 */
+		limit = 0;
+		goto out_write_limit;
+	}
+
+	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
+			      : arm_spe_pmu_next_off(handle);
+	if (limit)
+		limit |= BIT(PMBLIMITR_EL1_E_SHIFT);
+
+	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
+	write_sysreg_s(base, PMBPTR_EL1);
+	limit += (u64)buf->base;
+
+out_write_limit:
+	write_sysreg_s(limit, PMBLIMITR_EL1);
+}
+
+static bool arm_spe_perf_aux_output_end(struct perf_output_handle *handle,
+					struct perf_event *event,
+					bool resume)
+{
+	u64 pmbptr, pmbsr, offset, size;
+	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
+	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
+	bool truncated, collided;
+
+	/*
+	 * We can be called via IRQ work trying to disable the PMU after
+	 * a buffer full event. In this case, the aux session has already
+	 * been stopped, so there's nothing to do here.
+	 */
+	if (!buf)
+		return false;
+
+	/*
+	 * Work out how much data has been written since the last update
+	 * to the head index.
+	 */
+	pmbptr = round_down(read_sysreg_s(PMBPTR_EL1), spe_pmu->align);
+	offset = pmbptr - (u64)buf->base;
+	size = offset - PERF_IDX2OFF(handle->head, buf);
+
+	if (buf->snapshot)
+		handle->head = offset;
+
+	/*
+	 * If there isn't a pending management event and we're not stopping
+	 * the current session, then just leave everything alone.
+	 */
+	pmbsr = read_sysreg_s(PMBSR_EL1);
+	if (!arm_spe_pmu_buffer_mgmt_pending(pmbsr) && resume)
+		return false; /* Spurious IRQ */
+
+	/*
+	 * Either the buffer is full or we're stopping the session. Check
+	 * that we didn't write a partial record, since this can result
+	 * in unparseable trace and we must disable the event.
+	 */
+	collided = pmbsr & BIT(PMBSR_EL1_COLL_SHIFT);
+	truncated = pmbsr & BIT(PMBSR_EL1_DL_SHIFT);
+	perf_aux_output_end(handle, size,
+			   (truncated ? PERF_AUX_FLAG_TRUNCATED : 0) |
+			   (collided ? PERF_AUX_FLAG_COLLISION : 0));
+
+	/*
+	 * If we're not resuming the session, then we can clear the fault
+	 * and we're done, otherwise we need to start a new session.
+	 */
+	if (!resume)
+		write_sysreg_s(0, PMBSR_EL1);
+	else if (!truncated)
+		arm_spe_perf_aux_output_begin(handle, event);
+
+	return true;
+}
+
+/* IRQ handling */
+static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
+{
+	struct perf_output_handle *handle = dev;
+
+	if (!perf_get_aux(handle))
+		return IRQ_NONE;
+
+	if (!arm_spe_perf_aux_output_end(handle, handle->event, true))
+		return IRQ_NONE;
+
+	irq_work_run();
+	isb(); /* Ensure the buffer is disabled if data loss has occurred */
+	write_sysreg_s(0, PMBSR_EL1);
+	return IRQ_HANDLED;
+}
+
+/* Perf callbacks */
+static int arm_spe_pmu_event_init(struct perf_event *event)
+{
+	u64 reg;
+	struct perf_event_attr *attr = &event->attr;
+	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
+
+	/* This is, of course, deeply driver-specific */
+	if (attr->type != event->pmu->type)
+		return -ENOENT;
+
+	if (event->cpu >= 0 &&
+	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
+		return -ENOENT;
+
+	if (arm_spe_event_to_pmsevfr(event) & PMSEVFR_EL1_RES0)
+		return -EOPNOTSUPP;
+
+	if (event->hw.sample_period < spe_pmu->min_period ||
+	    event->hw.sample_period & PMSIRR_EL1_IVAL_MASK)
+		return -EOPNOTSUPP;
+
+	if (attr->exclude_idle)
+		return -EOPNOTSUPP;
+
+	/*
+	 * Feedback-directed frequency throttling doesn't work when we
+	 * have a buffer of samples. We'd need to manually count the
+	 * samples in the buffer when it fills up and adjust the event
+	 * count to reflect that. Instead, force the user to specify a
+	 * sample period instead.
+	 */
+	if (attr->freq)
+		return -EINVAL;
+
+	if (is_kernel_in_hyp_mode()) {
+		if (attr->exclude_kernel != attr->exclude_hv)
+			return -EOPNOTSUPP;
+	} else if (!attr->exclude_hv) {
+		return -EOPNOTSUPP;
+	}
+
+	reg = arm_spe_event_to_pmsfcr(event);
+	if ((reg & BIT(PMSFCR_EL1_FE_SHIFT)) &&
+	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
+		return -EOPNOTSUPP;
+
+	if ((reg & BIT(PMSFCR_EL1_FT_SHIFT)) &&
+	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
+		return -EOPNOTSUPP;
+
+	if ((reg & BIT(PMSFCR_EL1_FL_SHIFT)) &&
+	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
+		return -EOPNOTSUPP;
+
+	return 0;
+}
+
+static void arm_spe_pmu_start(struct perf_event *event, int flags)
+{
+	u64 reg;
+	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
+	struct hw_perf_event *hwc = &event->hw;
+	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
+
+	hwc->state = 0;
+	arm_spe_perf_aux_output_begin(handle, event);
+	if (hwc->state)
+		return;
+
+	reg = arm_spe_event_to_pmsfcr(event);
+	write_sysreg_s(reg, PMSFCR_EL1);
+
+	reg = arm_spe_event_to_pmsevfr(event);
+	write_sysreg_s(reg, PMSEVFR_EL1);
+
+	reg = arm_spe_event_to_pmslatfr(event);
+	write_sysreg_s(reg, PMSLATFR_EL1);
+
+	if (flags & PERF_EF_RELOAD) {
+		reg = arm_spe_event_to_pmsirr(event);
+		write_sysreg_s(reg, PMSIRR_EL1);
+		isb();
+		reg = local64_read(&hwc->period_left);
+		write_sysreg_s(reg, PMSICR_EL1);
+	}
+
+	reg = arm_spe_event_to_pmscr(event);
+	isb();
+	write_sysreg_s(reg, PMSCR_EL1);
+}
+
+static void arm_spe_pmu_disable_and_drain_local(void)
+{
+	/* Disable profiling at EL0 and EL1 */
+	write_sysreg_s(0, PMSCR_EL1);
+	isb();
+
+	/* Drain any buffered data */
+	psb_csync();
+	dsb(nsh);
+
+	/* Disable the profiling buffer */
+	write_sysreg_s(0, PMBLIMITR_EL1);
+}
+
+static void arm_spe_pmu_stop(struct perf_event *event, int flags)
+{
+	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
+	struct hw_perf_event *hwc = &event->hw;
+	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
+
+	/* If we're already stopped, then nothing to do */
+	if (hwc->state & PERF_HES_STOPPED)
+		return;
+
+	/* Stop all trace generation */
+	arm_spe_pmu_disable_and_drain_local();
+
+	if (flags & PERF_EF_UPDATE) {
+		/* Ensure hardware updates to PMBPTR_EL1 are visible */
+		isb();
+		arm_spe_perf_aux_output_end(handle, event, false);
+		/*
+		 * This may also contain ECOUNT, but nobody else should
+		 * be looking at period_left, since we forbid frequency
+		 * based sampling.
+		 */
+		local64_set(&hwc->period_left, read_sysreg_s(PMSICR_EL1));
+		hwc->state |= PERF_HES_UPTODATE;
+	}
+
+	hwc->state |= PERF_HES_STOPPED;
+}
+
+static int arm_spe_pmu_add(struct perf_event *event, int flags)
+{
+	int ret = 0;
+	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
+	struct hw_perf_event *hwc = &event->hw;
+	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
+
+	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
+		return -ENOENT;
+
+	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
+
+	if (flags & PERF_EF_START) {
+		arm_spe_pmu_start(event, PERF_EF_RELOAD);
+		if (hwc->state & PERF_HES_STOPPED)
+			ret = -EINVAL;
+	}
+
+	return ret;
+}
+
+static void arm_spe_pmu_del(struct perf_event *event, int flags)
+{
+	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
+}
+
+static void arm_spe_pmu_read(struct perf_event *event)
+{
+}
+
+static void *arm_spe_pmu_setup_aux(int cpu, void **pages, int nr_pages,
+				   bool snapshot)
+{
+	int i;
+	struct page **pglist;
+	struct arm_spe_pmu_buf *buf;
+
+	/*
+	 * We require an even number of pages for snapshot mode, so that
+	 * we can effectively treat the buffer as consisting of two equal
+	 * parts and give userspace a fighting chance of getting some
+	 * useful data out of it.
+	 */
+	if (!nr_pages || (snapshot && (nr_pages & 1)))
+		return NULL;
+
+	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
+	if (!buf)
+		return NULL;
+
+	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
+	if (!pglist)
+		goto out_free_buf;
+
+	for (i = 0; i < nr_pages; ++i) {
+		struct page *page = virt_to_page(pages[i]);
+
+		if (PagePrivate(page)) {
+			pr_warn("unexpected high-order page for auxbuf!");
+			goto out_free_pglist;
+		}
+
+		pglist[i] = virt_to_page(pages[i]);
+	}
+
+	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
+	if (!buf->base)
+		goto out_free_pglist;
+
+	buf->nr_pages	= nr_pages;
+	buf->snapshot	= snapshot;
+
+	kfree(pglist);
+	return buf;
+
+out_free_pglist:
+	kfree(pglist);
+out_free_buf:
+	kfree(buf);
+	return NULL;
+}
+
+static void arm_spe_pmu_free_aux(void *aux)
+{
+	struct arm_spe_pmu_buf *buf = aux;
+
+	vunmap(buf->base);
+	kfree(buf);
+}
+
+/* Initialisation and teardown functions */
+static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
+{
+	static atomic_t pmu_idx = ATOMIC_INIT(-1);
+
+	int idx;
+	char *name;
+	struct device *dev = &spe_pmu->pdev->dev;
+
+	spe_pmu->pmu = (struct pmu) {
+		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
+		.attr_groups	= arm_spe_pmu_attr_groups,
+		/*
+		 * We hitch a ride on the software context here, so that
+		 * we can support per-task profiling (which is not possible
+		 * with the invalid context as it doesn't get sched callbacks).
+		 * This requires that userspace either uses a dummy event for
+		 * perf_event_open, since the aux buffer is not setup until
+		 * a subsequent mmap, or creates the profiling event in a
+		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
+		 * once the buffer has been created.
+		 */
+		.task_ctx_nr	= perf_sw_context,
+		.event_init	= arm_spe_pmu_event_init,
+		.add		= arm_spe_pmu_add,
+		.del		= arm_spe_pmu_del,
+		.start		= arm_spe_pmu_start,
+		.stop		= arm_spe_pmu_stop,
+		.read		= arm_spe_pmu_read,
+		.setup_aux	= arm_spe_pmu_setup_aux,
+		.free_aux	= arm_spe_pmu_free_aux,
+	};
+
+	idx = atomic_inc_return(&pmu_idx);
+	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", DRVNAME, idx);
+	return perf_pmu_register(&spe_pmu->pmu, name, -1);
+}
+
+static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
+{
+	perf_pmu_unregister(&spe_pmu->pmu);
+}
+
+static void __arm_spe_pmu_dev_probe(void *info)
+{
+	int fld;
+	u64 reg;
+	struct arm_spe_pmu *spe_pmu = info;
+	struct device *dev = &spe_pmu->pdev->dev;
+
+	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
+						   ID_AA64DFR0_PMSVER_SHIFT);
+	if (!fld) {
+		dev_err(dev,
+			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
+			fld, smp_processor_id());
+		return;
+	}
+
+	/* Read PMBIDR first to determine whether or not we have access */
+	reg = read_sysreg_s(PMBIDR_EL1);
+	if (reg & BIT(PMBIDR_EL1_P_SHIFT)) {
+		dev_err(dev,
+			"profiling buffer owned by higher exception level\n");
+		return;
+	}
+
+	/* Minimum alignment. If it's out-of-range, then fail the probe */
+	fld = reg >> PMBIDR_EL1_ALIGN_SHIFT & PMBIDR_EL1_ALIGN_MASK;
+	spe_pmu->align = 1 << fld;
+	if (spe_pmu->align > SZ_2K) {
+		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
+			fld, smp_processor_id());
+		return;
+	}
+
+	/* It's now safe to read PMSIDR and figure out what we've got */
+	reg = read_sysreg_s(PMSIDR_EL1);
+	if (reg & BIT(PMSIDR_EL1_FE_SHIFT))
+		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
+
+	if (reg & BIT(PMSIDR_EL1_FT_SHIFT))
+		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
+
+	if (reg & BIT(PMSIDR_EL1_FL_SHIFT))
+		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
+
+	if (reg & BIT(PMSIDR_EL1_ARCHINST_SHIFT))
+		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
+
+	if (reg & BIT(PMSIDR_EL1_LDS_SHIFT))
+		spe_pmu->features |= SPE_PMU_FEAT_LDS;
+
+	if (reg & BIT(PMSIDR_EL1_ERND_SHIFT))
+		spe_pmu->features |= SPE_PMU_FEAT_ERND;
+
+	/* This field has a spaced out encoding, so just use a look-up */
+	fld = reg >> PMSIDR_EL1_INTERVAL_SHIFT & PMSIDR_EL1_INTERVAL_MASK;
+	switch (fld) {
+	case 0:
+		spe_pmu->min_period = 256;
+		break;
+	case 2:
+		spe_pmu->min_period = 512;
+		break;
+	case 3:
+		spe_pmu->min_period = 768;
+		break;
+	case 4:
+		spe_pmu->min_period = 1024;
+		break;
+	case 5:
+		spe_pmu->min_period = 1536;
+		break;
+	case 6:
+		spe_pmu->min_period = 2048;
+		break;
+	case 7:
+		spe_pmu->min_period = 3072;
+		break;
+	default:
+		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
+			 fld);
+		/* Fallthrough */
+	case 8:
+		spe_pmu->min_period = 4096;
+	}
+
+	/* Maximum record size. If it's out-of-range, then fail the probe */
+	fld = reg >> PMSIDR_EL1_MAXSIZE_SHIFT & PMSIDR_EL1_MAXSIZE_MASK;
+	spe_pmu->max_record_sz = 1 << fld;
+	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
+		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
+			fld, smp_processor_id());
+		return;
+	}
+
+	fld = reg >> PMSIDR_EL1_COUNTSIZE_SHIFT & PMSIDR_EL1_COUNTSIZE_MASK;
+	switch (fld) {
+	default:
+		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
+			 fld);
+		/* Fallthrough */
+	case 2:
+		spe_pmu->cnt_width = 12;
+	}
+
+	dev_info(dev,
+		 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
+		 cpumask_pr_args(&spe_pmu->supported_cpus),
+		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
+
+	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
+	return;
+}
+
+static void __arm_spe_pmu_reset_local(void)
+{
+	/*
+	 * This is probably overkill, as we have no idea where we're
+	 * draining any buffered data to...
+	 */
+	arm_spe_pmu_disable_and_drain_local();
+
+	/* Reset the buffer base pointer */
+	write_sysreg_s(0, PMBPTR_EL1);
+	isb();
+
+	/* Clear any pending management interrupts */
+	write_sysreg_s(0, PMBSR_EL1);
+	isb();
+}
+
+static void __arm_spe_pmu_setup_one(void *info)
+{
+	struct arm_spe_pmu *spe_pmu = info;
+
+	__arm_spe_pmu_reset_local();
+	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
+}
+
+static void __arm_spe_pmu_stop_one(void *info)
+{
+	struct arm_spe_pmu *spe_pmu = info;
+
+	disable_percpu_irq(spe_pmu->irq);
+	__arm_spe_pmu_reset_local();
+}
+
+static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
+{
+	struct arm_spe_pmu *spe_pmu;
+
+	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
+	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
+		return 0;
+
+	__arm_spe_pmu_setup_one(spe_pmu);
+	return 0;
+}
+
+static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
+{
+	struct arm_spe_pmu *spe_pmu;
+
+	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
+	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
+		return 0;
+
+	__arm_spe_pmu_stop_one(spe_pmu);
+	return 0;
+}
+
+static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
+{
+	int ret;
+	cpumask_t *mask = &spe_pmu->supported_cpus;
+
+	/* Keep the hotplug state steady whilst we probe */
+	get_online_cpus();
+
+	/* Make sure we probe the hardware on a relevant CPU */
+	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
+	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) {
+		ret = -ENXIO;
+		goto out_put_cpus;
+	}
+
+	/* Request our PPIs (note that the IRQ is still disabled) */
+	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
+				 spe_pmu->handle);
+	if (ret)
+		goto out_put_cpus;
+
+	/* Setup the CPUs in our mask -- this enables the IRQ */
+	on_each_cpu_mask(mask, __arm_spe_pmu_setup_one, spe_pmu, 1);
+
+	/* Register our hotplug notifier now so we don't miss any events */
+	ret = cpuhp_state_add_instance_nocalls(arm_spe_pmu_online,
+					       &spe_pmu->hotplug_node);
+out_put_cpus:
+	put_online_cpus();
+	return ret;
+}
+
+/* Driver and device probing */
+static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
+{
+	struct platform_device *pdev = spe_pmu->pdev;
+	int irq = platform_get_irq(pdev, 0);
+
+	if (irq < 0) {
+		dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
+		return -ENXIO;
+	}
+
+	if (!irq_is_percpu(irq)) {
+		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
+		return -EINVAL;
+	}
+
+	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
+		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
+		return -EINVAL;
+	}
+
+	spe_pmu->irq = irq;
+	return 0;
+}
+
+static const struct of_device_id arm_spe_pmu_of_match[] = {
+	{ .compatible = "arm,arm-spe-pmu-v1", .data = (void *)1 },
+};
+
+static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
+{
+	int ret;
+	struct arm_spe_pmu *spe_pmu;
+	struct device *dev = &pdev->dev;
+
+	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
+	if (!spe_pmu) {
+		dev_err(dev, "failed to allocate spe_pmu\n");
+		return -ENOMEM;
+	}
+
+	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
+	if (!spe_pmu->handle)
+		return -ENOMEM;
+
+	spe_pmu->pdev = pdev;
+	platform_set_drvdata(pdev, spe_pmu);
+
+	ret = arm_spe_pmu_irq_probe(spe_pmu);
+	if (ret)
+		goto out_free_handle;
+
+	ret = arm_spe_pmu_dev_init(spe_pmu);
+	if (ret)
+		goto out_free_handle;
+
+	ret = arm_spe_pmu_perf_init(spe_pmu);
+	if (ret)
+		goto out_free_handle;
+
+	return 0;
+
+out_free_handle:
+	free_percpu(spe_pmu->handle);
+	return ret;
+}
+
+static int arm_spe_pmu_device_remove(struct platform_device *pdev)
+{
+	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
+	cpumask_t *mask = &spe_pmu->supported_cpus;
+
+	arm_spe_pmu_perf_destroy(spe_pmu);
+
+	get_online_cpus();
+	cpuhp_state_remove_instance_nocalls(arm_spe_pmu_online,
+					    &spe_pmu->hotplug_node);
+	on_each_cpu_mask(mask, __arm_spe_pmu_stop_one, spe_pmu, 1);
+	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
+	free_percpu(spe_pmu->handle);
+	put_online_cpus();
+
+	return 0;
+}
+
+static struct platform_driver arm_spe_pmu_driver = {
+	.driver	= {
+		.name		= DRVNAME,
+		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
+	},
+	.probe	= arm_spe_pmu_device_dt_probe,
+	.remove	= arm_spe_pmu_device_remove,
+};
+
+static int __init arm_spe_pmu_init(void)
+{
+	int ret;
+
+	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
+				      arm_spe_pmu_cpu_startup,
+				      arm_spe_pmu_cpu_teardown);
+	if (ret < 0)
+		return ret;
+	arm_spe_pmu_online = ret;
+
+	ret = platform_driver_register(&arm_spe_pmu_driver);
+	if (ret)
+		cpuhp_remove_multi_state(arm_spe_pmu_online);
+
+	return ret;
+}
+
+static void __exit arm_spe_pmu_exit(void)
+{
+	platform_driver_unregister(&arm_spe_pmu_driver);
+	cpuhp_remove_multi_state(arm_spe_pmu_online);
+}
+
+module_init(arm_spe_pmu_init);
+module_exit(arm_spe_pmu_exit);
+
+MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
+MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
+MODULE_LICENSE("GPL v2");