diff mbox

[libgfortran] PR51119 - MATMUL slow for large matrices

Message ID 2aad89ce-02e1-45bf-0bdc-d318e7995595@charter.net
State New
Headers show

Commit Message

Jerry DeLisle Nov. 14, 2016, 12:08 a.m. UTC
Hi all,

Attached patch implements a fast blocked matrix multiply. The basic algorithm is 
derived from netlib.org tuned blas dgemm. See matmul.m4 for reference.

The matmul() function is compiled with -Ofast -funroll-loops. This can be 
customized further if there is an undesired optimization being used. This is 
accomplished using #pragma optimize ( string ).

My results on 3.8 GHz machine with single core:

$ gfc -Ofast -funroll-loops -finline-matmul-limit=32 compare.f90
$ ./a.out
  =========================================================
  ================            MEASURED GIGAFLOPS          =
  =========================================================
                  Matmul                           Matmul
                  fixed                 Matmul     variable
  Size  Loops     explicit   refMatmul  assumed    explicit
  =========================================================
     2  2000     23.810      0.058      0.116      0.191
     4  2000      1.979      0.294      0.437      0.421
     8  2000      3.089      0.826      0.928      0.993
    16  2000      4.115      3.262      2.600      3.381
    32  2000      6.066      5.201      3.008      4.873
    64  2000      6.596      4.847      6.624      6.603
   128  2000      8.389      5.965      8.370      8.375
   256   477      9.520      6.003      9.449      9.452
   512    59      8.563      2.783      8.359      8.500
  1024     7      8.672      1.537      8.457      8.604
  2048     1      8.586      1.753      8.371      8.511

Results may vary, but I found 32 is the right place to set the limit on inlining.

Regression tested on x86-64-linux power8 (gcc112)

Special thanks to Thomas for helping me test and debug. An additional test case 
as well.

OK for trunk?

Best regards,

Jerry


2016-11-09  Jerry DeLisle  <jvdelisle@gcc.gnu.org>
	    Thomas Koenig  <tkoenig@gcc.gnu.org>

	PR libgfortran/51119
	* m4/matmul.m4: For the case of all strides = 1, implement a
	fast blocked matrix multiply. Fix some whitespace.
	* generated/matmul_c10.c: Regenerate.
	* generated/matmul_c16.c: Regenerate.
	* generated/matmul_c4.c: Regenerate.
	* generated/matmul_c8.c: Regenerate.
	* generated/matmul_i1.c: Regenerate.
	* generated/matmul_i16.c: Regenerate.
	* generated/matmul_i2.c: Regenerate.
	* generated/matmul_i4.c: Regenerate.
	* generated/matmul_i8.c: Regenerate.
	* generated/matmul_r10.c: Regenerate.
	* generated/matmul_r16.c: Regenerate.
	* generated/matmul_r4.c: Regenerate.
	* generated/matmul_r8.c: Regenerate.

Comments

Steve Kargl Nov. 14, 2016, 12:55 a.m. UTC | #1
On Sun, Nov 13, 2016 at 04:08:50PM -0800, Jerry DeLisle wrote:
> Hi all,

> 

> Attached patch implements a fast blocked matrix multiply. The basic algorithm is 

> derived from netlib.org tuned blas dgemm. See matmul.m4 for reference.

> 

> The matmul() function is compiled with -Ofast -funroll-loops. This can be 

> customized further if there is an undesired optimization being used. This is 

> accomplished using #pragma optimize ( string ).

> 


Did you run any tests with '--param max-unroll-times=4' where
the 4 could be something other than 4.  On troutmask, with my
code I've found that 4 seems to work the best with -funroll-loops.

-- 
Steve
Jerry DeLisle Nov. 14, 2016, 1:01 a.m. UTC | #2
On 11/13/2016 04:55 PM, Steve Kargl wrote:
> On Sun, Nov 13, 2016 at 04:08:50PM -0800, Jerry DeLisle wrote:

>> Hi all,

>>

>> Attached patch implements a fast blocked matrix multiply. The basic algorithm is

>> derived from netlib.org tuned blas dgemm. See matmul.m4 for reference.

>>

>> The matmul() function is compiled with -Ofast -funroll-loops. This can be

>> customized further if there is an undesired optimization being used. This is

>> accomplished using #pragma optimize ( string ).

>>

>

> Did you run any tests with '--param max-unroll-times=4' where

> the 4 could be something other than 4.  On troutmask, with my

> code I've found that 4 seems to work the best with -funroll-loops.

>


Have not tried this, will give it a try. Also, I have not tested on your FreeBSD 
machine yet.

Jerry
Thomas Koenig Nov. 14, 2016, 7:03 a.m. UTC | #3
Hi Jerry,

I think this

+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;

should be

+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;

Regarding options for matmul:  It is possible to add the
options to the lines in Makefile.in

# Turn on vectorization and loop unrolling for matmul.
$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += 
-ftree-vectorize -funroll-loops

This is a great step forward.  I think we can close most matmul-related
PRs once this patch has been applied.

Regards

	Thomas
Thomas Koenig Nov. 15, 2016, 7:22 a.m. UTC | #4
Hi Jerry,

> With these changes, OK for trunk?


Just going over this with a fine comb...

One thing just struck me:   The loop variables should be index_type, so

       const index_type m = xcount, n = ycount, k = count;

[...]

    index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
	      i3, i4, i5, i6;

       /* Local variables */
       GFC_REAL_4 t1[65536], /* was [256][256] */
		 f11, f12, f21, f22, f31, f32, f41, f42,
		 f13, f14, f23, f24, f33, f34, f43, f44;
       index_type i, j, l, ii, jj, ll;
       index_type isec, jsec, lsec, uisec, ujsec, ulsec;

I agree that we should do the tuning of the inline limit
separately.

When we do that, we should think about -Os.  With the buffering, we have
much more memory usage in the library function.  If -Os is in force,
we should also consider raising the limit for inlining.

Since I was involved in the development, I would like to give others a
few days to raise more comments.  If there are none, OK to commit with
the above change within a few days. Of course, somebody else might also
OK this patch :-)

Regards

	Thomas
Richard Biener Nov. 15, 2016, 8:21 a.m. UTC | #5
On Mon, Nov 14, 2016 at 11:13 PM, Jerry DeLisle <jvdelisle@charter.net> wrote:
> On 11/13/2016 11:03 PM, Thomas Koenig wrote:

>>

>> Hi Jerry,

>>

>> I think this

>>

>> +      /* Parameter adjustments */

>> +      c_dim1 = m;

>> +      c_offset = 1 + c_dim1;

>>

>> should be

>>

>> +      /* Parameter adjustments */

>> +      c_dim1 = rystride;

>> +      c_offset = 1 + c_dim1;

>>

>> Regarding options for matmul:  It is possible to add the

>> options to the lines in Makefile.in

>>

>> # Turn on vectorization and loop unrolling for matmul.

>> $(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS +=

>> -ftree-vectorize

>> -funroll-loops

>>

>> This is a great step forward.  I think we can close most matmul-related

>> PRs once this patch has been applied.

>>

>> Regards

>>

>>     Thomas

>>

>

> With Thomas suggestion, I can remove the #pragma optimize from the source

> code. Doing this: (long lines wrapped as shown)

>

> diff --git a/libgfortran/Makefile.am b/libgfortran/Makefile.am

> index 39d3e11..9ee17f9 100644

> --- a/libgfortran/Makefile.am

> +++ b/libgfortran/Makefile.am

> @@ -850,7 +850,7 @@ intrinsics/dprod_r8.f90 \

>  intrinsics/f2c_specifics.F90

>

>  # Turn on vectorization and loop unrolling for matmul.

> -$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ftree-vectorize

> -funroll-loops

> +$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ffast-math

> -fno-protect-parens -fstack-arrays -ftree-vectorize -funroll-loops --param

> max-unroll-times=4 -ftree-loop-vectorize


-ftree-vectorize turns on -ftree-loop-vectorize and
-ftree-slp-vectorize already.

>  # Logical matmul doesn't vectorize.

>  $(patsubst %.c,%.lo,$(notdir $(i_matmull_c))): AM_CFLAGS += -funroll-loops

>

>

> Comparing gfortran 6 vs 7: (test program posted in PR51119)

>

> $ gfc6 -static -Ofast -finline-matmul-limit=32 -funroll-loops --param

> max-unroll-times=4 compare.f90

> $ ./a.out

>  =========================================================

>  ================            MEASURED GIGAFLOPS          =

>  =========================================================

>                  Matmul                           Matmul

>                  fixed                 Matmul     variable

>  Size  Loops     explicit   refMatmul  assumed    explicit

>  =========================================================

>     2  2000     11.928      0.047      0.082      0.138

>     4  2000      1.455      0.220      0.371      0.316

>     8  2000      1.476      0.737      0.704      1.574

>    16  2000      4.536      3.755      2.825      3.820

>    32  2000      6.070      5.443      3.124      5.158

>    64  2000      5.423      5.355      5.405      5.413

>   128  2000      5.913      5.841      5.917      5.917

>   256   477      5.865      5.252      5.863      5.862

>   512    59      2.794      2.841      2.794      2.791

>  1024     7      1.662      1.356      1.662      1.661

>  2048     1      1.753      1.724      1.753      1.754

>

> $ gfc -static -Ofast -finline-matmul-limit=32 -funroll-loops --param

> max-unroll-times=4 compare.f90

> $ ./a.out

>  =========================================================

>  ================            MEASURED GIGAFLOPS          =

>  =========================================================

>                  Matmul                           Matmul

>                  fixed                 Matmul     variable

>  Size  Loops     explicit   refMatmul  assumed    explicit

>  =========================================================

>     2  2000     12.146      0.042      0.090      0.146

>     4  2000      1.496      0.232      0.384      0.325

>     8  2000      2.330      0.765      0.763      0.965

>    16  2000      4.611      4.120      2.792      3.830

>    32  2000      6.068      5.265      3.102      4.859

>    64  2000      6.527      5.329      6.425      6.495

>   128  2000      8.207      5.643      8.336      8.441

>   256   477      9.210      4.967      9.367      9.299

>   512    59      8.330      2.772      8.422      8.342

>  1024     7      8.430      1.378      8.511      8.424

>  2048     1      8.339      1.718      8.425      8.322

>

> I do think we need to adjust the default inline limit and should do this

> separately from this patch.

>

> With these changes, OK for trunk?

>

> Regards,

>

> Jerry

>
Jerry DeLisle Nov. 15, 2016, 3:59 p.m. UTC | #6
On 11/14/2016 11:22 PM, Thomas Koenig wrote:
> Hi Jerry,

>

>> With these changes, OK for trunk?

>

> Just going over this with a fine comb...

>

> One thing just struck me:   The loop variables should be index_type, so

>

>       const index_type m = xcount, n = ycount, k = count;

>

> [...]

>

>    index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,

>           i3, i4, i5, i6;

>

>       /* Local variables */

>       GFC_REAL_4 t1[65536], /* was [256][256] */

>          f11, f12, f21, f22, f31, f32, f41, f42,

>          f13, f14, f23, f24, f33, f34, f43, f44;

>       index_type i, j, l, ii, jj, ll;

>       index_type isec, jsec, lsec, uisec, ujsec, ulsec;

>

> I agree that we should do the tuning of the inline limit

> separately.

>


Several of my iterations used index_type. I found using integer gives better 
performance. The reason is that they are of type ptr_diff_t which is a 64 bit 
integer. I suspect we eliminate one memory fetch for each of these and reduce 
the register loading by reducing the number of registers needed, two for one 
situation. I will change back and retest.

and Paul commeneted "-ftree-vectorize turns on -ftree-loop-vectorize and
-ftree-slp-vectorize already."

I will remove those to options and keep -ftree-vectorize

I will report back my findings.

Thanks, and a fine tooth comb is a very good thing.

Jerry
Jerry DeLisle Nov. 15, 2016, 4:37 p.m. UTC | #7
On 11/15/2016 07:59 AM, Jerry DeLisle wrote:
> On 11/14/2016 11:22 PM, Thomas Koenig wrote:

>> Hi Jerry,

>>

>>> With these changes, OK for trunk?

>>

>> Just going over this with a fine comb...

>>

>> One thing just struck me:   The loop variables should be index_type, so

>>

>>       const index_type m = xcount, n = ycount, k = count;

>>

>> [...]

>>

>>    index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,

>>           i3, i4, i5, i6;

>>

>>       /* Local variables */

>>       GFC_REAL_4 t1[65536], /* was [256][256] */

>>          f11, f12, f21, f22, f31, f32, f41, f42,

>>          f13, f14, f23, f24, f33, f34, f43, f44;

>>       index_type i, j, l, ii, jj, ll;

>>       index_type isec, jsec, lsec, uisec, ujsec, ulsec;

>>

>> I agree that we should do the tuning of the inline limit

>> separately.

>>

>

> Several of my iterations used index_type. I found using integer gives better

> performance. The reason is that they are of type ptr_diff_t which is a 64 bit

> integer. I suspect we eliminate one memory fetch for each of these and reduce

> the register loading by reducing the number of registers needed, two for one

> situation. I will change back and retest.

>

> and Paul commeneted "-ftree-vectorize turns on -ftree-loop-vectorize and

> -ftree-slp-vectorize already."

>

> I will remove those to options and keep -ftree-vectorize

>

> I will report back my findings.

>


Changed back to index_type, all OK, must have been some OS stuff running in the 
background.

All comments incorporated. Standing by for approval.

Jerry
Janne Blomqvist Nov. 15, 2016, 7:52 p.m. UTC | #8
On Tue, Nov 15, 2016 at 6:37 PM, Jerry DeLisle <jvdelisle@charter.net> wrote:
> All comments incorporated. Standing by for approval.


Looks good, nice job! Ok for trunk.

I was thinking that for strided arrays, it probably is faster to copy
them to dense arrays before doing the matrix multiplication. That
would also enable using an optimized blas (-fexternal-blas) for
strided arrays. But this is of course nothing that blocks this patch,
just something that might be worth looking into in the future.

-- 
Janne Blomqvist
Jerry DeLisle Nov. 16, 2016, 9:58 p.m. UTC | #9
Committed after approval on bugzilla to eliminate warnings.

2016-11-16  Jerry DeLisle  <jvdelisle@gcc.gnu.org>

	PR libgfortran/51119
	* Makefile.am: Remove -fno-protect-parens -fstack-arrays.
	* Makefile.in: Regenerate.


r242517 = 026291bdda18395d7c746856dd7e4ed384856a1b (refs/remotes/svn/trunk)
	M	libgfortran/Makefile.in
	M	libgfortran/ChangeLog
	M	libgfortran/Makefile.am

Regards,

Jerry
diff mbox

Patch

diff --git a/libgfortran/generated/matmul_c10.c b/libgfortran/generated/matmul_c10.c
index c955818..6d1985d 100644
--- a/libgfortran/generated/matmul_c10.c
+++ b/libgfortran/generated/matmul_c10.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_COMPLEX_10)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_c10 (gfc_array_c10 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_c10);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_c10 (gfc_array_c10 * const restrict retarray, 
 	gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_c10 (gfc_array_c10 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_c10 (gfc_array_c10 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_10));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_c10 (gfc_array_c10 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_COMPLEX_10 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_COMPLEX_10 * restrict bbase_y;
-      GFC_COMPLEX_10 * restrict dest_y;
-      const GFC_COMPLEX_10 * restrict abase_n;
-      GFC_COMPLEX_10 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_COMPLEX_10 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_COMPLEX_10) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_COMPLEX_10)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_COMPLEX_10 *a, *b;
+      GFC_COMPLEX_10 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_COMPLEX_10 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_COMPLEX_10)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_c10 (gfc_array_c10 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_c10 (gfc_array_c10 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_c16.c b/libgfortran/generated/matmul_c16.c
index 25fe56e..d967483 100644
--- a/libgfortran/generated/matmul_c16.c
+++ b/libgfortran/generated/matmul_c16.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_COMPLEX_16)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_c16 (gfc_array_c16 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_c16);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_c16 (gfc_array_c16 * const restrict retarray, 
 	gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_c16 (gfc_array_c16 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_c16 (gfc_array_c16 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_c16 (gfc_array_c16 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_COMPLEX_16 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_COMPLEX_16 * restrict bbase_y;
-      GFC_COMPLEX_16 * restrict dest_y;
-      const GFC_COMPLEX_16 * restrict abase_n;
-      GFC_COMPLEX_16 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_COMPLEX_16 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_COMPLEX_16) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_COMPLEX_16)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_COMPLEX_16 *a, *b;
+      GFC_COMPLEX_16 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_COMPLEX_16 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_COMPLEX_16)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_c16 (gfc_array_c16 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_c16 (gfc_array_c16 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_c4.c b/libgfortran/generated/matmul_c4.c
index e9d2ed3..0305782 100644
--- a/libgfortran/generated/matmul_c4.c
+++ b/libgfortran/generated/matmul_c4.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_COMPLEX_4)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_c4 (gfc_array_c4 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_c4);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_c4 (gfc_array_c4 * const restrict retarray, 
 	gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_c4 (gfc_array_c4 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_c4 (gfc_array_c4 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_4));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_c4 (gfc_array_c4 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_COMPLEX_4 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_COMPLEX_4 * restrict bbase_y;
-      GFC_COMPLEX_4 * restrict dest_y;
-      const GFC_COMPLEX_4 * restrict abase_n;
-      GFC_COMPLEX_4 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_COMPLEX_4 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_COMPLEX_4) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_COMPLEX_4)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_COMPLEX_4 *a, *b;
+      GFC_COMPLEX_4 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_COMPLEX_4 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_COMPLEX_4)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_c4 (gfc_array_c4 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_c4 (gfc_array_c4 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_c8.c b/libgfortran/generated/matmul_c8.c
index 8a127da..efd5623 100644
--- a/libgfortran/generated/matmul_c8.c
+++ b/libgfortran/generated/matmul_c8.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_COMPLEX_8)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_c8 (gfc_array_c8 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_c8);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_c8 (gfc_array_c8 * const restrict retarray, 
 	gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_c8 (gfc_array_c8 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_c8 (gfc_array_c8 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_8));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_c8 (gfc_array_c8 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_COMPLEX_8 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_COMPLEX_8 * restrict bbase_y;
-      GFC_COMPLEX_8 * restrict dest_y;
-      const GFC_COMPLEX_8 * restrict abase_n;
-      GFC_COMPLEX_8 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_COMPLEX_8 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_COMPLEX_8) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_COMPLEX_8)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_COMPLEX_8 *a, *b;
+      GFC_COMPLEX_8 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_COMPLEX_8 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_COMPLEX_8)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_c8 (gfc_array_c8 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_c8 (gfc_array_c8 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_i1.c b/libgfortran/generated/matmul_i1.c
index fdb3092..58d12ab 100644
--- a/libgfortran/generated/matmul_i1.c
+++ b/libgfortran/generated/matmul_i1.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_INTEGER_1)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_i1 (gfc_array_i1 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_i1);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_i1 (gfc_array_i1 * const restrict retarray, 
 	gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_i1 (gfc_array_i1 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_i1 (gfc_array_i1 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_i1 (gfc_array_i1 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_INTEGER_1 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_INTEGER_1 * restrict bbase_y;
-      GFC_INTEGER_1 * restrict dest_y;
-      const GFC_INTEGER_1 * restrict abase_n;
-      GFC_INTEGER_1 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_INTEGER_1 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_INTEGER_1) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_INTEGER_1)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_INTEGER_1 *a, *b;
+      GFC_INTEGER_1 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_INTEGER_1 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_INTEGER_1)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_i1 (gfc_array_i1 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_i1 (gfc_array_i1 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_i16.c b/libgfortran/generated/matmul_i16.c
index 80eb63c..bfcc028 100644
--- a/libgfortran/generated/matmul_i16.c
+++ b/libgfortran/generated/matmul_i16.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_INTEGER_16)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_i16 (gfc_array_i16 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_i16);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_i16 (gfc_array_i16 * const restrict retarray, 
 	gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_i16 (gfc_array_i16 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_i16 (gfc_array_i16 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_i16 (gfc_array_i16 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_INTEGER_16 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_INTEGER_16 * restrict bbase_y;
-      GFC_INTEGER_16 * restrict dest_y;
-      const GFC_INTEGER_16 * restrict abase_n;
-      GFC_INTEGER_16 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_INTEGER_16 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_INTEGER_16) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_INTEGER_16)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_INTEGER_16 *a, *b;
+      GFC_INTEGER_16 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_INTEGER_16 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_INTEGER_16)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_i16 (gfc_array_i16 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_i16 (gfc_array_i16 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_i2.c b/libgfortran/generated/matmul_i2.c
index 281a013..a65c40b 100644
--- a/libgfortran/generated/matmul_i2.c
+++ b/libgfortran/generated/matmul_i2.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_INTEGER_2)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_i2 (gfc_array_i2 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_i2);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_i2 (gfc_array_i2 * const restrict retarray, 
 	gfc_array_i2 * const restrict a, gfc_array_i2 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_i2 (gfc_array_i2 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_i2 (gfc_array_i2 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_i2 (gfc_array_i2 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_INTEGER_2 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_INTEGER_2 * restrict bbase_y;
-      GFC_INTEGER_2 * restrict dest_y;
-      const GFC_INTEGER_2 * restrict abase_n;
-      GFC_INTEGER_2 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_INTEGER_2 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_INTEGER_2) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_INTEGER_2)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_INTEGER_2 *a, *b;
+      GFC_INTEGER_2 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_INTEGER_2 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_INTEGER_2)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_i2 (gfc_array_i2 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_i2 (gfc_array_i2 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_i4.c b/libgfortran/generated/matmul_i4.c
index 2dc526d..933f8d5 100644
--- a/libgfortran/generated/matmul_i4.c
+++ b/libgfortran/generated/matmul_i4.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_INTEGER_4)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_i4 (gfc_array_i4 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_i4);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_i4 (gfc_array_i4 * const restrict retarray, 
 	gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_i4 (gfc_array_i4 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_i4 (gfc_array_i4 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_4));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_i4 (gfc_array_i4 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_INTEGER_4 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_INTEGER_4 * restrict bbase_y;
-      GFC_INTEGER_4 * restrict dest_y;
-      const GFC_INTEGER_4 * restrict abase_n;
-      GFC_INTEGER_4 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_INTEGER_4 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_INTEGER_4) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_INTEGER_4)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_INTEGER_4 *a, *b;
+      GFC_INTEGER_4 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_INTEGER_4 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_INTEGER_4)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_i4 (gfc_array_i4 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_i4 (gfc_array_i4 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_i8.c b/libgfortran/generated/matmul_i8.c
index 0ff728d..62f82b9 100644
--- a/libgfortran/generated/matmul_i8.c
+++ b/libgfortran/generated/matmul_i8.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_INTEGER_8)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_i8 (gfc_array_i8 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_i8);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_i8 (gfc_array_i8 * const restrict retarray, 
 	gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_i8 (gfc_array_i8 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_i8 (gfc_array_i8 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_8));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_i8 (gfc_array_i8 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_INTEGER_8 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_INTEGER_8 * restrict bbase_y;
-      GFC_INTEGER_8 * restrict dest_y;
-      const GFC_INTEGER_8 * restrict abase_n;
-      GFC_INTEGER_8 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_INTEGER_8 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_INTEGER_8) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_INTEGER_8)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_INTEGER_8 *a, *b;
+      GFC_INTEGER_8 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_INTEGER_8 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_INTEGER_8)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_i8 (gfc_array_i8 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_i8 (gfc_array_i8 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_r10.c b/libgfortran/generated/matmul_r10.c
index a34856f..3d8c32c 100644
--- a/libgfortran/generated/matmul_r10.c
+++ b/libgfortran/generated/matmul_r10.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_REAL_10)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_r10 (gfc_array_r10 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_r10);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_r10 (gfc_array_r10 * const restrict retarray, 
 	gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_r10 (gfc_array_r10 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_r10 (gfc_array_r10 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_10));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_r10 (gfc_array_r10 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_REAL_10 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_REAL_10 * restrict bbase_y;
-      GFC_REAL_10 * restrict dest_y;
-      const GFC_REAL_10 * restrict abase_n;
-      GFC_REAL_10 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_REAL_10 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_REAL_10) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_REAL_10)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_REAL_10 *a, *b;
+      GFC_REAL_10 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_REAL_10 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_REAL_10)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_r10 (gfc_array_r10 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_r10 (gfc_array_r10 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_r16.c b/libgfortran/generated/matmul_r16.c
index d2f11bd..e5a0a92 100644
--- a/libgfortran/generated/matmul_r16.c
+++ b/libgfortran/generated/matmul_r16.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_REAL_16)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_r16 (gfc_array_r16 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_r16);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_r16 (gfc_array_r16 * const restrict retarray, 
 	gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_r16 (gfc_array_r16 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_r16 (gfc_array_r16 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_16));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_r16 (gfc_array_r16 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_REAL_16 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_REAL_16 * restrict bbase_y;
-      GFC_REAL_16 * restrict dest_y;
-      const GFC_REAL_16 * restrict abase_n;
-      GFC_REAL_16 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_REAL_16 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_REAL_16) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_REAL_16)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_REAL_16 *a, *b;
+      GFC_REAL_16 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_REAL_16 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_REAL_16)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_r16 (gfc_array_r16 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_r16 (gfc_array_r16 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_r4.c b/libgfortran/generated/matmul_r4.c
index ff3b93f..6b6ad9b 100644
--- a/libgfortran/generated/matmul_r4.c
+++ b/libgfortran/generated/matmul_r4.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_REAL_4)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_r4 (gfc_array_r4 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_r4);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_r4 (gfc_array_r4 * const restrict retarray, 
 	gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_r4 (gfc_array_r4 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_r4 (gfc_array_r4 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_4));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_r4 (gfc_array_r4 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_REAL_4 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_REAL_4 * restrict bbase_y;
-      GFC_REAL_4 * restrict dest_y;
-      const GFC_REAL_4 * restrict abase_n;
-      GFC_REAL_4 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_REAL_4 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_REAL_4) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_REAL_4)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_REAL_4 *a, *b;
+      GFC_REAL_4 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_REAL_4 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_REAL_4)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_r4 (gfc_array_r4 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_r4 (gfc_array_r4 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/generated/matmul_r8.c b/libgfortran/generated/matmul_r8.c
index af805ee..f3d0149 100644
--- a/libgfortran/generated/matmul_r8.c
+++ b/libgfortran/generated/matmul_r8.c
@@ -32,7 +32,7 @@  see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_REAL_8)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -75,6 +75,9 @@  extern void matmul_r8 (gfc_array_r8 * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_r8);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_r8 (gfc_array_r8 * const restrict retarray, 
 	gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
@@ -99,7 +102,7 @@  matmul_r8 (gfc_array_r8 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +130,47 @@  matmul_r8 (gfc_array_r8 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_8));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +233,294 @@  matmul_r8 (gfc_array_r8 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_REAL_8 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_REAL_8 * restrict bbase_y;
-      GFC_REAL_8 * restrict dest_y;
-      const GFC_REAL_8 * restrict abase_n;
-      GFC_REAL_8 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_REAL_8 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_REAL_8) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_REAL_8)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_REAL_8 *a, *b;
+      GFC_REAL_8 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_REAL_8 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_REAL_8)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +570,9 @@  matmul_r8 (gfc_array_r8 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +610,5 @@  matmul_r8 (gfc_array_r8 * const restrict retarray,
 	}
     }
 }
-
+#pragma GCC reset_options
 #endif
diff --git a/libgfortran/m4/matmul.m4 b/libgfortran/m4/matmul.m4
index 468615b..20a0404 100644
--- a/libgfortran/m4/matmul.m4
+++ b/libgfortran/m4/matmul.m4
@@ -33,7 +33,7 @@  include(iparm.m4)dnl
 `#if defined (HAVE_'rtype_name`)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we''`ll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -76,6 +76,9 @@  extern void matmul_'rtype_code` ('rtype` * const restrict retarray,
 	int blas_limit, blas_call gemm);
 export_proto(matmul_'rtype_code`);
 
+#pragma GCC optimize ( "-Ofast" )
+#pragma GCC optimize ( "-funroll-loops" )
+
 void
 matmul_'rtype_code` ('rtype` * const restrict retarray, 
 	'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
@@ -100,7 +103,7 @@  matmul_'rtype_code` ('rtype` * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -128,47 +131,47 @@  matmul_'rtype_code` ('rtype` * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 '
 sinclude(`matmul_asm_'rtype_code`.m4')dnl
 `
@@ -232,61 +235,294 @@  sinclude(`matmul_asm_'rtype_code`.m4')dnl
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we''`re performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const 'rtype_name` one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const 'rtype_name` * restrict bbase_y;
-      'rtype_name` * restrict dest_y;
-      const 'rtype_name` * restrict abase_n;
-      'rtype_name` bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const 'rtype_name` one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof ('rtype_name`) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = ('rtype_name`)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const 'rtype_name` *a, *b;
+      'rtype_name` *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i1, i2,
+		 i3, i4, i5, i6;
+
+      /* Local variables */
+      'rtype_name` t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = m;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = ('rtype_name`)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -336,7 +572,9 @@  sinclude(`matmul_asm_'rtype_code`.m4')dnl
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -373,6 +611,6 @@  sinclude(`matmul_asm_'rtype_code`.m4')dnl
 	    }
 	}
     }
-}
-
-#endif'
+}'
+#pragma GCC reset_options
+#endif