@@ -23,7 +23,9 @@
#ifndef GCC_AARCH_COMMON_PROTOS_H
#define GCC_AARCH_COMMON_PROTOS_H
+extern int aarch_accumulator_forwarding (rtx_insn *, rtx_insn *);
extern int aarch_crypto_can_dual_issue (rtx_insn *, rtx_insn *);
+extern int aarch_forward_to_shift_is_not_shifted_reg (rtx_insn *, rtx_insn *);
extern bool aarch_rev16_p (rtx);
extern bool aarch_rev16_shleft_mask_imm_p (rtx, machine_mode);
extern bool aarch_rev16_shright_mask_imm_p (rtx, machine_mode);
@@ -394,6 +394,112 @@ arm_mac_accumulator_is_result (rtx producer, rtx consumer)
&& !reg_overlap_mentioned_p (result, op1));
}
+/* Return non-zero if the destination of PRODUCER feeds the accumulator
+ operand of an MLA-like operation. */
+
+int
+aarch_accumulator_forwarding (rtx_insn *producer, rtx_insn *consumer)
+{
+ rtx producer_set = single_set (producer);
+ rtx consumer_set = single_set (consumer);
+
+ /* We are looking for a SET feeding a SET. */
+ if (!producer_set || !consumer_set)
+ return 0;
+
+ rtx dest = SET_DEST (producer_set);
+ rtx mla = SET_SRC (consumer_set);
+
+ /* We're looking for a register SET. */
+ if (!REG_P (dest))
+ return 0;
+
+ rtx accumulator;
+
+ /* Strip a zero_extend. */
+ if (GET_CODE (mla) == ZERO_EXTEND)
+ mla = XEXP (mla, 0);
+
+ switch (GET_CODE (mla))
+ {
+ case PLUS:
+ /* Possibly an MADD. */
+ if (GET_CODE (XEXP (mla, 0)) == MULT)
+ accumulator = XEXP (mla, 1);
+ else
+ return 0;
+ break;
+ case MINUS:
+ /* Possibly an MSUB. */
+ if (GET_CODE (XEXP (mla, 1)) == MULT)
+ accumulator = XEXP (mla, 0);
+ else
+ return 0;
+ break;
+ case FMA:
+ {
+ /* Possibly an FMADD/FMSUB/FNMADD/FNMSUB. */
+ if (REG_P (XEXP (mla, 1))
+ && REG_P (XEXP (mla, 2))
+ && (REG_P (XEXP (mla, 0))
+ || GET_CODE (XEXP (mla, 0)) == NEG))
+
+ {
+ /* FMADD/FMSUB. */
+ accumulator = XEXP (mla, 2);
+ }
+ else if (REG_P (XEXP (mla, 1))
+ && GET_CODE (XEXP (mla, 2)) == NEG
+ && (REG_P (XEXP (mla, 0))
+ || GET_CODE (XEXP (mla, 0)) == NEG))
+ {
+ /* FNMADD/FNMSUB. */
+ accumulator = XEXP (XEXP (mla, 2), 0);
+ }
+ else
+ return 0;
+ break;
+ }
+ default:
+ /* Not an MLA-like operation. */
+ return 0;
+ }
+
+ return (REGNO (dest) == REGNO (accumulator));
+}
+
+/* Return nonzero if the CONSUMER instruction is some sort of
+ arithmetic or logic + shift operation, and the register we are
+ writing in PRODUCER is not used in a register shift by register
+ operation. */
+
+int
+aarch_forward_to_shift_is_not_shifted_reg (rtx_insn *producer,
+ rtx_insn *consumer)
+{
+ rtx value, op;
+ rtx early_op;
+
+ if (!arm_get_set_operands (producer, consumer, &value, &op))
+ return 0;
+
+ if ((early_op = arm_find_shift_sub_rtx (op)))
+ {
+ if (REG_P (early_op))
+ early_op = op;
+
+ /* Any other canonicalisation of a shift is a shift-by-constant
+ so we don't care. */
+ if (GET_CODE (early_op) == ASHIFT)
+ return (!REG_P (XEXP (early_op, 0))
+ || !REG_P (XEXP (early_op, 1)));
+ else
+ return 1;
+ }
+
+ return 0;
+}
+
/* Return non-zero if the consumer (a multiply-accumulate instruction)
has an accumulator dependency on the result of the producer (a
multiplication instruction) and no other dependency on that result. */
@@ -22,345 +22,699 @@
(define_automaton "cortex_a53")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; Functional units.
+;; General-purpose functional units.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; There are two main integer execution pipelines, described as
-;; slot 0 and issue slot 1.
+;; We use slot0 and slot1 to model constraints on which instructions may
+;; dual-issue.
(define_cpu_unit "cortex_a53_slot0" "cortex_a53")
(define_cpu_unit "cortex_a53_slot1" "cortex_a53")
-(define_reservation "cortex_a53_slot_any" "cortex_a53_slot0|cortex_a53_slot1")
-(define_reservation "cortex_a53_single_issue" "cortex_a53_slot0+cortex_a53_slot1")
+(define_reservation "cortex_a53_slot_any"
+ "cortex_a53_slot0\
+ |cortex_a53_slot1")
-;; The load/store pipeline. Load/store instructions can dual-issue from
-;; either pipeline, but two load/stores cannot simultaneously issue.
+(define_reservation "cortex_a53_single_issue"
+ "cortex_a53_slot0\
+ +cortex_a53_slot1")
-(define_cpu_unit "cortex_a53_ls" "cortex_a53")
-
-;; The store pipeline. Shared between both execution pipelines.
+;; Used to model load and store pipelines. Load/store instructions
+;; can dual-issue with other instructions, but two load/stores cannot
+;; simultaneously issue.
(define_cpu_unit "cortex_a53_store" "cortex_a53")
+(define_cpu_unit "cortex_a53_load" "cortex_a53")
+(define_cpu_unit "cortex_a53_ls_agen" "cortex_a53")
-;; The branch pipeline. Branches can dual-issue with other instructions
-;; (except when those instructions take multiple cycles to issue).
+;; Used to model a branch pipeline. Branches can dual-issue with other
+;; instructions (except when those instructions take multiple cycles
+;; to issue).
(define_cpu_unit "cortex_a53_branch" "cortex_a53")
-;; The integer divider.
+;; Used to model an integer divide pipeline.
(define_cpu_unit "cortex_a53_idiv" "cortex_a53")
-;; The floating-point add pipeline used to model the usage
-;; of the add pipeline by fmac instructions.
-
-(define_cpu_unit "cortex_a53_fpadd_pipe" "cortex_a53")
+;; Used to model an integer multiply/multiply-accumulate pipeline.
-;; Floating-point div/sqrt (long latency, out-of-order completion).
+(define_cpu_unit "cortex_a53_imul" "cortex_a53")
-(define_cpu_unit "cortex_a53_fp_div_sqrt" "cortex_a53")
+;; Model general structural hazards, for wherever we need them.
-;; The Advanced SIMD pipelines.
-
-(define_cpu_unit "cortex_a53_simd0" "cortex_a53")
-(define_cpu_unit "cortex_a53_simd1" "cortex_a53")
+(define_cpu_unit "cortex_a53_hazard" "cortex_a53")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-(define_insn_reservation "cortex_a53_alu" 2
+(define_insn_reservation "cortex_a53_shift" 2
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
- alu_sreg,alus_sreg,logic_reg,logics_reg,\
- adc_imm,adcs_imm,adc_reg,adcs_reg,\
- adr,bfm,csel,clz,rbit,rev,alu_dsp_reg,\
- rotate_imm,shift_imm,shift_reg,\
- mov_imm,mov_reg,mvn_imm,mvn_reg,\
- mrs,multiple,no_insn"))
+ (eq_attr "type" "adr,shift_imm,shift_reg,mov_imm,mvn_imm"))
"cortex_a53_slot_any")
-(define_insn_reservation "cortex_a53_alu_shift" 2
+(define_insn_reservation "cortex_a53_alu_rotate_imm" 2
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "alu_shift_imm,alus_shift_imm,\
- crc,logic_shift_imm,logics_shift_imm,\
- alu_ext,alus_ext,alu_shift_reg,alus_shift_reg,\
- logic_shift_reg,logics_shift_reg,\
- extend,mov_shift,mov_shift_reg,\
- mvn_shift,mvn_shift_reg"))
- "cortex_a53_slot_any")
+ (eq_attr "type" "rotate_imm"))
+ "(cortex_a53_slot1)
+ | (cortex_a53_single_issue)")
-;; Forwarding path for unshifted operands.
-
-(define_bypass 1 "cortex_a53_alu,cortex_a53_alu_shift"
- "cortex_a53_alu")
+(define_insn_reservation "cortex_a53_alu" 3
+ (and (eq_attr "tune" "cortexa53")
+ (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,
+ alu_sreg,alus_sreg,logic_reg,logics_reg,
+ adc_imm,adcs_imm,adc_reg,adcs_reg,
+ bfm,csel,clz,rbit,rev,alu_dsp_reg,
+ mov_reg,mvn_reg,
+ mrs,multiple,no_insn"))
+ "cortex_a53_slot_any")
-(define_bypass 1 "cortex_a53_alu,cortex_a53_alu_shift"
- "cortex_a53_alu_shift"
- "arm_no_early_alu_shift_dep")
+(define_insn_reservation "cortex_a53_alu_shift" 3
+ (and (eq_attr "tune" "cortexa53")
+ (eq_attr "type" "alu_shift_imm,alus_shift_imm,
+ crc,logic_shift_imm,logics_shift_imm,
+ alu_ext,alus_ext,
+ extend,mov_shift,mvn_shift"))
+ "cortex_a53_slot_any")
-;; The multiplier pipeline can forward results so there's no need to specify
-;; bypasses. Multiplies can only single-issue currently.
+(define_insn_reservation "cortex_a53_alu_shift_reg" 3
+ (and (eq_attr "tune" "cortexa53")
+ (eq_attr "type" "alu_shift_reg,alus_shift_reg,
+ logic_shift_reg,logics_shift_reg,
+ mov_shift_reg,mvn_shift_reg"))
+ "cortex_a53_slot_any+cortex_a53_hazard")
(define_insn_reservation "cortex_a53_mul" 3
(and (eq_attr "tune" "cortexa53")
(ior (eq_attr "mul32" "yes")
- (eq_attr "mul64" "yes")))
- "cortex_a53_single_issue")
-
-;; A multiply with a single-register result or an MLA, followed by an
-;; MLA with an accumulator dependency, has its result forwarded so two
-;; such instructions can issue back-to-back.
-
-(define_bypass 1 "cortex_a53_mul"
- "cortex_a53_mul"
- "arm_mac_accumulator_is_mul_result")
+ (eq_attr "mul64" "yes")))
+ "cortex_a53_slot_any+cortex_a53_imul")
-;; Punt with a high enough latency for divides.
-(define_insn_reservation "cortex_a53_udiv" 8
- (and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "udiv"))
- "(cortex_a53_slot0+cortex_a53_idiv),cortex_a53_idiv*7")
+;; From the perspective of the GCC scheduling state machine, if we wish to
+;; model an instruction as serialising other instructions, we are best to do
+;; so by modelling it as taking very few cycles. Scheduling many other
+;; instructions underneath it at the cost of freedom to pick from the
+;; ready list is likely to hurt us more than it helps. However, we do
+;; want to model some resource and latency cost for divide instructions in
+;; order to avoid divides ending up too lumpy.
-(define_insn_reservation "cortex_a53_sdiv" 9
+(define_insn_reservation "cortex_a53_div" 4
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "sdiv"))
- "(cortex_a53_slot0+cortex_a53_idiv),cortex_a53_idiv*8")
-
-
-(define_bypass 2 "cortex_a53_mul,cortex_a53_udiv,cortex_a53_sdiv"
- "cortex_a53_alu")
-(define_bypass 2 "cortex_a53_mul,cortex_a53_udiv,cortex_a53_sdiv"
- "cortex_a53_alu_shift"
- "arm_no_early_alu_shift_dep")
+ (eq_attr "type" "udiv,sdiv"))
+ "cortex_a53_slot0,cortex_a53_idiv*2")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Load/store instructions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; Address-generation happens in the issue stage.
+;; TODO: load<n> is not prescriptive about how much data is to be loaded.
+;; This is most obvious for LDRD from AArch32 and LDP (X register) from
+;; AArch64, both are tagged load2 but LDP will load 128-bits compared to
+;; LDRD which is 64-bits.
+;;
+;; For the below, we assume AArch64 X-registers for load2, and AArch32
+;; registers for load3/load4.
-(define_insn_reservation "cortex_a53_load1" 3
+(define_insn_reservation "cortex_a53_load1" 4
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "load_byte,load1,load_acq"))
- "cortex_a53_slot_any+cortex_a53_ls")
+ "cortex_a53_slot_any+cortex_a53_ls_agen,
+ cortex_a53_load")
(define_insn_reservation "cortex_a53_store1" 2
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "store1,store_rel"))
- "cortex_a53_slot_any+cortex_a53_ls+cortex_a53_store")
+ "cortex_a53_slot_any+cortex_a53_ls_agen,
+ cortex_a53_store")
-(define_insn_reservation "cortex_a53_load2" 3
+;; Model AArch64-sized LDP Xm, Xn, [Xa]
+
+(define_insn_reservation "cortex_a53_load2" 4
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "load2"))
- "cortex_a53_single_issue+cortex_a53_ls")
+ "cortex_a53_single_issue+cortex_a53_ls_agen,
+ cortex_a53_load+cortex_a53_slot0,
+ cortex_a53_load")
(define_insn_reservation "cortex_a53_store2" 2
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "store2"))
- "cortex_a53_single_issue+cortex_a53_ls+cortex_a53_store")
+ "cortex_a53_slot_any+cortex_a53_ls_agen,
+ cortex_a53_store")
+
+;; Model AArch32-sized LDM Ra, {Rm, Rn, Ro}
-(define_insn_reservation "cortex_a53_load3plus" 4
+(define_insn_reservation "cortex_a53_load3plus" 6
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "load3,load4"))
- "(cortex_a53_single_issue+cortex_a53_ls)*2")
+ "cortex_a53_single_issue+cortex_a53_ls_agen,
+ cortex_a53_load+cortex_a53_slot0,
+ cortex_a53_load")
-(define_insn_reservation "cortex_a53_store3plus" 3
+(define_insn_reservation "cortex_a53_store3plus" 2
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "store3,store4"))
- "(cortex_a53_single_issue+cortex_a53_ls+cortex_a53_store)*2")
-
-;; Load/store addresses are required early in Issue.
-(define_bypass 3 "cortex_a53_load1,cortex_a53_load2,cortex_a53_load3plus,cortex_a53_alu,cortex_a53_alu_shift"
- "cortex_a53_load*"
- "arm_early_load_addr_dep")
-(define_bypass 3 "cortex_a53_load1,cortex_a53_load2,cortex_a53_load3plus,cortex_a53_alu,cortex_a53_alu_shift"
- "cortex_a53_store*"
- "arm_early_store_addr_dep")
-
-;; Load data can forward in the ALU pipeline
-(define_bypass 2 "cortex_a53_load1,cortex_a53_load2"
- "cortex_a53_alu")
-(define_bypass 2 "cortex_a53_load1,cortex_a53_load2"
- "cortex_a53_alu_shift"
- "arm_no_early_alu_shift_dep")
-
-;; ALU ops can forward to stores.
-(define_bypass 0 "cortex_a53_alu,cortex_a53_alu_shift"
- "cortex_a53_store1,cortex_a53_store2,cortex_a53_store3plus"
- "arm_no_early_store_addr_dep")
-
-(define_bypass 1 "cortex_a53_mul,cortex_a53_udiv,cortex_a53_sdiv,cortex_a53_load1,cortex_a53_load2,cortex_a53_load3plus"
- "cortex_a53_store1,cortex_a53_store2,cortex_a53_store3plus"
- "arm_no_early_store_addr_dep")
+ "cortex_a53_slot_any+cortex_a53_ls_agen,
+ cortex_a53_store+cortex_a53_slot0,
+ cortex_a53_store")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branches.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; Currently models all branches as dual-issuable from either execution
-;; slot, which isn't true for all cases. We still need to model indirect
-;; branches.
+;; Model all branches as dual-issuable from either execution, which
+;; is not strictly true for all cases (indirect branches).
(define_insn_reservation "cortex_a53_branch" 0
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "branch,call"))
- "cortex_a53_slot_any+cortex_a53_branch")
+ "cortex_a53_slot_any,cortex_a53_branch")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; General-purpose register bypasses
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; Model bypasses for unshifted operands to ALU instructions.
+
+(define_bypass 1 "cortex_a53_shift"
+ "cortex_a53_shift")
+
+(define_bypass 1 "cortex_a53_alu,
+ cortex_a53_alu_shift*,
+ cortex_a53_alu_rotate_imm,
+ cortex_a53_shift"
+ "cortex_a53_alu")
+
+(define_bypass 2 "cortex_a53_alu,
+ cortex_a53_alu_shift*"
+ "cortex_a53_alu_shift*"
+ "aarch_forward_to_shift_is_not_shifted_reg")
+
+;; In our model, we allow any general-purpose register operation to
+;; bypass to the accumulator operand of an integer MADD-like operation.
+
+(define_bypass 1 "cortex_a53_alu*,
+ cortex_a53_load*,
+ cortex_a53_mul"
+ "cortex_a53_mul"
+ "aarch_accumulator_forwarding")
+
+;; Model a bypass from MLA/MUL to many ALU instructions.
+
+(define_bypass 2 "cortex_a53_mul"
+ "cortex_a53_alu,
+ cortex_a53_alu_shift*")
+
+;; We get neater schedules by allowing an MLA/MUL to feed an
+;; early load address dependency to a load.
+
+(define_bypass 2 "cortex_a53_mul"
+ "cortex_a53_load*"
+ "arm_early_load_addr_dep")
+
+;; Model bypasses for loads which are to be consumed by the ALU.
+
+(define_bypass 2 "cortex_a53_load1"
+ "cortex_a53_alu")
+
+(define_bypass 3 "cortex_a53_load1"
+ "cortex_a53_alu_shift*")
+
+;; Model a bypass for ALU instructions feeding stores.
+
+(define_bypass 1 "cortex_a53_alu*"
+ "cortex_a53_store1,
+ cortex_a53_store2,
+ cortex_a53_store3plus"
+ "arm_no_early_store_addr_dep")
+
+;; Model a bypass for load and multiply instructions feeding stores.
+
+(define_bypass 2 "cortex_a53_mul,
+ cortex_a53_load1,
+ cortex_a53_load2,
+ cortex_a53_load3plus"
+ "cortex_a53_store1,
+ cortex_a53_store2,
+ cortex_a53_store3plus"
+ "arm_no_early_store_addr_dep")
+
+;; Model a GP->FP register move as similar to stores.
+
+(define_bypass 1 "cortex_a53_alu*"
+ "cortex_a53_r2f")
+
+(define_bypass 2 "cortex_a53_mul,
+ cortex_a53_load1,
+ cortex_a53_load2,
+ cortex_a53_load3plus"
+ "cortex_a53_r2f")
+
+;; Shifts feeding Load/Store addresses may not be ready in time.
+
+(define_bypass 3 "cortex_a53_shift"
+ "cortex_a53_load*"
+ "arm_early_load_addr_dep")
+
+(define_bypass 3 "cortex_a53_shift"
+ "cortex_a53_store*"
+ "arm_early_store_addr_dep")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Floating-point/Advanced SIMD.
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+(define_automaton "cortex_a53_advsimd")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Broad Advanced SIMD type categorisation
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+(define_attr "cortex_a53_advsimd_type"
+ "advsimd_alu, advsimd_alu_q,
+ advsimd_mul, advsimd_mul_q,
+ advsimd_div_s, advsimd_div_s_q,
+ advsimd_div_d, advsimd_div_d_q,
+ advsimd_load_64, advsimd_store_64,
+ advsimd_load_128, advsimd_store_128,
+ advsimd_load_lots, advsimd_store_lots,
+ unknown"
+ (cond [
+ (eq_attr "type" "neon_add, neon_qadd, neon_add_halve, neon_sub, neon_qsub,\
+ neon_sub_halve, neon_abs, neon_neg, neon_qneg,\
+ neon_qabs, neon_abd, neon_minmax, neon_compare,\
+ neon_compare_zero, neon_arith_acc, neon_reduc_add,\
+ neon_reduc_add_acc, neon_reduc_minmax,\
+ neon_logic, neon_tst, neon_shift_imm,\
+ neon_shift_reg, neon_shift_acc, neon_sat_shift_imm,\
+ neon_sat_shift_reg, neon_ins, neon_move,\
+ neon_permute, neon_zip, neon_tbl1,\
+ neon_tbl2, neon_tbl3, neon_tbl4, neon_bsl,\
+ neon_cls, neon_cnt, neon_dup,\
+ neon_ext, neon_rbit, neon_rev,\
+ neon_fp_abd_s, neon_fp_abd_d,\
+ neon_fp_abs_s, neon_fp_abs_d,\
+ neon_fp_addsub_s, neon_fp_addsub_d, neon_fp_compare_s,\
+ neon_fp_compare_d, neon_fp_minmax_s,\
+ neon_fp_minmax_d, neon_fp_neg_s, neon_fp_neg_d,\
+ neon_fp_reduc_add_s, neon_fp_reduc_add_d,\
+ neon_fp_reduc_minmax_s, neon_fp_reduc_minmax_d,\
+ neon_fp_cvt_widen_h, neon_fp_to_int_s,neon_fp_to_int_d,\
+ neon_int_to_fp_s, neon_int_to_fp_d, neon_fp_round_s,\
+ neon_fp_recpe_s, neon_fp_recpe_d, neon_fp_recps_s,\
+ neon_fp_recps_d, neon_fp_recpx_s, neon_fp_recpx_d,\
+ neon_fp_rsqrte_s, neon_fp_rsqrte_d, neon_fp_rsqrts_s,\
+ neon_fp_rsqrts_d")
+ (const_string "advsimd_alu")
+ (eq_attr "type" "neon_add_q, neon_add_widen, neon_add_long,\
+ neon_qadd_q, neon_add_halve_q, neon_add_halve_narrow_q,\
+ neon_sub_q, neon_sub_widen, neon_sub_long,\
+ neon_qsub_q, neon_sub_halve_q, neon_sub_halve_narrow_q,\
+ neon_abs_q, neon_neg_q, neon_qneg_q, neon_qabs_q,\
+ neon_abd_q, neon_abd_long, neon_minmax_q,\
+ neon_compare_q, neon_compare_zero_q,\
+ neon_arith_acc_q, neon_reduc_add_q,\
+ neon_reduc_add_long, neon_reduc_add_acc_q,\
+ neon_reduc_minmax_q, neon_logic_q, neon_tst_q,\
+ neon_shift_imm_q, neon_shift_imm_narrow_q,\
+ neon_shift_imm_long, neon_shift_reg_q,\
+ neon_shift_acc_q, neon_sat_shift_imm_q,\
+ neon_sat_shift_imm_narrow_q, neon_sat_shift_reg_q,\
+ neon_ins_q, neon_move_q, neon_move_narrow_q,\
+ neon_permute_q, neon_zip_q,\
+ neon_tbl1_q, neon_tbl2_q, neon_tbl3_q,\
+ neon_tbl4_q, neon_bsl_q, neon_cls_q, neon_cnt_q,\
+ neon_dup_q, neon_ext_q, neon_rbit_q,\
+ neon_rev_q, neon_fp_abd_s_q, neon_fp_abd_d_q,\
+ neon_fp_abs_s_q, neon_fp_abs_d_q,\
+ neon_fp_addsub_s_q, neon_fp_addsub_d_q,\
+ neon_fp_compare_s_q, neon_fp_compare_d_q,\
+ neon_fp_minmax_s_q, neon_fp_minmax_d_q,\
+ neon_fp_cvt_widen_s, neon_fp_neg_s_q, neon_fp_neg_d_q,\
+ neon_fp_reduc_add_s_q, neon_fp_reduc_add_d_q,\
+ neon_fp_reduc_minmax_s_q, neon_fp_reduc_minmax_d_q,\
+ neon_fp_cvt_narrow_s_q, neon_fp_cvt_narrow_d_q,\
+ neon_fp_to_int_s_q, neon_fp_to_int_d_q,\
+ neon_int_to_fp_s_q, neon_int_to_fp_d_q,\
+ neon_fp_round_s_q,\
+ neon_fp_recpe_s_q, neon_fp_recpe_d_q,\
+ neon_fp_recps_s_q, neon_fp_recps_d_q,\
+ neon_fp_recpx_s_q, neon_fp_recpx_d_q,\
+ neon_fp_rsqrte_s_q, neon_fp_rsqrte_d_q,\
+ neon_fp_rsqrts_s_q, neon_fp_rsqrts_d_q")
+ (const_string "advsimd_alu_q")
+ (eq_attr "type" "neon_mul_b, neon_mul_h, neon_mul_s,\
+ neon_mul_h_scalar, neon_mul_s_scalar,\
+ neon_sat_mul_b, neon_sat_mul_h, neon_sat_mul_s,\
+ neon_sat_mul_h_scalar, neon_sat_mul_s_scalar,\
+ neon_mla_b, neon_mla_h, neon_mla_s,\
+ neon_mla_h_scalar, neon_mla_s_scalar,\
+ neon_fp_mul_s, neon_fp_mul_s_scalar,\
+ neon_fp_mul_d, neon_fp_mla_s,\
+ neon_fp_mla_s_scalar, neon_fp_mla_d")
+ (const_string "advsimd_mul")
+ (eq_attr "type" "neon_mul_b_q, neon_mul_h_q, neon_mul_s_q,\
+ neon_mul_b_long, neon_mul_h_long, neon_mul_s_long,\
+ neon_mul_d_long, neon_mul_h_scalar_q,\
+ neon_mul_s_scalar_q, neon_mul_h_scalar_long,\
+ neon_mul_s_scalar_long, neon_sat_mul_b_q,\
+ neon_sat_mul_h_q, neon_sat_mul_s_q,\
+ neon_sat_mul_b_long, neon_sat_mul_h_long,\
+ neon_sat_mul_s_long, neon_sat_mul_h_scalar_q,\
+ neon_sat_mul_s_scalar_q, neon_sat_mul_h_scalar_long,\
+ neon_sat_mul_s_scalar_long, neon_mla_b_q,\
+ neon_mla_h_q, neon_mla_s_q, neon_mla_b_long,\
+ neon_mla_h_long, neon_mla_s_long,\
+ neon_mla_h_scalar_q, neon_mla_s_scalar_q,\
+ neon_mla_h_scalar_long, neon_mla_s_scalar_long,\
+ neon_sat_mla_b_long, neon_sat_mla_h_long,\
+ neon_sat_mla_s_long, neon_sat_mla_h_scalar_long,\
+ neon_sat_mla_s_scalar_long,\
+ neon_fp_mul_s_q, neon_fp_mul_s_scalar_q,\
+ neon_fp_mul_d_q, neon_fp_mul_d_scalar_q,\
+ neon_fp_mla_s_q, neon_fp_mla_s_scalar_q,\
+ neon_fp_mla_d_q, neon_fp_mla_d_scalar_q")
+ (const_string "advsimd_mul_q")
+ (eq_attr "type" "neon_fp_sqrt_s, neon_fp_div_s")
+ (const_string "advsimd_div_s")
+ (eq_attr "type" "neon_fp_sqrt_s_q, neon_fp_div_s_q")
+ (const_string "advsimd_div_s_q")
+ (eq_attr "type" "neon_fp_sqrt_d, neon_fp_div_d")
+ (const_string "advsimd_div_d")
+ (eq_attr "type" "neon_fp_sqrt_d_q, neon_fp_div_d_q")
+ (const_string "advsimd_div_d_q")
+ (eq_attr "type" "neon_ldr, neon_load1_1reg,\
+ neon_load1_all_lanes, neon_load1_all_lanes_q,\
+ neon_load1_one_lane, neon_load1_one_lane_q")
+ (const_string "advsimd_load_64")
+ (eq_attr "type" "neon_str, neon_store1_1reg,\
+ neon_store1_one_lane,neon_store1_one_lane_q")
+ (const_string "advsimd_store_64")
+ (eq_attr "type" "neon_load1_1reg_q, neon_load1_2reg,\
+ neon_load2_2reg,\
+ neon_load2_all_lanes, neon_load2_all_lanes_q,\
+ neon_load2_one_lane, neon_load2_one_lane_q")
+ (const_string "advsimd_load_128")
+ (eq_attr "type" "neon_store1_1reg_q, neon_store1_2reg,\
+ neon_store2_2reg,\
+ neon_store2_one_lane, neon_store2_one_lane_q")
+ (const_string "advsimd_store_128")
+ (eq_attr "type" "neon_load1_2reg_q, neon_load1_3reg, neon_load1_3reg_q,\
+ neon_load1_4reg, neon_load1_4reg_q, \
+ neon_load2_2reg_q, neon_load2_4reg,\
+ neon_load2_4reg_q, neon_load3_3reg,\
+ neon_load3_3reg_q, neon_load3_all_lanes,\
+ neon_load3_all_lanes_q, neon_load3_one_lane,\
+ neon_load3_one_lane_q, neon_load4_4reg,\
+ neon_load4_4reg_q, neon_load4_all_lanes,\
+ neon_load4_all_lanes_q, neon_load4_one_lane,\
+ neon_load4_one_lane_q")
+ (const_string "advsimd_load_lots")
+ (eq_attr "type" "neon_store1_2reg_q, neon_store1_3reg,\
+ neon_store1_3reg_q, neon_store1_4reg,\
+ neon_store1_4reg_q, neon_store2_2reg_q,\
+ neon_store2_4reg, neon_store2_4reg_q,\
+ neon_store3_3reg, neon_store3_3reg_q,\
+ neon_store3_one_lane, neon_store3_one_lane_q,\
+ neon_store4_4reg, neon_store4_4reg_q,\
+ neon_store4_one_lane, neon_store4_one_lane_q")
+ (const_string "advsimd_store_lots")]
+ (const_string "unknown")))
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Floating-point/Advanced SIMD functional units.
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; We model the Advanced SIMD unit as two 64-bit units, each with three
+;; pipes, FP_ALU, FP_MUL, FP_DIV. We also give convenient reservations
+;; for 128-bit Advanced SIMD instructions, which use both units.
+
+;; The floating-point/Advanced SIMD ALU pipelines.
+
+(define_cpu_unit "cortex_a53_fp_alu_lo,\
+ cortex_a53_fp_alu_hi"
+ "cortex_a53_advsimd")
+
+(define_reservation "cortex_a53_fp_alu"
+ "cortex_a53_fp_alu_lo\
+ |cortex_a53_fp_alu_hi")
+
+(define_reservation "cortex_a53_fp_alu_q"
+ "cortex_a53_fp_alu_lo\
+ +cortex_a53_fp_alu_hi")
+
+;; The floating-point/Advanced SIMD multiply/multiply-accumulate
+;; pipelines.
+
+(define_cpu_unit "cortex_a53_fp_mul_lo,\
+ cortex_a53_fp_mul_hi"
+ "cortex_a53_advsimd")
+
+(define_reservation "cortex_a53_fp_mul"
+ "cortex_a53_fp_mul_lo\
+ |cortex_a53_fp_mul_hi")
+
+(define_reservation "cortex_a53_fp_mul_q"
+ "cortex_a53_fp_mul_lo\
+ +cortex_a53_fp_mul_hi")
+
+;; Floating-point/Advanced SIMD divide/square root.
+
+(define_cpu_unit "cortex_a53_fp_div_lo,\
+ cortex_a53_fp_div_hi"
+ "cortex_a53_advsimd")
+
+;; Once we choose a pipe, stick with it for three simulated cycles.
+
+(define_reservation "cortex_a53_fp_div"
+ "(cortex_a53_fp_div_lo*3)\
+ |(cortex_a53_fp_div_hi*3)")
+
+(define_reservation "cortex_a53_fp_div_q"
+ "(cortex_a53_fp_div_lo*3)\
+ +(cortex_a53_fp_div_hi*3)")
+
+;; Cryptographic extensions
+
+(define_cpu_unit "cortex_a53_crypto"
+ "cortex_a53_advsimd")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Floating-point arithmetic.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-(define_insn_reservation "cortex_a53_fpalu" 4
+(define_insn_reservation "cortex_a53_fpalu" 5
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "ffariths, fadds, ffarithd, faddd, fmov, fmuls,\
- f_cvt,f_cvtf2i,f_cvti2f,\
- fcmps, fcmpd, fcsel, f_rints, f_rintd, f_minmaxs,\
- f_minmaxd"))
- "cortex_a53_slot0+cortex_a53_fpadd_pipe")
+ (eq_attr "type" "ffariths, fadds, ffarithd, faddd, fmov,
+ f_cvt, fcmps, fcmpd, fcsel, f_rints, f_rintd,
+ f_minmaxs, f_minmaxd"))
+ "cortex_a53_slot_any,cortex_a53_fp_alu")
-(define_insn_reservation "cortex_a53_fconst" 2
+(define_insn_reservation "cortex_a53_fconst" 3
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "fconsts,fconstd"))
- "cortex_a53_slot0+cortex_a53_fpadd_pipe")
+ "cortex_a53_slot_any,cortex_a53_fp_alu")
-(define_insn_reservation "cortex_a53_fpmul" 4
+(define_insn_reservation "cortex_a53_fpmul" 5
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "fmuls,fmuld"))
- "cortex_a53_slot0")
+ "cortex_a53_slot_any,cortex_a53_fp_mul")
-;; For single-precision multiply-accumulate, the add (accumulate) is issued after
-;; the multiply completes. Model that accordingly.
+;; For multiply-accumulate, model the add (accumulate) as being issued
+;; after the multiply completes.
(define_insn_reservation "cortex_a53_fpmac" 8
(and (eq_attr "tune" "cortexa53")
(eq_attr "type" "fmacs,fmacd,ffmas,ffmad"))
- "cortex_a53_slot0, nothing*3, cortex_a53_fpadd_pipe")
+ "cortex_a53_slot_any,cortex_a53_fp_mul,
+ nothing*3, cortex_a53_fp_alu")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; Floating-point divide/square root instructions.
+;; Floating-point to/from core transfers.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; fsqrt really takes one cycle less, but that is not modelled.
-(define_insn_reservation "cortex_a53_fdivs" 14
+(define_insn_reservation "cortex_a53_r2f" 6
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "fdivs, fsqrts"))
- "cortex_a53_slot0, cortex_a53_fp_div_sqrt * 5")
+ (eq_attr "type" "f_mcr,f_mcrr,f_cvti2f,
+ neon_from_gp, neon_from_gp_q"))
+ "cortex_a53_slot_any,cortex_a53_store,
+ nothing,cortex_a53_fp_alu")
-(define_insn_reservation "cortex_a53_fdivd" 29
+(define_insn_reservation "cortex_a53_f2r" 6
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "fdivd, fsqrtd"))
- "cortex_a53_slot0, cortex_a53_fp_div_sqrt * 8")
+ (eq_attr "type" "f_mrc,f_mrrc,f_cvtf2i,
+ neon_to_gp, neon_to_gp_q"))
+ "cortex_a53_slot_any,cortex_a53_fp_alu,
+ nothing,cortex_a53_store")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; ARMv8-A Cryptographic extensions.
+;; Floating-point flag transfer.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-(define_insn_reservation "cortex_a53_crypto_aese" 2
+(define_insn_reservation "cortex_a53_f_flags" 5
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "crypto_aese"))
- "cortex_a53_simd0")
+ (eq_attr "type" "f_flag"))
+ "cortex_a53_slot_any")
-(define_insn_reservation "cortex_a53_crypto_aesmc" 2
- (and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "crypto_aesmc"))
- "cortex_a53_simd0 | cortex_a53_simd1")
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Floating-point load/store.
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-(define_insn_reservation "cortex_a53_crypto_sha1_fast" 2
+(define_insn_reservation "cortex_a53_f_load_64" 4
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "crypto_sha1_fast, crypto_sha256_fast"))
- "cortex_a53_simd0")
+ (ior (eq_attr "type" "f_loads,f_loadd")
+ (eq_attr "cortex_a53_advsimd_type"
+ "advsimd_load_64")))
+ "cortex_a53_slot_any+cortex_a53_ls_agen,
+ cortex_a53_load")
-(define_insn_reservation "cortex_a53_crypto_sha1_xor" 3
+(define_insn_reservation "cortex_a53_f_load_many" 5
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "crypto_sha1_xor"))
- "cortex_a53_simd0")
+ (eq_attr "cortex_a53_advsimd_type"
+ "advsimd_load_128,advsimd_load_lots"))
+ "cortex_a53_single_issue+cortex_a53_ls_agen,
+ cortex_a53_load+cortex_a53_slot0,
+ cortex_a53_load")
-(define_insn_reservation "cortex_a53_crypto_sha_slow" 5
+(define_insn_reservation "cortex_a53_f_store_64" 0
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "crypto_sha1_slow, crypto_sha256_slow"))
- "cortex_a53_simd0")
+ (ior (eq_attr "type" "f_stores,f_stored")
+ (eq_attr "cortex_a53_advsimd_type"
+ "advsimd_store_64")))
+ "cortex_a53_slot_any+cortex_a53_ls_agen,
+ cortex_a53_store")
-(define_bypass 0 "cortex_a53_crypto_aese"
- "cortex_a53_crypto_aesmc"
- "aarch_crypto_can_dual_issue")
+(define_insn_reservation "cortex_a53_f_store_many" 0
+ (and (eq_attr "tune" "cortexa53")
+ (eq_attr "cortex_a53_advsimd_type"
+ "advsimd_store_128,advsimd_store_lots"))
+ "cortex_a53_slot_any+cortex_a53_ls_agen,
+ cortex_a53_store+cortex_a53_slot0,
+ cortex_a53_store")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; VFP to/from core transfers.
+;; Advanced SIMD.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-(define_insn_reservation "cortex_a53_r2f" 4
+;; Either we want to model use of the ALU pipe, the multiply pipe or the
+;; divide/sqrt pipe. In all cases we need to check if we are a 64-bit
+;; operation (in which case we model dual-issue without penalty)
+;; or a 128-bit operation in which case we require in our model that we
+;; issue from slot 0.
+
+(define_insn_reservation "cortex_a53_advsimd_alu" 5
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "f_mcr,f_mcrr"))
- "cortex_a53_slot0")
+ (eq_attr "cortex_a53_advsimd_type" "advsimd_alu"))
+ "cortex_a53_slot_any,cortex_a53_fp_alu")
-(define_insn_reservation "cortex_a53_f2r" 2
+(define_insn_reservation "cortex_a53_advsimd_alu_q" 5
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "f_mrc,f_mrrc"))
- "cortex_a53_slot0")
+ (eq_attr "cortex_a53_advsimd_type" "advsimd_alu_q"))
+ "cortex_a53_slot0,cortex_a53_fp_alu_q")
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; VFP flag transfer.
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+(define_insn_reservation "cortex_a53_advsimd_mul" 5
+ (and (eq_attr "tune" "cortexa53")
+ (eq_attr "cortex_a53_advsimd_type" "advsimd_mul"))
+ "cortex_a53_slot_any,cortex_a53_fp_mul")
-(define_insn_reservation "cortex_a53_f_flags" 4
+(define_insn_reservation "cortex_a53_advsimd_mul_q" 5
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "f_flag"))
- "cortex_a53_slot0")
+ (eq_attr "cortex_a53_advsimd_type" "advsimd_mul_q"))
+ "cortex_a53_slot0,cortex_a53_fp_mul_q")
+
+;; SIMD Dividers.
+
+(define_insn_reservation "cortex_a53_advsimd_div_s" 14
+ (and (eq_attr "tune" "cortexa53")
+ (ior (eq_attr "type" "fdivs,fsqrts")
+ (eq_attr "cortex_a53_advsimd_type" "advsimd_div_s")))
+ "cortex_a53_slot0,cortex_a53_fp_mul,
+ cortex_a53_fp_div")
+
+(define_insn_reservation "cortex_a53_advsimd_div_d" 29
+ (and (eq_attr "tune" "cortexa53")
+ (ior (eq_attr "type" "fdivd,fsqrtd")
+ (eq_attr "cortex_a53_advsimd_type" "advsimd_div_d")))
+ "cortex_a53_slot0,cortex_a53_fp_mul,
+ cortex_a53_fp_div")
+
+(define_insn_reservation "cortex_a53_advsimd_div_s_q" 14
+ (and (eq_attr "tune" "cortexa53")
+ (eq_attr "cortex_a53_advsimd_type" "advsimd_div_s_q"))
+ "cortex_a53_single_issue,cortex_a53_fp_mul_q,
+ cortex_a53_fp_div_q")
+
+(define_insn_reservation "cortex_a53_advsimd_divd_q" 29
+ (and (eq_attr "tune" "cortexa53")
+ (eq_attr "cortex_a53_advsimd_type" "advsimd_div_d_q"))
+ "cortex_a53_single_issue,cortex_a53_fp_mul_q,
+ cortex_a53_fp_div_q")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; VFP load/store.
+;; ARMv8-A Cryptographic extensions.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-(define_insn_reservation "cortex_a53_f_loads" 4
+;; We want AESE and AESMC to end up consecutive to one another.
+
+(define_insn_reservation "cortex_a53_crypto_aese" 3
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "f_loads"))
+ (eq_attr "type" "crypto_aese"))
"cortex_a53_slot0")
-(define_insn_reservation "cortex_a53_f_loadd" 5
+(define_insn_reservation "cortex_a53_crypto_aesmc" 3
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "f_loadd"))
- "cortex_a53_slot0")
+ (eq_attr "type" "crypto_aesmc"))
+ "cortex_a53_slot_any")
-(define_insn_reservation "cortex_a53_f_load_2reg" 5
+;; SHA1H
+
+(define_insn_reservation "cortex_a53_crypto_sha1_fast" 3
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "neon_load2_2reg_q"))
- "(cortex_a53_slot_any+cortex_a53_ls)*2")
+ (eq_attr "type" "crypto_sha1_fast"))
+ "cortex_a53_slot_any,cortex_a53_crypto")
-(define_insn_reservation "cortex_a53_f_loadq" 5
+(define_insn_reservation "cortex_a53_crypto_sha256_fast" 3
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "neon_load1_1reg_q"))
- "cortex_a53_slot_any+cortex_a53_ls")
+ (eq_attr "type" "crypto_sha256_fast"))
+ "cortex_a53_slot0,cortex_a53_crypto")
-(define_insn_reservation "cortex_a53_f_stores" 0
+(define_insn_reservation "cortex_a53_crypto_sha1_xor" 4
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "f_stores"))
- "cortex_a53_slot0")
+ (eq_attr "type" "crypto_sha1_xor"))
+ "cortex_a53_slot0,cortex_a53_crypto")
-(define_insn_reservation "cortex_a53_f_stored" 0
+(define_insn_reservation "cortex_a53_crypto_sha_slow" 5
(and (eq_attr "tune" "cortexa53")
- (eq_attr "type" "f_stored"))
- "cortex_a53_slot0")
+ (eq_attr "type" "crypto_sha1_slow, crypto_sha256_slow"))
+ "cortex_a53_slot0,cortex_a53_crypto")
-;; Load-to-use for floating-point values has a penalty of one cycle,
-;; i.e. a latency of two.
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Floating-point/Advanced SIMD register bypasses.
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-(define_bypass 2 "cortex_a53_f_loads"
- "cortex_a53_fpalu, cortex_a53_fpmac, cortex_a53_fpmul,\
- cortex_a53_fdivs, cortex_a53_fdivd,\
- cortex_a53_f2r")
+;; Model the late use of the accumulator operand for floating-point
+;; multiply-accumulate operations as a bypass reducing the latency
+;; of producing instructions to near zero.
-(define_bypass 2 "cortex_a53_f_loadd"
- "cortex_a53_fpalu, cortex_a53_fpmac, cortex_a53_fpmul,\
- cortex_a53_fdivs, cortex_a53_fdivd,\
- cortex_a53_f2r")
+(define_bypass 1 "cortex_a53_fp*,
+ cortex_a53_r2f,
+ cortex_a53_f_load*"
+ "cortex_a53_fpmac"
+ "aarch_accumulator_forwarding")
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; Crude Advanced SIMD approximation.
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Model a bypass from the result of an FP operation to a use.
+
+(define_bypass 4 "cortex_a53_fpalu,
+ cortex_a53_fpmul"
+ "cortex_a53_fpalu,
+ cortex_a53_fpmul,
+ cortex_a53_fpmac,
+ cortex_a53_advsimd_div*")
+
+;; We want AESE and AESMC to end up consecutive to one another.
+
+(define_bypass 0 "cortex_a53_crypto_aese"
+ "cortex_a53_crypto_aesmc"
+ "aarch_crypto_can_dual_issue")
-(define_insn_reservation "cortex_a53_advsimd" 4
- (and (eq_attr "tune" "cortexa53")
- (eq_attr "is_neon_type" "yes"))
- "cortex_a53_simd0")