@@ -26,6 +26,7 @@ Contents:
1.4 target/target_index or setpolicy?
1.5 target/target_index
1.6 setpolicy
+1.7 get_intermediate and target_intermediate
2. Frequency Table Helpers
@@ -79,6 +80,10 @@ cpufreq_driver.attr - A pointer to a NULL-terminated list of
"struct freq_attr" which allow to
export values to sysfs.
+cpufreq_driver.get_intermediate
+and target_intermediate Used to switch to stable frequency while
+ changing CPU frequency.
+
1.2 Per-CPU Initialization
--------------------------
@@ -151,7 +156,7 @@ Some cpufreq-capable processors switch the frequency between certain
limits on their own. These shall use the ->setpolicy call
-1.4. target/target_index
+1.5. target/target_index
-------------
The target_index call has two arguments: struct cpufreq_policy *policy,
@@ -160,6 +165,9 @@ and unsigned int index (into the exposed frequency table).
The CPUfreq driver must set the new frequency when called here. The
actual frequency must be determined by freq_table[index].frequency.
+It should always restore to earlier frequency (i.e. policy->restore_freq) in
+case of errors, even if we switched to intermediate frequency earlier.
+
Deprecated:
----------
The target call has three arguments: struct cpufreq_policy *policy,
@@ -179,7 +187,7 @@ Here again the frequency table helper might assist you - see section 2
for details.
-1.5 setpolicy
+1.6 setpolicy
---------------
The setpolicy call only takes a struct cpufreq_policy *policy as
@@ -190,6 +198,23 @@ setting when policy->policy is CPUFREQ_POLICY_PERFORMANCE, and a
powersaving-oriented setting when CPUFREQ_POLICY_POWERSAVE. Also check
the reference implementation in drivers/cpufreq/longrun.c
+1.7 get_intermediate and target_intermediate
+--------------------------------------------
+
+Only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset.
+
+get_intermediate should return a stable intermediate frequency platform wants to
+switch to, and target_intermediate() should set CPU to to that frequency, before
+jumping to the frequency corresponding to 'index'. Core will take care of
+sending notifications and driver doesn't have to handle them in
+target_intermediate() or target_index().
+
+Drivers can return '0' from get_intermediate() in case they don't wish to switch
+to intermediate frequency for some target frequency. In that case core will
+directly call ->target_index().
+
+NOTE: ->target_index() should restore to policy->restore_freq in case of
+failures as core would send notifications for that.
2. Frequency Table Helpers
@@ -1816,20 +1816,55 @@ EXPORT_SYMBOL(cpufreq_unregister_notifier);
* GOVERNORS *
*********************************************************************/
+/* Must set freqs->new to intermediate frequency */
+static int __target_intermediate(struct cpufreq_policy *policy,
+ struct cpufreq_freqs *freqs, int index)
+{
+ int ret;
+
+ freqs->new = cpufreq_driver->get_intermediate(policy, index);
+
+ /* We don't need to switch to intermediate freq */
+ if (!freqs->new)
+ return 0;
+
+ pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
+ __func__, policy->cpu, freqs->old, freqs->new);
+
+ cpufreq_freq_transition_begin(policy, freqs);
+ ret = cpufreq_driver->target_intermediate(policy, index);
+ cpufreq_freq_transition_end(policy, freqs, ret);
+
+ if (ret)
+ pr_err("%s: Failed to change to intermediate frequency: %d\n",
+ __func__, ret);
+
+ return ret;
+}
+
static int __target_index(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *freq_table, int index)
{
- struct cpufreq_freqs freqs;
+ struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
+ unsigned int intermediate_freq = 0;
int retval = -EINVAL;
bool notify;
notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
-
if (notify) {
- freqs.old = policy->cur;
- freqs.new = freq_table[index].frequency;
- freqs.flags = 0;
+ /* Handle switching to intermediate frequency */
+ if (cpufreq_driver->get_intermediate) {
+ retval = __target_intermediate(policy, &freqs, index);
+ if (retval)
+ return retval;
+
+ intermediate_freq = freqs.new;
+ /* Set old freq to intermediate */
+ if (intermediate_freq)
+ freqs.old = freqs.new;
+ }
+ freqs.new = freq_table[index].frequency;
pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
__func__, policy->cpu, freqs.old, freqs.new);
@@ -1841,9 +1876,23 @@ static int __target_index(struct cpufreq_policy *policy,
pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
retval);
- if (notify)
+ if (notify) {
cpufreq_freq_transition_end(policy, &freqs, retval);
+ /*
+ * Failed after setting to intermediate freq? Driver should have
+ * reverted back to initial frequency and so should we. Check
+ * here for intermediate_freq instead of get_intermediate, in
+ * case we have't switched to intermediate freq at all.
+ */
+ if (unlikely(retval && intermediate_freq)) {
+ freqs.old = intermediate_freq;
+ freqs.new = policy->restore_freq;
+ cpufreq_freq_transition_begin(policy, &freqs);
+ cpufreq_freq_transition_end(policy, &freqs, 0);
+ }
+ }
+
return retval;
}
@@ -1875,6 +1924,9 @@ int __cpufreq_driver_target(struct cpufreq_policy *policy,
if (target_freq == policy->cur)
return 0;
+ /* Save last value to restore later on errors */
+ policy->restore_freq = policy->cur;
+
if (cpufreq_driver->target)
retval = cpufreq_driver->target(policy, target_freq, relation);
else if (cpufreq_driver->target_index) {
@@ -2361,7 +2413,8 @@ int cpufreq_register_driver(struct cpufreq_driver *driver_data)
!(driver_data->setpolicy || driver_data->target_index ||
driver_data->target) ||
(driver_data->setpolicy && (driver_data->target_index ||
- driver_data->target)))
+ driver_data->target)) ||
+ (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
return -EINVAL;
pr_debug("trying to register driver %s\n", driver_data->name);
@@ -75,6 +75,7 @@ struct cpufreq_policy {
unsigned int max; /* in kHz */
unsigned int cur; /* in kHz, only needed if cpufreq
* governors are used */
+ unsigned int restore_freq; /* = policy->cur before transition */
unsigned int suspend_freq; /* freq to set during suspend */
unsigned int policy; /* see above */
@@ -221,11 +222,35 @@ struct cpufreq_driver {
/* define one out of two */
int (*setpolicy) (struct cpufreq_policy *policy);
+
+ /*
+ * On failure, should always restore frequency to policy->restore_freq
+ * (i.e. old freq).
+ */
int (*target) (struct cpufreq_policy *policy, /* Deprecated */
unsigned int target_freq,
unsigned int relation);
int (*target_index) (struct cpufreq_policy *policy,
unsigned int index);
+ /*
+ * Only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION
+ * unset.
+ *
+ * get_intermediate should return a stable intermediate frequency
+ * platform wants to switch to and target_intermediate() should set CPU
+ * to to that frequency, before jumping to the frequency corresponding
+ * to 'index'. Core will take care of sending notifications and driver
+ * doesn't have to handle them in target_intermediate() or
+ * target_index().
+ *
+ * Drivers can return '0' from get_intermediate() in case they don't
+ * wish to switch to intermediate frequency for some target frequency.
+ * In that case core will directly call ->target_index().
+ */
+ unsigned int (*get_intermediate)(struct cpufreq_policy *policy,
+ unsigned int index);
+ int (*target_intermediate)(struct cpufreq_policy *policy,
+ unsigned int index);
/* should be defined, if possible */
unsigned int (*get) (unsigned int cpu);